Torque3D/Engine/source/ts/assimp/assimpAppNode.cpp
OTHGMars 2eaa917e00 Import settings persistence
Adds new settings to ColladaUtils::ImportSettings and TSShapeConstructor::ImportSettings for persistence. Shape will now be re-imported with the original settings if the source art is newer or the cached.dts file has been deleted.
Fixes material transparency blend mode assignment.
Adds implementation for override scale, material prefix and always/never import options.
Reads and applies metadata fields for scale and up axis from formats that provide it.
Eliminates the assimp.log file and redirects log messages to console.log. Verbose logging is enabled in debug builds.
2019-05-21 01:18:27 -04:00

333 lines
11 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "ts/loader/appSequence.h"
#include "ts/assimp/assimpAppNode.h"
#include "ts/assimp/assimpAppMesh.h"
// assimp include files.
#include <assimp/cimport.h>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#include <assimp/types.h>
aiAnimation* AssimpAppNode::sActiveSequence = NULL;
F32 AssimpAppNode::sTimeMultiplier = 1.0f;
AssimpAppNode::AssimpAppNode(const struct aiScene* scene, const struct aiNode* node, AssimpAppNode* parent)
: mInvertMeshes(false),
mLastTransformTime(TSShapeLoader::DefaultTime - 1),
mDefaultTransformValid(false)
{
mScene = scene;
mNode = node;
appParent = parent;
mName = dStrdup(mNode->mName.C_Str());
if ( dStrlen(mName) == 0 )
{
const char* defaultName = "null";
mName = dStrdup(defaultName);
}
mParentName = dStrdup(parent ? parent->getName() : "ROOT");
assimpToTorqueMat(node->mTransformation, mNodeTransform);
Con::printf("[ASSIMP] Node Created: %s, Parent: %s", mName, mParentName);
}
// Get all child nodes
void AssimpAppNode::buildChildList()
{
if (!mNode)
{
mNode = mScene->mRootNode;
}
for (U32 n = 0; n < mNode->mNumChildren; ++n) {
mChildNodes.push_back(new AssimpAppNode(mScene, mNode->mChildren[n], this));
}
}
// Get all geometry attached to this node
void AssimpAppNode::buildMeshList()
{
for (U32 n = 0; n < mNode->mNumMeshes; ++n)
{
const struct aiMesh* mesh = mScene->mMeshes[mNode->mMeshes[n]];
mMeshes.push_back(new AssimpAppMesh(mesh, this));
}
}
MatrixF AssimpAppNode::getTransform(F32 time)
{
// Check if we can use the last computed transform
if (time == mLastTransformTime)
return mLastTransform;
if (appParent) {
// Get parent node's transform
mLastTransform = appParent->getTransform(time);
}
else {
// no parent (ie. root level) => scale by global shape <unit>
mLastTransform.identity();
mLastTransform.scale(ColladaUtils::getOptions().unit);
if (!isBounds())
convertMat(mLastTransform);
}
// If this node is animated in the active sequence, fetch the animated transform
MatrixF mat(true);
if (sActiveSequence)
getAnimatedTransform(mat, time, sActiveSequence);
else
mat = mNodeTransform;
// Remove node scaling?
Point3F nodeScale = mat.getScale();
if (nodeScale != Point3F::One && appParent && ColladaUtils::getOptions().ignoreNodeScale)
{
nodeScale.x = nodeScale.x ? (1.0f / nodeScale.x) : 0;
nodeScale.y = nodeScale.y ? (1.0f / nodeScale.y) : 0;
nodeScale.z = nodeScale.z ? (1.0f / nodeScale.z) : 0;
mat.scale(nodeScale);
}
mLastTransform.mul(mat);
mLastTransformTime = time;
return mLastTransform;
}
void AssimpAppNode::getAnimatedTransform(MatrixF& mat, F32 t, aiAnimation* animSeq)
{
// Find the channel for this node
for (U32 i = 0; i < animSeq->mNumChannels; ++i)
{
if (strcmp(mName, animSeq->mChannels[i]->mNodeName.C_Str()) == 0)
{
aiNodeAnim *nodeAnim = animSeq->mChannels[i];
Point3F trans(Point3F::Zero);
Point3F scale(Point3F::One);
QuatF rot;
rot.identity();
// Transform
if (nodeAnim->mNumPositionKeys == 1)
trans.set(nodeAnim->mPositionKeys[0].mValue.x, nodeAnim->mPositionKeys[0].mValue.y, nodeAnim->mPositionKeys[0].mValue.z);
else
{
Point3F curPos, lastPos;
F32 lastT = 0.0;
for (U32 key = 0; key < nodeAnim->mNumPositionKeys; ++key)
{
F32 curT = sTimeMultiplier * (F32)nodeAnim->mPositionKeys[key].mTime;
curPos.set(nodeAnim->mPositionKeys[key].mValue.x, nodeAnim->mPositionKeys[key].mValue.y, nodeAnim->mPositionKeys[key].mValue.z);
if ((curT > t) && (key > 0))
{
F32 factor = (t - lastT) / (curT - lastT);
trans.interpolate(lastPos, curPos, factor);
break;
}
else if ((curT >= t) || (key == nodeAnim->mNumPositionKeys - 1))
{
trans = curPos;
break;
}
lastT = curT;
lastPos = curPos;
}
}
// Rotation
if (nodeAnim->mNumRotationKeys == 1)
rot.set(nodeAnim->mRotationKeys[0].mValue.x, nodeAnim->mRotationKeys[0].mValue.y,
nodeAnim->mRotationKeys[0].mValue.z, nodeAnim->mRotationKeys[0].mValue.w);
else
{
QuatF curRot, lastRot;
F32 lastT = 0.0;
for (U32 key = 0; key < nodeAnim->mNumRotationKeys; ++key)
{
F32 curT = sTimeMultiplier * (F32)nodeAnim->mRotationKeys[key].mTime;
curRot.set(nodeAnim->mRotationKeys[key].mValue.x, nodeAnim->mRotationKeys[key].mValue.y,
nodeAnim->mRotationKeys[key].mValue.z, nodeAnim->mRotationKeys[key].mValue.w);
if ((curT > t) && (key > 0))
{
F32 factor = (t - lastT) / (curT - lastT);
rot.interpolate(lastRot, curRot, factor);
break;
}
else if ((curT >= t) || (key == nodeAnim->mNumRotationKeys - 1))
{
rot = curRot;
break;
}
lastT = curT;
lastRot = curRot;
}
}
// Scale
if (nodeAnim->mNumScalingKeys == 1)
scale.set(nodeAnim->mScalingKeys[0].mValue.x, nodeAnim->mScalingKeys[0].mValue.y, nodeAnim->mScalingKeys[0].mValue.z);
else
{
Point3F curScale, lastScale;
F32 lastT = 0.0;
for (U32 key = 0; key < nodeAnim->mNumScalingKeys; ++key)
{
F32 curT = sTimeMultiplier * (F32)nodeAnim->mScalingKeys[key].mTime;
curScale.set(nodeAnim->mScalingKeys[key].mValue.x, nodeAnim->mScalingKeys[key].mValue.y, nodeAnim->mScalingKeys[key].mValue.z);
if ((curT > t) && (key > 0))
{
F32 factor = (t - lastT) / (curT - lastT);
scale.interpolate(lastScale, curScale, factor);
break;
}
else if ((curT >= t) || (key == nodeAnim->mNumScalingKeys - 1))
{
scale = curScale;
break;
}
lastT = curT;
lastScale = curScale;
}
}
rot.setMatrix(&mat);
mat.inverse();
mat.setPosition(trans);
mat.scale(scale);
return;
}
}
// Node not found in the animation channels
mat = mNodeTransform;
}
bool AssimpAppNode::animatesTransform(const AppSequence* appSeq)
{
return false;
}
/// Get the world transform of the node at the specified time
MatrixF AssimpAppNode::getNodeTransform(F32 time)
{
// Avoid re-computing the default transform if possible
if (mDefaultTransformValid && time == TSShapeLoader::DefaultTime)
{
return mDefaultNodeTransform;
}
else
{
MatrixF nodeTransform = getTransform(time);
// Check for inverted node coordinate spaces => can happen when modelers
// use the 'mirror' tool in their 3d app. Shows up as negative <scale>
// transforms in the collada model.
if (m_matF_determinant(nodeTransform) < 0.0f)
{
// Mark this node as inverted so we can mirror mesh geometry, then
// de-invert the transform matrix
mInvertMeshes = true;
nodeTransform.scale(Point3F(1, 1, -1));
}
// Cache the default transform
if (time == TSShapeLoader::DefaultTime)
{
mDefaultTransformValid = true;
mDefaultNodeTransform = nodeTransform;
}
return nodeTransform;
}
}
void AssimpAppNode::assimpToTorqueMat(const aiMatrix4x4& inAssimpMat, MatrixF& outMat)
{
outMat.setRow(0, Point4F((F32)inAssimpMat.a1, (F32)inAssimpMat.a2,
(F32)inAssimpMat.a3, (F32)inAssimpMat.a4));
outMat.setRow(1, Point4F((F32)inAssimpMat.b1, (F32)inAssimpMat.b2,
(F32)inAssimpMat.b3, (F32)inAssimpMat.b4));
outMat.setRow(2, Point4F((F32)inAssimpMat.c1, (F32)inAssimpMat.c2,
(F32)inAssimpMat.c3, (F32)inAssimpMat.c4));
outMat.setRow(3, Point4F((F32)inAssimpMat.d1, (F32)inAssimpMat.d2,
(F32)inAssimpMat.d3, (F32)inAssimpMat.d4));
}
void AssimpAppNode::convertMat(MatrixF& outMat)
{
MatrixF rot(true);
switch (ColladaUtils::getOptions().upAxis)
{
case UPAXISTYPE_X_UP:
// rotate 90 around Y-axis, then 90 around Z-axis
rot(0, 0) = 0.0f; rot(1, 0) = 1.0f;
rot(1, 1) = 0.0f; rot(2, 1) = 1.0f;
rot(0, 2) = 1.0f; rot(2, 2) = 0.0f;
// pre-multiply the transform by the rotation matrix
outMat.mulL(rot);
break;
case UPAXISTYPE_Y_UP:
// rotate 180 around Y-axis, then 90 around X-axis
rot(0, 0) = -1.0f;
rot(1, 1) = 0.0f; rot(2, 1) = 1.0f;
rot(1, 2) = 1.0f; rot(2, 2) = 0.0f;
// pre-multiply the transform by the rotation matrix
outMat.mulL(rot);
break;
case UPAXISTYPE_Z_UP:
default:
// nothing to do
break;
}
}
aiNode* AssimpAppNode::findChildNodeByName(const char* nodeName, aiNode* rootNode)
{
aiNode* retNode = NULL;
if (strcmp(nodeName, rootNode->mName.C_Str()) == 0)
return rootNode;
for (U32 i = 0; i < rootNode->mNumChildren; ++i)
{
retNode = findChildNodeByName(nodeName, rootNode->mChildren[i]);
if (retNode)
return retNode;
}
return nullptr;
}