Torque3D/Templates/Full/game/shaders/common/gl/cloudLayerP.glsl
2015-01-25 17:56:17 -06:00

147 lines
5.9 KiB
GLSL

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "hlslCompat.glsl"
#include "torque.glsl"
//-----------------------------------------------------------------------------
// Structures
//-----------------------------------------------------------------------------
//ConnectData
in vec4 texCoord12;
#define IN_texCoord12 texCoord12
in vec4 texCoord34;
#define IN_texCoord34 texCoord34
in vec3 vLightTS; // light vector in tangent space, denormalized
#define IN_vLightTS vLightTS
in vec3 vViewTS; // view vector in tangent space, denormalized
#define IN_vViewTS vViewTS
in float worldDist;
#define IN_worldDist worldDist
//-----------------------------------------------------------------------------
// Uniforms
//-----------------------------------------------------------------------------
uniform sampler2D normalHeightMap;
uniform vec3 ambientColor;
uniform vec3 sunColor;
uniform float cloudCoverage;
uniform vec3 cloudBaseColor;
uniform float cloudExposure;
out vec4 OUT_col;
//-----------------------------------------------------------------------------
// Globals
//-----------------------------------------------------------------------------
// The per-color weighting to be used for luminance calculations in RGB order.
const vec3 LUMINANCE_VECTOR = vec3(0.2125f, 0.7154f, 0.0721f);
//-----------------------------------------------------------------------------
// Functions
//-----------------------------------------------------------------------------
// Calculates the Rayleigh phase function
float getRayleighPhase( float angle )
{
return 0.75 * ( 1.0 + pow( angle, 2.0 ) );
}
// Returns the output rgb color given a texCoord and parameters it uses
// for lighting calculation.
vec3 ComputeIllumination( vec2 texCoord,
vec3 vLightTS,
vec3 vViewTS,
vec3 vNormalTS )
{
//return noiseNormal;
//return vNormalTS;
vec3 vLightTSAdj = vec3( -vLightTS.x, -vLightTS.y, vLightTS.z );
float dp = dot( vNormalTS, vLightTSAdj );
// Calculate the amount of illumination (lightTerm)...
// We do both a rim lighting effect and a halfLambertian lighting effect
// and combine the result.
float halfLambertTerm = clamp( pow( dp * 0.5 + 0.5, 1.0 ), 0.0, 1.0 );
float rimLightTerm = pow( ( 1.0 - dp ), 1.0 );
float lightTerm = clamp( halfLambertTerm * 1.0 + rimLightTerm * dp, 0.0, 1.0 );
lightTerm *= 0.5;
// Use a simple RayleighPhase function to simulate single scattering towards
// the camera.
float angle = dot( vLightTS, vViewTS );
lightTerm *= getRayleighPhase( angle );
// Combine terms and colors into the output color.
//vec3 lightColor = ( lightTerm * sunColor * fOcclusionShadow ) + ambientColor;
vec3 lightColor = mix( ambientColor, sunColor, lightTerm );
//lightColor = mix( lightColor, ambientColor, cloudCoverage );
vec3 finalColor = cloudBaseColor * lightColor;
return finalColor;
}
void main()
{
// Normalize the interpolated vectors:
vec3 vViewTS = normalize( vViewTS );
vec3 vLightTS = normalize( vLightTS );
vec4 cResultColor = vec4( 0, 0, 0, 1 );
vec2 texSample = IN_texCoord12.xy;
vec4 noise1 = texture( normalHeightMap, IN_texCoord12.zw );
noise1 = normalize( ( noise1 - 0.5 ) * 2.0 );
//return noise1;
vec4 noise2 = texture( normalHeightMap, IN_texCoord34.xy );
noise2 = normalize( ( noise2 - 0.5 ) * 2.0 );
//return noise2;
vec3 noiseNormal = normalize( noise1 + noise2 ).xyz;
//return vec4( noiseNormal, 1.0 );
float noiseHeight = noise1.a * noise2.a * ( cloudCoverage / 2.0 + 0.5 );
vec3 vNormalTS = normalize( texture( normalHeightMap, texSample ).xyz * 2.0 - 1.0 );
vNormalTS += noiseNormal;
vNormalTS = normalize( vNormalTS );
// Compute resulting color for the pixel:
cResultColor.rgb = ComputeIllumination( texSample, vLightTS, vViewTS, vNormalTS );
float coverage = ( cloudCoverage - 0.5 ) * 2.0;
cResultColor.a = texture( normalHeightMap, texSample ).a + coverage + noiseHeight;
if ( cloudCoverage > -1.0 )
cResultColor.a /= 1.0 + coverage;
cResultColor.a = clamp( cResultColor.a * pow( saturate(cloudCoverage), 0.25 ), 0.0, 1.0 );
cResultColor.a = mix( cResultColor.a, 0.0, 1.0 - pow(IN_worldDist,2.0) );
OUT_col = hdrEncode(cResultColor);
}