Torque3D/Engine/source/gfx/gl/gfxGLDevice.cpp
2015-06-15 21:10:49 +10:00

972 lines
30 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "gfx/gl/gfxGLDevice.h"
#include "platform/platformGL.h"
#include "gfx/gfxCubemap.h"
#include "gfx/screenshot.h"
#include "gfx/gfxDrawUtil.h"
#include "gfx/gl/gfxGLEnumTranslate.h"
#include "gfx/gl/gfxGLVertexBuffer.h"
#include "gfx/gl/gfxGLPrimitiveBuffer.h"
#include "gfx/gl/gfxGLTextureTarget.h"
#include "gfx/gl/gfxGLTextureManager.h"
#include "gfx/gl/gfxGLTextureObject.h"
#include "gfx/gl/gfxGLCubemap.h"
#include "gfx/gl/gfxGLCardProfiler.h"
#include "gfx/gl/gfxGLWindowTarget.h"
#include "platform/platformDlibrary.h"
#include "gfx/gl/gfxGLShader.h"
#include "gfx/primBuilder.h"
#include "console/console.h"
#include "gfx/gl/gfxGLOcclusionQuery.h"
#include "materials/shaderData.h"
#include "gfx/gl/gfxGLStateCache.h"
#include "gfx/gl/gfxGLVertexAttribLocation.h"
#include "gfx/gl/gfxGLVertexDecl.h"
GFXAdapter::CreateDeviceInstanceDelegate GFXGLDevice::mCreateDeviceInstance(GFXGLDevice::createInstance);
GFXDevice *GFXGLDevice::createInstance( U32 adapterIndex )
{
return new GFXGLDevice(adapterIndex);
}
namespace GL
{
extern void gglPerformBinds();
extern void gglPerformExtensionBinds(void *context);
}
void loadGLCore()
{
static bool coreLoaded = false; // Guess what this is for.
if(coreLoaded)
return;
coreLoaded = true;
// Make sure we've got our GL bindings.
GL::gglPerformBinds();
}
void loadGLExtensions(void *context)
{
static bool extensionsLoaded = false;
if(extensionsLoaded)
return;
extensionsLoaded = true;
GL::gglPerformExtensionBinds(context);
}
void STDCALL glDebugCallback(GLenum source, GLenum type, GLuint id,
GLenum severity, GLsizei length, const GLchar* message, void* userParam)
{
if (severity == GL_DEBUG_SEVERITY_HIGH)
Con::errorf("OPENGL: %s", message);
else if (severity == GL_DEBUG_SEVERITY_MEDIUM)
Con::warnf("OPENGL: %s", message);
else if (severity == GL_DEBUG_SEVERITY_LOW)
Con::printf("OPENGL: %s", message);
}
void STDCALL glAmdDebugCallback(GLuint id, GLenum category, GLenum severity, GLsizei length,
const GLchar* message, GLvoid* userParam)
{
if (severity == GL_DEBUG_SEVERITY_HIGH)
Con::errorf("AMDOPENGL: %s", message);
else if (severity == GL_DEBUG_SEVERITY_MEDIUM)
Con::warnf("AMDOPENGL: %s", message);
else if (severity == GL_DEBUG_SEVERITY_LOW)
Con::printf("AMDOPENGL: %s", message);
}
// >>>> OPENGL INTEL WORKAROUND @todo OPENGL INTEL remove
PFNGLBINDFRAMEBUFFERPROC __openglBindFramebuffer = NULL;
void STDCALL _t3d_glBindFramebuffer(GLenum target, GLuint framebuffer)
{
if( target == GL_FRAMEBUFFER )
{
if( GFXGL->getOpenglCache()->getCacheBinded( GL_DRAW_FRAMEBUFFER ) == framebuffer
&& GFXGL->getOpenglCache()->getCacheBinded( GL_READ_FRAMEBUFFER ) == framebuffer )
return;
}
else if( GFXGL->getOpenglCache()->getCacheBinded( target ) == framebuffer )
return;
__openglBindFramebuffer(target, framebuffer);
GFXGL->getOpenglCache()->setCacheBinded( target, framebuffer);
}
// <<<< OPENGL INTEL WORKAROUND
void GFXGLDevice::initGLState()
{
// We don't currently need to sync device state with a known good place because we are
// going to set everything in GFXGLStateBlock, but if we change our GFXGLStateBlock strategy, this may
// need to happen.
// Deal with the card profiler here when we know we have a valid context.
mCardProfiler = new GFXGLCardProfiler();
mCardProfiler->init();
glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, (GLint*)&mMaxShaderTextures);
glGetIntegerv(GL_MAX_TEXTURE_UNITS, (GLint*)&mMaxFFTextures);
glGetIntegerv(GL_MAX_COLOR_ATTACHMENTS, (GLint*)&mMaxTRColors);
mMaxTRColors = getMin( mMaxTRColors, (U32)(GFXTextureTarget::MaxRenderSlotId-1) );
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
// Setting mPixelShaderVersion to 3.0 will allow Advanced Lighting to run.
mPixelShaderVersion = 3.0;
mSupportsAnisotropic = mCardProfiler->queryProfile( "GL::suppAnisotropic" );
String vendorStr = (const char*)glGetString( GL_VENDOR );
if( vendorStr.find("NVIDIA", 0, String::NoCase | String::Left) != String::NPos)
mUseGlMap = false;
if( vendorStr.find("INTEL", 0, String::NoCase | String::Left ) != String::NPos)
{
// @todo OPENGL INTEL - This is a workaround for a warning spam or even crashes with actual framebuffer code, remove when implemented TGL layer.
__openglBindFramebuffer = glBindFramebuffer;
glBindFramebuffer = &_t3d_glBindFramebuffer;
}
#ifdef TORQUE_NSIGHT_WORKAROUND
__GLEW_ARB_buffer_storage = false;
#endif
#if TORQUE_DEBUG
if( gglHasExtension(ARB_debug_output) )
{
glEnable(GL_DEBUG_OUTPUT);
glDebugMessageCallbackARB(glDebugCallback, NULL);
glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB);
GLuint unusedIds = 0;
glDebugMessageControlARB(GL_DONT_CARE,
GL_DONT_CARE,
GL_DONT_CARE,
0,
&unusedIds,
GL_TRUE);
}
else if(gglHasExtension(AMD_debug_output))
{
glEnable(GL_DEBUG_OUTPUT);
glDebugMessageCallbackAMD(glAmdDebugCallback, NULL);
//glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB);
GLuint unusedIds = 0;
glDebugMessageEnableAMD(GL_DONT_CARE, GL_DONT_CARE, 0,&unusedIds, GL_TRUE);
}
#endif
PlatformGL::setVSync(smDisableVSync ? 0 : 1);
//OpenGL 3 need a binded VAO for render
GLuint vao;
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
}
GFXGLDevice::GFXGLDevice(U32 adapterIndex) :
mAdapterIndex(adapterIndex),
mCurrentPB(NULL),
mDrawInstancesCount(0),
m_mCurrentWorld(true),
m_mCurrentView(true),
mContext(NULL),
mPixelFormat(NULL),
mPixelShaderVersion(0.0f),
mMaxShaderTextures(2),
mMaxFFTextures(2),
mMaxTRColors(1),
mClip(0, 0, 0, 0),
mCurrentShader( NULL ),
mNeedUpdateVertexAttrib(false),
mWindowRT(NULL),
mUseGlMap(true)
{
for(int i = 0; i < VERTEX_STREAM_COUNT; ++i)
{
mCurrentVB[i] = NULL;
mCurrentVB_Divisor[i] = 0;
}
loadGLCore();
GFXGLEnumTranslate::init();
GFXVertexColor::setSwizzle( &Swizzles::rgba );
// OpenGL have native RGB, no need swizzle
mDeviceSwizzle32 = &Swizzles::rgba;
mDeviceSwizzle24 = &Swizzles::rgb;
mTextureManager = new GFXGLTextureManager();
gScreenShot = new ScreenShot();
for(U32 i = 0; i < TEXTURE_STAGE_COUNT; i++)
mActiveTextureType[i] = GL_ZERO;
mNumVertexStream = 2;
for(int i = 0; i < GS_COUNT; ++i)
mModelViewProjSC[i] = NULL;
mOpenglStateCache = new GFXGLStateCache;
}
GFXGLDevice::~GFXGLDevice()
{
mCurrentStateBlock = NULL;
for(int i = 0; i < VERTEX_STREAM_COUNT; ++i)
mCurrentVB[i] = NULL;
mCurrentPB = NULL;
for(U32 i = 0; i < mVolatileVBs.size(); i++)
mVolatileVBs[i] = NULL;
for(U32 i = 0; i < mVolatilePBs.size(); i++)
mVolatilePBs[i] = NULL;
// Clear out our current texture references
for (U32 i = 0; i < TEXTURE_STAGE_COUNT; i++)
{
mCurrentTexture[i] = NULL;
mNewTexture[i] = NULL;
mCurrentCubemap[i] = NULL;
mNewCubemap[i] = NULL;
}
mRTStack.clear();
mCurrentRT = NULL;
if( mTextureManager )
{
mTextureManager->zombify();
mTextureManager->kill();
}
GFXResource* walk = mResourceListHead;
while(walk)
{
walk->zombify();
walk = walk->getNextResource();
}
if( mCardProfiler )
SAFE_DELETE( mCardProfiler );
SAFE_DELETE( gScreenShot );
SAFE_DELETE( mOpenglStateCache );
}
void GFXGLDevice::zombify()
{
mTextureManager->zombify();
for(int i = 0; i < VERTEX_STREAM_COUNT; ++i)
if(mCurrentVB[i])
mCurrentVB[i]->finish();
if(mCurrentPB)
mCurrentPB->finish();
//mVolatileVBs.clear();
//mVolatilePBs.clear();
GFXResource* walk = mResourceListHead;
while(walk)
{
walk->zombify();
walk = walk->getNextResource();
}
}
void GFXGLDevice::resurrect()
{
GFXResource* walk = mResourceListHead;
while(walk)
{
walk->resurrect();
walk = walk->getNextResource();
}
for(int i = 0; i < VERTEX_STREAM_COUNT; ++i)
if(mCurrentVB[i])
mCurrentVB[i]->prepare();
if(mCurrentPB)
mCurrentPB->prepare();
mTextureManager->resurrect();
}
GFXVertexBuffer* GFXGLDevice::findVolatileVBO(U32 numVerts, const GFXVertexFormat *vertexFormat, U32 vertSize)
{
for(U32 i = 0; i < mVolatileVBs.size(); i++)
if ( mVolatileVBs[i]->mNumVerts >= numVerts &&
mVolatileVBs[i]->mVertexFormat.isEqual( *vertexFormat ) &&
mVolatileVBs[i]->mVertexSize == vertSize &&
mVolatileVBs[i]->getRefCount() == 1 )
return mVolatileVBs[i];
// No existing VB, so create one
StrongRefPtr<GFXGLVertexBuffer> buf(new GFXGLVertexBuffer(GFX, numVerts, vertexFormat, vertSize, GFXBufferTypeVolatile));
buf->registerResourceWithDevice(this);
mVolatileVBs.push_back(buf);
return buf.getPointer();
}
GFXPrimitiveBuffer* GFXGLDevice::findVolatilePBO(U32 numIndices, U32 numPrimitives)
{
for(U32 i = 0; i < mVolatilePBs.size(); i++)
if((mVolatilePBs[i]->mIndexCount >= numIndices) && (mVolatilePBs[i]->getRefCount() == 1))
return mVolatilePBs[i];
// No existing PB, so create one
StrongRefPtr<GFXGLPrimitiveBuffer> buf(new GFXGLPrimitiveBuffer(GFX, numIndices, numPrimitives, GFXBufferTypeVolatile));
buf->registerResourceWithDevice(this);
mVolatilePBs.push_back(buf);
return buf.getPointer();
}
GFXVertexBuffer *GFXGLDevice::allocVertexBuffer( U32 numVerts,
const GFXVertexFormat *vertexFormat,
U32 vertSize,
GFXBufferType bufferType )
{
if(bufferType == GFXBufferTypeVolatile)
return findVolatileVBO(numVerts, vertexFormat, vertSize);
GFXGLVertexBuffer* buf = new GFXGLVertexBuffer( GFX, numVerts, vertexFormat, vertSize, bufferType );
buf->registerResourceWithDevice(this);
return buf;
}
GFXPrimitiveBuffer *GFXGLDevice::allocPrimitiveBuffer( U32 numIndices, U32 numPrimitives, GFXBufferType bufferType )
{
if(bufferType == GFXBufferTypeVolatile)
return findVolatilePBO(numIndices, numPrimitives);
GFXGLPrimitiveBuffer* buf = new GFXGLPrimitiveBuffer(GFX, numIndices, numPrimitives, bufferType);
buf->registerResourceWithDevice(this);
return buf;
}
void GFXGLDevice::setVertexStream( U32 stream, GFXVertexBuffer *buffer )
{
AssertFatal(stream <= 1, "GFXGLDevice::setVertexStream only support 2 stream (0: data, 1: instancing)");
//if(mCurrentVB[stream] != buffer)
{
// Reset the state the old VB required, then set the state the new VB requires.
if( mCurrentVB[stream] )
{
mCurrentVB[stream]->finish();
}
mCurrentVB[stream] = static_cast<GFXGLVertexBuffer*>( buffer );
mNeedUpdateVertexAttrib = true;
}
}
void GFXGLDevice::setVertexStreamFrequency( U32 stream, U32 frequency )
{
if( stream == 0 )
{
mCurrentVB_Divisor[stream] = 0; // non instanced, is vertex buffer
mDrawInstancesCount = frequency; // instances count
}
else
{
AssertFatal(frequency <= 1, "GFXGLDevice::setVertexStreamFrequency only support 0/1 for this stream" );
if( stream == 1 && frequency == 1 )
mCurrentVB_Divisor[stream] = 1; // instances data need a frequency of 1
else
mCurrentVB_Divisor[stream] = 0;
}
mNeedUpdateVertexAttrib = true;
}
GFXCubemap* GFXGLDevice::createCubemap()
{
GFXGLCubemap* cube = new GFXGLCubemap();
cube->registerResourceWithDevice(this);
return cube;
};
void GFXGLDevice::endSceneInternal()
{
// nothing to do for opengl
mCanCurrentlyRender = false;
}
void GFXGLDevice::clear(U32 flags, ColorI color, F32 z, U32 stencil)
{
// Make sure we have flushed our render target state.
_updateRenderTargets();
bool writeAllColors = true;
bool zwrite = true;
bool writeAllStencil = true;
const GFXStateBlockDesc *desc = NULL;
if (mCurrentGLStateBlock)
{
desc = &mCurrentGLStateBlock->getDesc();
zwrite = desc->zWriteEnable;
writeAllColors = desc->colorWriteRed && desc->colorWriteGreen && desc->colorWriteBlue && desc->colorWriteAlpha;
writeAllStencil = desc->stencilWriteMask == 0xFFFFFFFF;
}
glColorMask(true, true, true, true);
glDepthMask(true);
glStencilMask(0xFFFFFFFF);
ColorF c = color;
glClearColor(c.red, c.green, c.blue, c.alpha);
glClearDepth(z);
glClearStencil(stencil);
GLbitfield clearflags = 0;
clearflags |= (flags & GFXClearTarget) ? GL_COLOR_BUFFER_BIT : 0;
clearflags |= (flags & GFXClearZBuffer) ? GL_DEPTH_BUFFER_BIT : 0;
clearflags |= (flags & GFXClearStencil) ? GL_STENCIL_BUFFER_BIT : 0;
glClear(clearflags);
if(!writeAllColors)
glColorMask(desc->colorWriteRed, desc->colorWriteGreen, desc->colorWriteBlue, desc->colorWriteAlpha);
if(!zwrite)
glDepthMask(false);
if(!writeAllStencil)
glStencilMask(desc->stencilWriteMask);
}
// Given a primitive type and a number of primitives, return the number of indexes/vertexes used.
inline GLsizei GFXGLDevice::primCountToIndexCount(GFXPrimitiveType primType, U32 primitiveCount)
{
switch (primType)
{
case GFXPointList :
return primitiveCount;
break;
case GFXLineList :
return primitiveCount * 2;
break;
case GFXLineStrip :
return primitiveCount + 1;
break;
case GFXTriangleList :
return primitiveCount * 3;
break;
case GFXTriangleStrip :
return 2 + primitiveCount;
break;
case GFXTriangleFan :
return 2 + primitiveCount;
break;
default:
AssertFatal(false, "GFXGLDevice::primCountToIndexCount - unrecognized prim type");
break;
}
return 0;
}
GFXVertexDecl* GFXGLDevice::allocVertexDecl( const GFXVertexFormat *vertexFormat )
{
typedef Map<void*, GFXGLVertexDecl> GFXGLVertexDeclMap;
static GFXGLVertexDeclMap declMap;
GFXGLVertexDeclMap::Iterator itr = declMap.find( (void*)vertexFormat->getDescription().c_str() ); // description string are interned, safe to use c_str()
if(itr != declMap.end())
return &itr->value;
GFXGLVertexDecl &decl = declMap[(void*)vertexFormat->getDescription().c_str()];
decl.init(vertexFormat);
return &decl;
}
void GFXGLDevice::setVertexDecl( const GFXVertexDecl *decl )
{
static_cast<const GFXGLVertexDecl*>(decl)->prepareVertexFormat();
}
inline void GFXGLDevice::preDrawPrimitive()
{
if( mStateDirty )
{
updateStates();
}
if(mCurrentShaderConstBuffer)
setShaderConstBufferInternal(mCurrentShaderConstBuffer);
if( mNeedUpdateVertexAttrib )
{
AssertFatal(mCurrVertexDecl, "");
const GFXGLVertexDecl* decl = static_cast<const GFXGLVertexDecl*>(mCurrVertexDecl);
for(int i = 0; i < getNumVertexStreams(); ++i)
{
if(mCurrentVB[i])
{
mCurrentVB[i]->prepare(i, mCurrentVB_Divisor[i]); // GL_ARB_vertex_attrib_binding
decl->prepareBuffer_old( i, mCurrentVB[i]->mBuffer, mCurrentVB_Divisor[i] ); // old vertex buffer/format
}
}
decl->updateActiveVertexAttrib( GFXGL->getOpenglCache()->getCacheVertexAttribActive() );
}
mNeedUpdateVertexAttrib = false;
}
inline void GFXGLDevice::postDrawPrimitive(U32 primitiveCount)
{
mDeviceStatistics.mDrawCalls++;
mDeviceStatistics.mPolyCount += primitiveCount;
}
void GFXGLDevice::drawPrimitive( GFXPrimitiveType primType, U32 vertexStart, U32 primitiveCount )
{
preDrawPrimitive();
vertexStart += mCurrentVB[0]->mBufferVertexOffset;
if(mDrawInstancesCount)
glDrawArraysInstanced(GFXGLPrimType[primType], vertexStart, primCountToIndexCount(primType, primitiveCount), mDrawInstancesCount);
else
glDrawArrays(GFXGLPrimType[primType], vertexStart, primCountToIndexCount(primType, primitiveCount));
postDrawPrimitive(primitiveCount);
}
void GFXGLDevice::drawIndexedPrimitive( GFXPrimitiveType primType,
U32 startVertex,
U32 minIndex,
U32 numVerts,
U32 startIndex,
U32 primitiveCount )
{
AssertFatal( startVertex == 0, "GFXGLDevice::drawIndexedPrimitive() - Non-zero startVertex unsupported!" );
preDrawPrimitive();
U16* buf = (U16*)static_cast<GFXGLPrimitiveBuffer*>(mCurrentPrimitiveBuffer.getPointer())->getBuffer() + startIndex;
const U32 baseVertex = mCurrentVB[0]->mBufferVertexOffset;
if(mDrawInstancesCount)
glDrawElementsInstancedBaseVertex(GFXGLPrimType[primType], primCountToIndexCount(primType, primitiveCount), GL_UNSIGNED_SHORT, buf, mDrawInstancesCount, baseVertex);
else
glDrawElementsBaseVertex(GFXGLPrimType[primType], primCountToIndexCount(primType, primitiveCount), GL_UNSIGNED_SHORT, buf, baseVertex);
postDrawPrimitive(primitiveCount);
}
void GFXGLDevice::setPB(GFXGLPrimitiveBuffer* pb)
{
if(mCurrentPB)
mCurrentPB->finish();
mCurrentPB = pb;
}
void GFXGLDevice::setLightInternal(U32 lightStage, const GFXLightInfo light, bool lightEnable)
{
// ONLY NEEDED ON FFP
}
void GFXGLDevice::setLightMaterialInternal(const GFXLightMaterial mat)
{
// ONLY NEEDED ON FFP
}
void GFXGLDevice::setGlobalAmbientInternal(ColorF color)
{
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, (GLfloat*)&color);
}
void GFXGLDevice::setTextureInternal(U32 textureUnit, const GFXTextureObject*texture)
{
GFXGLTextureObject *tex = static_cast<GFXGLTextureObject*>(const_cast<GFXTextureObject*>(texture));
if (tex)
{
mActiveTextureType[textureUnit] = tex->getBinding();
tex->bind(textureUnit);
}
else if(mActiveTextureType[textureUnit] != GL_ZERO)
{
glActiveTexture(GL_TEXTURE0 + textureUnit);
glBindTexture(mActiveTextureType[textureUnit], 0);
getOpenglCache()->setCacheBindedTex(textureUnit, mActiveTextureType[textureUnit], 0);
mActiveTextureType[textureUnit] = GL_ZERO;
}
}
void GFXGLDevice::setCubemapInternal(U32 textureUnit, const GFXGLCubemap* texture)
{
if(texture)
{
mActiveTextureType[textureUnit] = GL_TEXTURE_CUBE_MAP;
texture->bind(textureUnit);
}
else if(mActiveTextureType[textureUnit] != GL_ZERO)
{
glActiveTexture(GL_TEXTURE0 + textureUnit);
glBindTexture(mActiveTextureType[textureUnit], 0);
getOpenglCache()->setCacheBindedTex(textureUnit, mActiveTextureType[textureUnit], 0);
mActiveTextureType[textureUnit] = GL_ZERO;
}
}
void GFXGLDevice::setMatrix( GFXMatrixType mtype, const MatrixF &mat )
{
// ONLY NEEDED ON FFP
}
void GFXGLDevice::setClipRect( const RectI &inRect )
{
AssertFatal(mCurrentRT.isValid(), "GFXGLDevice::setClipRect - must have a render target set to do any rendering operations!");
// Clip the rect against the renderable size.
Point2I size = mCurrentRT->getSize();
RectI maxRect(Point2I(0,0), size);
mClip = inRect;
mClip.intersect(maxRect);
// Create projection matrix. See http://www.opengl.org/documentation/specs/man_pages/hardcopy/GL/html/gl/ortho.html
const F32 left = mClip.point.x;
const F32 right = mClip.point.x + mClip.extent.x;
const F32 bottom = mClip.extent.y;
const F32 top = 0.0f;
const F32 near = 0.0f;
const F32 far = 1.0f;
const F32 tx = -(right + left)/(right - left);
const F32 ty = -(top + bottom)/(top - bottom);
const F32 tz = -(far + near)/(far - near);
static Point4F pt;
pt.set(2.0f / (right - left), 0.0f, 0.0f, 0.0f);
mProjectionMatrix.setColumn(0, pt);
pt.set(0.0f, 2.0f/(top - bottom), 0.0f, 0.0f);
mProjectionMatrix.setColumn(1, pt);
pt.set(0.0f, 0.0f, -2.0f/(far - near), 0.0f);
mProjectionMatrix.setColumn(2, pt);
pt.set(tx, ty, tz, 1.0f);
mProjectionMatrix.setColumn(3, pt);
// Translate projection matrix.
static MatrixF translate(true);
pt.set(0.0f, -mClip.point.y, 0.0f, 1.0f);
translate.setColumn(3, pt);
mProjectionMatrix *= translate;
setMatrix(GFXMatrixProjection, mProjectionMatrix);
MatrixF mTempMatrix(true);
setViewMatrix( mTempMatrix );
setWorldMatrix( mTempMatrix );
// Set the viewport to the clip rect
RectI viewport(mClip.point.x, mClip.point.y, mClip.extent.x, mClip.extent.y);
setViewport(viewport);
}
/// Creates a state block object based on the desc passed in. This object
/// represents an immutable state.
GFXStateBlockRef GFXGLDevice::createStateBlockInternal(const GFXStateBlockDesc& desc)
{
return GFXStateBlockRef(new GFXGLStateBlock(desc));
}
/// Activates a stateblock
void GFXGLDevice::setStateBlockInternal(GFXStateBlock* block, bool force)
{
AssertFatal(dynamic_cast<GFXGLStateBlock*>(block), "GFXGLDevice::setStateBlockInternal - Incorrect stateblock type for this device!");
GFXGLStateBlock* glBlock = static_cast<GFXGLStateBlock*>(block);
GFXGLStateBlock* glCurrent = static_cast<GFXGLStateBlock*>(mCurrentStateBlock.getPointer());
if (force)
glCurrent = NULL;
glBlock->activate(glCurrent); // Doesn't use current yet.
mCurrentGLStateBlock = glBlock;
}
//------------------------------------------------------------------------------
GFXTextureTarget * GFXGLDevice::allocRenderToTextureTarget()
{
GFXGLTextureTarget *targ = new GFXGLTextureTarget();
targ->registerResourceWithDevice(this);
return targ;
}
GFXFence * GFXGLDevice::createFence()
{
GFXFence* fence = _createPlatformSpecificFence();
if(!fence)
fence = new GFXGeneralFence( this );
fence->registerResourceWithDevice(this);
return fence;
}
GFXOcclusionQuery* GFXGLDevice::createOcclusionQuery()
{
GFXOcclusionQuery *query = new GFXGLOcclusionQuery( this );
query->registerResourceWithDevice(this);
return query;
}
void GFXGLDevice::setupGenericShaders( GenericShaderType type )
{
AssertFatal(type != GSTargetRestore, "");
if( mGenericShader[GSColor] == NULL )
{
ShaderData *shaderData;
shaderData = new ShaderData();
shaderData->setField("OGLVertexShaderFile", "shaders/common/fixedFunction/gl/colorV.glsl");
shaderData->setField("OGLPixelShaderFile", "shaders/common/fixedFunction/gl/colorP.glsl");
shaderData->setField("pixVersion", "2.0");
shaderData->registerObject();
mGenericShader[GSColor] = shaderData->getShader();
mGenericShaderBuffer[GSColor] = mGenericShader[GSColor]->allocConstBuffer();
mModelViewProjSC[GSColor] = mGenericShader[GSColor]->getShaderConstHandle( "$modelView" );
shaderData = new ShaderData();
shaderData->setField("OGLVertexShaderFile", "shaders/common/fixedFunction/gl/modColorTextureV.glsl");
shaderData->setField("OGLPixelShaderFile", "shaders/common/fixedFunction/gl/modColorTextureP.glsl");
shaderData->setSamplerName("$diffuseMap", 0);
shaderData->setField("pixVersion", "2.0");
shaderData->registerObject();
mGenericShader[GSModColorTexture] = shaderData->getShader();
mGenericShaderBuffer[GSModColorTexture] = mGenericShader[GSModColorTexture]->allocConstBuffer();
mModelViewProjSC[GSModColorTexture] = mGenericShader[GSModColorTexture]->getShaderConstHandle( "$modelView" );
shaderData = new ShaderData();
shaderData->setField("OGLVertexShaderFile", "shaders/common/fixedFunction/gl/addColorTextureV.glsl");
shaderData->setField("OGLPixelShaderFile", "shaders/common/fixedFunction/gl/addColorTextureP.glsl");
shaderData->setSamplerName("$diffuseMap", 0);
shaderData->setField("pixVersion", "2.0");
shaderData->registerObject();
mGenericShader[GSAddColorTexture] = shaderData->getShader();
mGenericShaderBuffer[GSAddColorTexture] = mGenericShader[GSAddColorTexture]->allocConstBuffer();
mModelViewProjSC[GSAddColorTexture] = mGenericShader[GSAddColorTexture]->getShaderConstHandle( "$modelView" );
shaderData = new ShaderData();
shaderData->setField("OGLVertexShaderFile", "shaders/common/fixedFunction/gl/textureV.glsl");
shaderData->setField("OGLPixelShaderFile", "shaders/common/fixedFunction/gl/textureP.glsl");
shaderData->setSamplerName("$diffuseMap", 0);
shaderData->setField("pixVersion", "2.0");
shaderData->registerObject();
mGenericShader[GSTexture] = shaderData->getShader();
mGenericShaderBuffer[GSTexture] = mGenericShader[GSTexture]->allocConstBuffer();
mModelViewProjSC[GSTexture] = mGenericShader[GSTexture]->getShaderConstHandle( "$modelView" );
}
MatrixF tempMatrix = mProjectionMatrix * mViewMatrix * mWorldMatrix[mWorldStackSize];
mGenericShaderBuffer[type]->setSafe(mModelViewProjSC[type], tempMatrix);
setShader( mGenericShader[type] );
setShaderConstBuffer( mGenericShaderBuffer[type] );
}
GFXShader* GFXGLDevice::createShader()
{
GFXGLShader* shader = new GFXGLShader();
shader->registerResourceWithDevice( this );
return shader;
}
void GFXGLDevice::setShader(GFXShader *shader, bool force)
{
if(mCurrentShader == shader && !force)
return;
if ( shader )
{
GFXGLShader *glShader = static_cast<GFXGLShader*>( shader );
glShader->useProgram();
mCurrentShader = shader;
}
else
{
setupGenericShaders();
}
}
void GFXGLDevice::setShaderConstBufferInternal(GFXShaderConstBuffer* buffer)
{
static_cast<GFXGLShaderConstBuffer*>(buffer)->activate();
}
U32 GFXGLDevice::getNumSamplers() const
{
return getMin((U32)TEXTURE_STAGE_COUNT,mPixelShaderVersion > 0.001f ? mMaxShaderTextures : mMaxFFTextures);
}
GFXTextureObject* GFXGLDevice::getDefaultDepthTex() const
{
if(mWindowRT && mWindowRT->getPointer())
return static_cast<GFXGLWindowTarget*>( mWindowRT->getPointer() )->mBackBufferDepthTex.getPointer();
return NULL;
}
U32 GFXGLDevice::getNumRenderTargets() const
{
return mMaxTRColors;
}
void GFXGLDevice::_updateRenderTargets()
{
if ( mRTDirty || mCurrentRT->isPendingState() )
{
if ( mRTDeactivate )
{
mRTDeactivate->deactivate();
mRTDeactivate = NULL;
}
// NOTE: The render target changes is not really accurate
// as the GFXTextureTarget supports MRT internally. So when
// we activate a GFXTarget it could result in multiple calls
// to SetRenderTarget on the actual device.
mDeviceStatistics.mRenderTargetChanges++;
GFXGLTextureTarget *tex = dynamic_cast<GFXGLTextureTarget*>( mCurrentRT.getPointer() );
if ( tex )
{
tex->applyState();
tex->makeActive();
}
else
{
GFXGLWindowTarget *win = dynamic_cast<GFXGLWindowTarget*>( mCurrentRT.getPointer() );
AssertFatal( win != NULL,
"GFXGLDevice::_updateRenderTargets() - invalid target subclass passed!" );
win->makeActive();
if( win->mContext != static_cast<GFXGLDevice*>(GFX)->mContext )
{
mRTDirty = false;
GFX->updateStates(true);
}
}
mRTDirty = false;
}
if ( mViewportDirty )
{
glViewport( mViewport.point.x, mViewport.point.y, mViewport.extent.x, mViewport.extent.y );
mViewportDirty = false;
}
}
GFXFormat GFXGLDevice::selectSupportedFormat( GFXTextureProfile* profile,
const Vector<GFXFormat>& formats,
bool texture,
bool mustblend,
bool mustfilter )
{
for(U32 i = 0; i < formats.size(); i++)
{
// Single channel textures are not supported by FBOs.
if(profile->testFlag(GFXTextureProfile::RenderTarget) && (formats[i] == GFXFormatA8 || formats[i] == GFXFormatL8 || formats[i] == GFXFormatL16))
continue;
if(GFXGLTextureInternalFormat[formats[i]] == GL_ZERO)
continue;
return formats[i];
}
return GFXFormatR8G8B8A8;
}
U32 GFXGLDevice::getTotalVideoMemory_GL_EXT()
{
// Source: http://www.opengl.org/registry/specs/ATI/meminfo.txt
if( gglHasExtension(ATI_meminfo) )
{
GLint mem[4] = {0};
glGetIntegerv(GL_TEXTURE_FREE_MEMORY_ATI, mem); // Retrieve the texture pool
/* With mem[0] i get only the total memory free in the pool in KB
*
* mem[0] - total memory free in the pool
* mem[1] - largest available free block in the pool
* mem[2] - total auxiliary memory free
* mem[3] - largest auxiliary free block
*/
return mem[0] / 1024;
}
//source http://www.opengl.org/registry/specs/NVX/gpu_memory_info.txt
else if( gglHasExtension(NVX_gpu_memory_info) )
{
GLint mem = 0;
glGetIntegerv(GL_GPU_MEMORY_INFO_TOTAL_AVAILABLE_MEMORY_NVX, &mem);
return mem / 1024;
}
// TODO OPENGL, add supprt for INTEL cards.
return 0;
}
//
// Register this device with GFXInit
//
class GFXGLRegisterDevice
{
public:
GFXGLRegisterDevice()
{
GFXInit::getRegisterDeviceSignal().notify(&GFXGLDevice::enumerateAdapters);
}
};
static GFXGLRegisterDevice pGLRegisterDevice;
ConsoleFunction(cycleResources, void, 1, 1, "")
{
static_cast<GFXGLDevice*>(GFX)->zombify();
static_cast<GFXGLDevice*>(GFX)->resurrect();
}