Torque3D/Engine/source/afx/util/afxAnimCurve.cpp
2017-07-26 19:38:34 +01:00

280 lines
6 KiB
C++

//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~~//
// Arcane-FX for MIT Licensed Open Source version of Torque 3D from GarageGames
// Copyright (C) 2015 Faust Logic, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~~//
#include "afx/arcaneFX.h"
#include "afx/util/afxAnimCurve.h"
afxAnimCurve::afxAnimCurve() : usable( false ), final_value( 0.0f ), start_value( 0.0f )
{
evaluator = new afxHermiteEval();
}
afxAnimCurve::~afxAnimCurve()
{
delete evaluator;
}
void afxAnimCurve::addKey( Point2F &v )
{
Key k;
k.time = v.x;
k.value = v.y;
keys.push_back( k );
usable = false;
}
void afxAnimCurve::addKey( F32 time, F32 value )
{
Key k;
k.time = time;
k.value = value;
keys.push_back( k );
usable = false;
}
void afxAnimCurve::setKeyTime( int index, F32 t )
{
if( ( index < 0 ) || ( index >= keys.size() ) )
return;
Key &k = keys[index];
k.time = t;
usable = false;
}
void afxAnimCurve::setKeyValue( int index, F32 v )
{
if( ( index < 0 ) || ( index >= keys.size() ) )
return;
Key &k = keys[index];
k.value = v;
if( index == 0 )
start_value = v;
else if( index == keys.size()-1 )
final_value = v;
}
//bool afxAnimCurve::compare_Key( const afxAnimCurve::Key &a, const afxAnimCurve::Key &b )
//{
// return a.time < b.time;
//}
S32 QSORT_CALLBACK afxAnimCurve::compare_Key( const void* a, const void* b )
{
const Key *key_a = (Key *)a;
const Key *key_b = (Key *)b;
//Con::printf( "*** %f %f", key_a->time, key_b->time );
//return key_a->time < key_b->time;
if (key_a->time > key_b->time)
return 1;
else if (key_a->time < key_b->time)
return -1;
else
return 0;
}
void afxAnimCurve::sort( )
{
if( keys.size() == 0 )
return;
//std::sort( keys.begin(), keys.end(), afxAnimCurve::compare_Key );
dQsort( keys.address(), keys.size(), sizeof(Key), afxAnimCurve::compare_Key );
start_value = keys[0].value;
final_value = keys[keys.size()-1].value;
start_time = keys[0].time;
final_time = keys[keys.size()-1].time;
usable = true;
}
int afxAnimCurve::numKeys()
{
return keys.size();
}
F32 afxAnimCurve::getKeyTime( int index )
{
if( ( index < 0 ) || ( index >= keys.size() ) )
return 0.0f;
Key &k = keys[index];
return k.time;
}
F32 afxAnimCurve::getKeyValue( int index )
{
if( ( index < 0 ) || ( index >= keys.size() ) )
return 0.0f;
Key &k = keys[index];
return k.value;
}
Point2F afxAnimCurve::getSegment( F32 time )
{
Point2F segment( 0, 0 );
if( keys.size() == 0 )
return segment;
int start_index = 0;
for( ; start_index < keys.size()-1; start_index++ )
{
if( time < keys[start_index+1].time )
break;
}
int end_index = start_index+1;
segment.x = (F32)start_index;
segment.y = (F32)end_index;
return segment;
}
F32 afxAnimCurve::evaluate( F32 time )
{
if( !usable )
return 0.0f;
if( time <= start_time )
return start_value;
if( time >= final_time )
return final_value;
if( keys.size() == 1 )
return start_value;
int start_index = 0;
for( ; start_index < keys.size()-1; start_index++ )
{
if( time < keys[start_index+1].time )
break;
}
int end_index = start_index+1;
Key k0 = keys[start_index];
Key k1 = keys[end_index];
Point2F v0( (F32) k0.time, k0.value );
Point2F v1( (F32) k1.time, k1.value );
// Compute tangents
Point2F tan0 = computeTangentK0( v0, v1, start_index );
Point2F tan1 = computeTangentK1( v0, v1, end_index );
F32 time_perc = (F32)( time - k0.time ) / (F32)( k1.time - k0.time );
Point2F vnew = evaluator->evaluateCurve( v0,
v1,
tan0,
tan1,
time_perc );
return vnew.y;
}
Point2F afxAnimCurve::computeTangentK0( Point2F &k0, Point2F &k1, int start_index )
{
Point2F tan0;
Point2F k_prev;
Point2F k_next;
// tangent for k0
if( start_index == 0 )
{
k_prev = k0; // Setting previous point to k0, creating a hidden point in
// the same spot
k_next = k1;
}
else
{
Key &k = keys[start_index-1];
k_prev.set( k.time, k.value );
k_next = k1;
}
tan0 = k_next-k_prev; //k_next.subtract( k_prev );
tan0 *= .5f;
return tan0;
}
Point2F afxAnimCurve::computeTangentK1( Point2F &k0, Point2F &k1, int end_index )
{
Point2F tan1;
Point2F k_prev;
Point2F k_next;
// tangent for k1
if( end_index == keys.size()-1 )
{
k_prev = k0;
k_next = k1; // Setting next point to k1, creating a hidden point in
// the same spot
}
else
{
k_prev = k0;
Key &k = keys[end_index+1];
k_next.set( k.time, k.value );
}
tan1 = k_next-k_prev; //k_next.subtract( k_prev );
tan1 *= .5f;
return tan1;
}
void afxAnimCurve::print()
{
Con::printf( "afxAnimCurve -------------------------" );
for( int i = 0; i < keys.size(); i++ )
{
Key &k = keys[i];
Con::printf( "%f: %f", k.time, k.value );
}
Con::printf( "-----------------------------------" );
}
void afxAnimCurve::printKey( int index )
{
Key &k = keys[index];
Con::printf( "%f: %f", k.time, k.value );
}