mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-20 04:34:48 +00:00
First line is to ensure similar behavior to current regarding pushback on the object doing the colliding. Second line applies an impulse to the rigid that was collided with.
367 lines
10 KiB
C++
367 lines
10 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Copyright (c) 2012 GarageGames, LLC
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to
|
|
// deal in the Software without restriction, including without limitation the
|
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
// sell copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
// IN THE SOFTWARE.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "T3D/rigid.h"
|
|
#include "console/console.h"
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
|
|
Rigid::Rigid()
|
|
{
|
|
force.set(0.0f,0.0f,0.0f);
|
|
torque.set(0.0f,0.0f,0.0f);
|
|
linVelocity.set(0.0f,0.0f,0.0f);
|
|
linPosition.set(0.0f,0.0f,0.0f);
|
|
linMomentum.set(0.0f,0.0f,0.0f);
|
|
angVelocity.set(0.0f,0.0f,0.0f);
|
|
angMomentum.set(0.0f,0.0f,0.0f);
|
|
|
|
angPosition.identity();
|
|
invWorldInertia.identity();
|
|
|
|
centerOfMass.set(0.0f,0.0f,0.0f);
|
|
worldCenterOfMass = linPosition;
|
|
mass = oneOverMass = 1.0f;
|
|
invObjectInertia.identity();
|
|
restitution = 0.3f;
|
|
friction = 0.5f;
|
|
atRest = false;
|
|
}
|
|
|
|
void Rigid::clearForces()
|
|
{
|
|
force.set(0.0f,0.0f,0.0f);
|
|
torque.set(0.0f,0.0f,0.0f);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
void Rigid::integrate(F32 delta)
|
|
{
|
|
// Update Angular position
|
|
F32 angle = angVelocity.len();
|
|
if (angle != 0.0f) {
|
|
QuatF dq;
|
|
F32 sinHalfAngle;
|
|
mSinCos(angle * delta * -0.5f, sinHalfAngle, dq.w);
|
|
sinHalfAngle *= 1.0f / angle;
|
|
dq.x = angVelocity.x * sinHalfAngle;
|
|
dq.y = angVelocity.y * sinHalfAngle;
|
|
dq.z = angVelocity.z * sinHalfAngle;
|
|
QuatF tmp = angPosition;
|
|
angPosition.mul(tmp, dq);
|
|
angPosition.normalize();
|
|
|
|
// Rotate the position around the center of mass
|
|
Point3F lp = linPosition - worldCenterOfMass;
|
|
dq.mulP(lp,&linPosition);
|
|
linPosition += worldCenterOfMass;
|
|
}
|
|
|
|
// Update angular momentum
|
|
angMomentum = angMomentum + torque * delta;
|
|
|
|
// Update linear position, momentum
|
|
linPosition = linPosition + linVelocity * delta;
|
|
linMomentum = linMomentum + force * delta;
|
|
linVelocity = linMomentum * oneOverMass;
|
|
|
|
// Update dependent state variables
|
|
updateInertialTensor();
|
|
updateVelocity();
|
|
updateCenterOfMass();
|
|
}
|
|
|
|
void Rigid::updateVelocity()
|
|
{
|
|
linVelocity.x = linMomentum.x * oneOverMass;
|
|
linVelocity.y = linMomentum.y * oneOverMass;
|
|
linVelocity.z = linMomentum.z * oneOverMass;
|
|
invWorldInertia.mulV(angMomentum,&angVelocity);
|
|
}
|
|
|
|
void Rigid::updateInertialTensor()
|
|
{
|
|
MatrixF iv,qmat;
|
|
angPosition.setMatrix(&qmat);
|
|
iv.mul(qmat,invObjectInertia);
|
|
qmat.transpose();
|
|
invWorldInertia.mul(iv,qmat);
|
|
}
|
|
|
|
void Rigid::updateCenterOfMass()
|
|
{
|
|
// Move the center of mass into world space
|
|
angPosition.mulP(centerOfMass,&worldCenterOfMass);
|
|
worldCenterOfMass += linPosition;
|
|
}
|
|
|
|
void Rigid::applyImpulse(const Point3F &r, const Point3F &impulse)
|
|
{
|
|
atRest = false;
|
|
|
|
// Linear momentum and velocity
|
|
linMomentum += impulse;
|
|
linVelocity.x = linMomentum.x * oneOverMass;
|
|
linVelocity.y = linMomentum.y * oneOverMass;
|
|
linVelocity.z = linMomentum.z * oneOverMass;
|
|
|
|
// Rotational momentum and velocity
|
|
Point3F tv;
|
|
mCross(r,impulse,&tv);
|
|
angMomentum += tv;
|
|
invWorldInertia.mulV(angMomentum, &angVelocity);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
/** Resolve collision with another rigid body
|
|
Computes & applies the collision impulses needed to keep the bodies
|
|
from interpenetrating.
|
|
|
|
tg: This function was commented out... I uncommented it, but haven't
|
|
double checked the math.
|
|
*/
|
|
bool Rigid::resolveCollision(const Point3F& p, const Point3F &normal, Rigid* rigid)
|
|
{
|
|
atRest = false;
|
|
Point3F v1,v2,r1,r2;
|
|
getOriginVector(p,&r1);
|
|
getVelocity(r1,&v1);
|
|
rigid->getOriginVector(p,&r2);
|
|
rigid->getVelocity(r2,&v2);
|
|
|
|
// Make sure they are converging
|
|
F32 nv = mDot(v1,normal);
|
|
nv -= mDot(v2,normal);
|
|
if (nv > 0.0f)
|
|
return false;
|
|
|
|
// Compute impulse
|
|
F32 d, n = -nv * (2.0f + restitution * rigid->restitution);
|
|
Point3F a1,b1,c1;
|
|
mCross(r1,normal,&a1);
|
|
invWorldInertia.mulV(a1,&b1);
|
|
mCross(b1,r1,&c1);
|
|
|
|
Point3F a2,b2,c2;
|
|
mCross(r2,normal,&a2);
|
|
rigid->invWorldInertia.mulV(a2,&b2);
|
|
mCross(b2,r2,&c2);
|
|
|
|
Point3F c3 = c1 + c2;
|
|
d = oneOverMass + rigid->oneOverMass + mDot(c3,normal);
|
|
Point3F impulse = normal * (n / d);
|
|
|
|
applyImpulse(r1,impulse);
|
|
impulse.neg();
|
|
rigid->applyImpulse(r2, impulse);
|
|
return true;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
/** Resolve collision with an immovable object
|
|
Computes & applies the collision impulse needed to keep the body
|
|
from penetrating the given surface.
|
|
*/
|
|
bool Rigid::resolveCollision(const Point3F& p, const Point3F &normal)
|
|
{
|
|
atRest = false;
|
|
Point3F v,r;
|
|
getOriginVector(p,&r);
|
|
getVelocity(r,&v);
|
|
F32 n = -mDot(v,normal);
|
|
if (n >= 0.0f) {
|
|
|
|
// Collision impulse, straight forward force stuff.
|
|
F32 d = getZeroImpulse(r,normal);
|
|
F32 j = n * (1.0f + restitution) * d;
|
|
Point3F impulse = normal * j;
|
|
|
|
// Friction impulse, calculated as a function of the
|
|
// amount of force it would take to stop the motion
|
|
// perpendicular to the normal.
|
|
Point3F uv = v + (normal * n);
|
|
F32 ul = uv.len();
|
|
if (ul) {
|
|
uv /= -ul;
|
|
F32 u = ul * getZeroImpulse(r,uv);
|
|
j *= friction;
|
|
if (u > j)
|
|
u = j;
|
|
impulse += uv * u;
|
|
}
|
|
|
|
//
|
|
applyImpulse(r,impulse);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
/** Calculate the inertia along the given vector
|
|
This function can be used to calculate the amount of force needed to
|
|
affect a change in velocity along the specified normal applied at
|
|
the given point.
|
|
*/
|
|
F32 Rigid::getZeroImpulse(const Point3F& r,const Point3F& normal)
|
|
{
|
|
Point3F a,b,c;
|
|
mCross(r,normal,&a);
|
|
invWorldInertia.mulV(a,&b);
|
|
mCross(b,r,&c);
|
|
return 1 / (oneOverMass + mDot(c,normal));
|
|
}
|
|
|
|
F32 Rigid::getKineticEnergy()
|
|
{
|
|
Point3F w;
|
|
QuatF qmat = angPosition;
|
|
qmat.inverse();
|
|
qmat.mulP(angVelocity,&w);
|
|
const F32* f = invObjectInertia;
|
|
return 0.5f * ((mass * mDot(linVelocity,linVelocity)) +
|
|
w.x * w.x / f[0] +
|
|
w.y * w.y / f[5] +
|
|
w.z * w.z / f[10]);
|
|
}
|
|
|
|
void Rigid::getOriginVector(const Point3F &p,Point3F* r)
|
|
{
|
|
*r = p - worldCenterOfMass;
|
|
}
|
|
|
|
void Rigid::setCenterOfMass(const Point3F &newCenter)
|
|
{
|
|
// Sets the center of mass relative to the origin.
|
|
centerOfMass = newCenter;
|
|
|
|
// Update world center of mass
|
|
angPosition.mulP(centerOfMass,&worldCenterOfMass);
|
|
worldCenterOfMass += linPosition;
|
|
}
|
|
|
|
void Rigid::translateCenterOfMass(const Point3F &oldPos,const Point3F &newPos)
|
|
{
|
|
// I + mass * (crossmatrix(centerOfMass)^2 - crossmatrix(newCenter)^2)
|
|
MatrixF oldx,newx;
|
|
oldx.setCrossProduct(oldPos);
|
|
newx.setCrossProduct(newPos);
|
|
for (S32 row = 0; row < 3; row++)
|
|
for (S32 col = 0; col < 3; col++) {
|
|
F32 n = newx(row,col), o = oldx(row,col);
|
|
objectInertia(row,col) += mass * ((o * o) - (n * n));
|
|
}
|
|
|
|
// Make sure the matrix is symetrical
|
|
objectInertia(1,0) = objectInertia(0,1);
|
|
objectInertia(2,0) = objectInertia(0,2);
|
|
objectInertia(2,1) = objectInertia(1,2);
|
|
}
|
|
|
|
void Rigid::getVelocity(const Point3F& r, Point3F* v)
|
|
{
|
|
mCross(angVelocity, r, v);
|
|
*v += linVelocity;
|
|
}
|
|
|
|
void Rigid::getTransform(MatrixF* mat)
|
|
{
|
|
angPosition.setMatrix(mat);
|
|
mat->setColumn(3,linPosition);
|
|
}
|
|
|
|
void Rigid::setTransform(const MatrixF& mat)
|
|
{
|
|
angPosition.set(mat);
|
|
mat.getColumn(3,&linPosition);
|
|
|
|
// Update center of mass
|
|
angPosition.mulP(centerOfMass,&worldCenterOfMass);
|
|
worldCenterOfMass += linPosition;
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
/** Set the rigid body moment of inertia
|
|
The moment is calculated as a box with the given dimensions.
|
|
*/
|
|
void Rigid::setObjectInertia(const Point3F& r)
|
|
{
|
|
// Rotational moment of inertia of a box
|
|
F32 ot = mass / 12.0f;
|
|
F32 a = r.x * r.x;
|
|
F32 b = r.y * r.y;
|
|
F32 c = r.z * r.z;
|
|
|
|
objectInertia.identity();
|
|
F32* f = objectInertia;
|
|
f[0] = ot * (b + c);
|
|
f[5] = ot * (c + a);
|
|
f[10] = ot * (a + b);
|
|
|
|
invertObjectInertia();
|
|
updateInertialTensor();
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
/** Set the rigid body moment of inertia
|
|
The moment is calculated as a unit sphere.
|
|
*/
|
|
void Rigid::setObjectInertia()
|
|
{
|
|
objectInertia.identity();
|
|
F32 radius = 1.0f;
|
|
F32* f = objectInertia;
|
|
f[0] = f[5] = f[10] = (0.4f * mass * radius * radius);
|
|
invertObjectInertia();
|
|
updateInertialTensor();
|
|
}
|
|
|
|
void Rigid::invertObjectInertia()
|
|
{
|
|
invObjectInertia = objectInertia;
|
|
invObjectInertia.fullInverse();
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
|
|
bool Rigid::checkRestCondition()
|
|
{
|
|
// F32 k = getKineticEnergy(mWorldToObj);
|
|
// F32 G = -force.z * oneOverMass * 0.032;
|
|
// F32 Kg = 0.5 * mRigid.mass * G * G;
|
|
// if (k < Kg * restTol)
|
|
// mRigid.setAtRest();
|
|
return atRest;
|
|
}
|
|
|
|
void Rigid::setAtRest()
|
|
{
|
|
atRest = true;
|
|
linVelocity.set(0.0f,0.0f,0.0f);
|
|
linMomentum.set(0.0f,0.0f,0.0f);
|
|
angVelocity.set(0.0f,0.0f,0.0f);
|
|
angMomentum.set(0.0f,0.0f,0.0f);
|
|
}
|