mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-20 12:44:46 +00:00
There are plenty more of these, but they should be fixed by revising the names of members to start with m, instead of fixing the local violations. There was a previous PR for that but it went badly. Will retry again one day.
592 lines
14 KiB
C++
592 lines
14 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Copyright (c) 2012 GarageGames, LLC
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to
|
|
// deal in the Software without restriction, including without limitation the
|
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
// sell copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
// IN THE SOFTWARE.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#ifndef _MMATRIX_H_
|
|
#define _MMATRIX_H_
|
|
|
|
#ifndef _MPLANE_H_
|
|
#include "math/mPlane.h"
|
|
#endif
|
|
|
|
#ifndef _MBOX_H_
|
|
#include "math/mBox.h"
|
|
#endif
|
|
|
|
#ifndef _MPOINT4_H_
|
|
#include "math/mPoint4.h"
|
|
#endif
|
|
|
|
/// 4x4 Matrix Class
|
|
///
|
|
/// This runs at F32 precision.
|
|
|
|
class MatrixF
|
|
{
|
|
private:
|
|
F32 m[16]; ///< Note: Torque uses row-major matrices
|
|
|
|
public:
|
|
/// Create an uninitialized matrix.
|
|
///
|
|
/// @param identity If true, initialize to the identity matrix.
|
|
explicit MatrixF(bool identity=false);
|
|
|
|
/// Create a matrix to rotate about origin by e.
|
|
/// @see set
|
|
explicit MatrixF( const EulerF &e);
|
|
|
|
/// Create a matrix to rotate about p by e.
|
|
/// @see set
|
|
MatrixF( const EulerF &e, const Point3F& p);
|
|
|
|
/// Get the index in m to element in column i, row j
|
|
///
|
|
/// This is necessary as we have m as a one dimensional array.
|
|
///
|
|
/// @param i Column desired.
|
|
/// @param j Row desired.
|
|
static U32 idx(U32 i, U32 j) { return (i + j*4); }
|
|
|
|
/// Initialize matrix to rotate about origin by e.
|
|
MatrixF& set( const EulerF &e);
|
|
|
|
/// Initialize matrix to rotate about p by e.
|
|
MatrixF& set( const EulerF &e, const Point3F& p);
|
|
|
|
/// Initialize matrix with a cross product of p.
|
|
MatrixF& setCrossProduct( const Point3F &p);
|
|
|
|
/// Initialize matrix with a tensor product of p.
|
|
MatrixF& setTensorProduct( const Point3F &p, const Point3F& q);
|
|
|
|
operator F32*() { return (m); } ///< Allow people to get at m.
|
|
operator const F32*() const { return (F32*)(m); } ///< Allow people to get at m.
|
|
|
|
bool isAffine() const; ///< Check to see if this is an affine matrix.
|
|
bool isIdentity() const; ///< Checks for identity matrix.
|
|
|
|
/// Make this an identity matrix.
|
|
MatrixF& identity();
|
|
|
|
/// Invert m.
|
|
MatrixF& inverse();
|
|
/// Copy the inversion of this into out matrix.
|
|
void invertTo( MatrixF *out );
|
|
|
|
/// Take inverse of matrix assuming it is affine (rotation,
|
|
/// scale, sheer, translation only).
|
|
MatrixF& affineInverse();
|
|
|
|
/// Swap rows and columns.
|
|
MatrixF& transpose();
|
|
|
|
/// M * Matrix(p) -> M
|
|
MatrixF& scale( const Point3F &s );
|
|
MatrixF& scale( F32 s ) { return scale( Point3F( s, s, s ) ); }
|
|
|
|
/// Return scale assuming scale was applied via mat.scale(s).
|
|
Point3F getScale() const;
|
|
|
|
EulerF toEuler() const;
|
|
|
|
/// Compute the inverse of the matrix.
|
|
///
|
|
/// Computes inverse of full 4x4 matrix. Returns false and performs no inverse if
|
|
/// the determinant is 0.
|
|
///
|
|
/// Note: In most cases you want to use the normal inverse function. This method should
|
|
/// be used if the matrix has something other than (0,0,0,1) in the bottom row.
|
|
bool fullInverse();
|
|
|
|
/// Swaps rows and columns into matrix.
|
|
void transposeTo(F32 *matrix) const;
|
|
|
|
/// Normalize the matrix.
|
|
void normalize();
|
|
|
|
/// Copy the requested column into a Point4F.
|
|
void getColumn(S32 col, Point4F *cptr) const;
|
|
Point4F getColumn4F(S32 col) const { Point4F ret; getColumn(col,&ret); return ret; }
|
|
|
|
/// Copy the requested column into a Point3F.
|
|
///
|
|
/// This drops the bottom-most row.
|
|
void getColumn(S32 col, Point3F *cptr) const;
|
|
Point3F getColumn3F(S32 col) const { Point3F ret; getColumn(col,&ret); return ret; }
|
|
|
|
/// Set the specified column from a Point4F.
|
|
void setColumn(S32 col, const Point4F& cptr);
|
|
|
|
/// Set the specified column from a Point3F.
|
|
///
|
|
/// The bottom-most row is not set.
|
|
void setColumn(S32 col, const Point3F& cptr);
|
|
|
|
/// Copy the specified row into a Point4F.
|
|
void getRow(S32 row, Point4F *cptr) const;
|
|
Point4F getRow4F(S32 row) const { Point4F ret; getRow(row,&ret); return ret; }
|
|
|
|
/// Copy the specified row into a Point3F.
|
|
///
|
|
/// Right-most item is dropped.
|
|
void getRow(S32 row, Point3F *cptr) const;
|
|
Point3F getRow3F(S32 row) const { Point3F ret; getRow(row,&ret); return ret; }
|
|
|
|
/// Set the specified row from a Point4F.
|
|
void setRow(S32 row, const Point4F& cptr);
|
|
|
|
/// Set the specified row from a Point3F.
|
|
///
|
|
/// The right-most item is not set.
|
|
void setRow(S32 row, const Point3F& cptr);
|
|
|
|
/// Get the position of the matrix.
|
|
///
|
|
/// This is the 4th column of the matrix.
|
|
Point3F getPosition() const;
|
|
|
|
/// Set the position of the matrix.
|
|
///
|
|
/// This is the 4th column of the matrix.
|
|
void setPosition( const Point3F &pos ) { setColumn( 3, pos ); }
|
|
|
|
/// Add the passed delta to the matrix position.
|
|
void displace( const Point3F &delta );
|
|
|
|
/// Get the x axis of the matrix.
|
|
///
|
|
/// This is the 1st column of the matrix and is
|
|
/// normally considered the right vector.
|
|
VectorF getRightVector() const;
|
|
|
|
/// Get the y axis of the matrix.
|
|
///
|
|
/// This is the 2nd column of the matrix and is
|
|
/// normally considered the forward vector.
|
|
VectorF getForwardVector() const;
|
|
|
|
/// Get the z axis of the matrix.
|
|
///
|
|
/// This is the 3rd column of the matrix and is
|
|
/// normally considered the up vector.
|
|
VectorF getUpVector() const;
|
|
|
|
MatrixF& mul(const MatrixF &a); ///< M * a -> M
|
|
MatrixF& mulL(const MatrixF &a); ///< a * M -> M
|
|
MatrixF& mul(const MatrixF &a, const MatrixF &b); ///< a * b -> M
|
|
|
|
// Scalar multiplies
|
|
MatrixF& mul(const F32 a); ///< M * a -> M
|
|
MatrixF& mul(const MatrixF &a, const F32 b); ///< a * b -> M
|
|
|
|
|
|
void mul( Point4F& p ) const; ///< M * p -> p (full [4x4] * [1x4])
|
|
void mulP( Point3F& p ) const; ///< M * p -> p (assume w = 1.0f)
|
|
void mulP( const Point3F &p, Point3F *d) const; ///< M * p -> d (assume w = 1.0f)
|
|
void mulV( VectorF& p ) const; ///< M * v -> v (assume w = 0.0f)
|
|
void mulV( const VectorF &p, Point3F *d) const; ///< M * v -> d (assume w = 0.0f)
|
|
|
|
void mul(Box3F& b) const; ///< Axial box -> Axial Box
|
|
|
|
MatrixF& add( const MatrixF& m );
|
|
|
|
/// Convenience function to allow people to treat this like an array.
|
|
F32& operator ()(S32 row, S32 col) { return m[idx(col,row)]; }
|
|
F32 operator ()(S32 row, S32 col) const { return m[idx(col,row)]; }
|
|
|
|
void dumpMatrix(const char *caption=NULL) const;
|
|
|
|
// Math operator overloads
|
|
//------------------------------------
|
|
friend MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 );
|
|
MatrixF& operator *= ( const MatrixF &m );
|
|
|
|
// Static identity matrix
|
|
const static MatrixF Identity;
|
|
};
|
|
|
|
|
|
//--------------------------------------
|
|
// Inline Functions
|
|
|
|
inline MatrixF::MatrixF(bool _identity)
|
|
{
|
|
if (_identity)
|
|
identity();
|
|
}
|
|
|
|
inline MatrixF::MatrixF( const EulerF &e )
|
|
{
|
|
set(e);
|
|
}
|
|
|
|
inline MatrixF::MatrixF( const EulerF &e, const Point3F& p )
|
|
{
|
|
set(e,p);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::set( const EulerF &e)
|
|
{
|
|
m_matF_set_euler( e, *this );
|
|
return (*this);
|
|
}
|
|
|
|
|
|
inline MatrixF& MatrixF::set( const EulerF &e, const Point3F& p)
|
|
{
|
|
m_matF_set_euler_point( e, p, *this );
|
|
return (*this);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::setCrossProduct( const Point3F &p)
|
|
{
|
|
m[1] = -(m[4] = p.z);
|
|
m[8] = -(m[2] = p.y);
|
|
m[6] = -(m[9] = p.x);
|
|
m[0] = m[3] = m[5] = m[7] = m[10] = m[11] =
|
|
m[12] = m[13] = m[14] = 0.0f;
|
|
m[15] = 1;
|
|
return (*this);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::setTensorProduct( const Point3F &p, const Point3F &q)
|
|
{
|
|
m[0] = p.x * q.x;
|
|
m[1] = p.x * q.y;
|
|
m[2] = p.x * q.z;
|
|
m[4] = p.y * q.x;
|
|
m[5] = p.y * q.y;
|
|
m[6] = p.y * q.z;
|
|
m[8] = p.z * q.x;
|
|
m[9] = p.z * q.y;
|
|
m[10] = p.z * q.z;
|
|
m[3] = m[7] = m[11] = m[12] = m[13] = m[14] = 0.0f;
|
|
m[15] = 1.0f;
|
|
return (*this);
|
|
}
|
|
|
|
inline bool MatrixF::isIdentity() const
|
|
{
|
|
return
|
|
m[0] == 1.0f &&
|
|
m[1] == 0.0f &&
|
|
m[2] == 0.0f &&
|
|
m[3] == 0.0f &&
|
|
m[4] == 0.0f &&
|
|
m[5] == 1.0f &&
|
|
m[6] == 0.0f &&
|
|
m[7] == 0.0f &&
|
|
m[8] == 0.0f &&
|
|
m[9] == 0.0f &&
|
|
m[10] == 1.0f &&
|
|
m[11] == 0.0f &&
|
|
m[12] == 0.0f &&
|
|
m[13] == 0.0f &&
|
|
m[14] == 0.0f &&
|
|
m[15] == 1.0f;
|
|
}
|
|
|
|
inline MatrixF& MatrixF::identity()
|
|
{
|
|
m[0] = 1.0f;
|
|
m[1] = 0.0f;
|
|
m[2] = 0.0f;
|
|
m[3] = 0.0f;
|
|
m[4] = 0.0f;
|
|
m[5] = 1.0f;
|
|
m[6] = 0.0f;
|
|
m[7] = 0.0f;
|
|
m[8] = 0.0f;
|
|
m[9] = 0.0f;
|
|
m[10] = 1.0f;
|
|
m[11] = 0.0f;
|
|
m[12] = 0.0f;
|
|
m[13] = 0.0f;
|
|
m[14] = 0.0f;
|
|
m[15] = 1.0f;
|
|
return (*this);
|
|
}
|
|
|
|
|
|
inline MatrixF& MatrixF::inverse()
|
|
{
|
|
m_matF_inverse(m);
|
|
return (*this);
|
|
}
|
|
|
|
inline void MatrixF::invertTo( MatrixF *out )
|
|
{
|
|
m_matF_invert_to(m,*out);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::affineInverse()
|
|
{
|
|
// AssertFatal(isAffine() == true, "Error, this matrix is not an affine transform");
|
|
m_matF_affineInverse(m);
|
|
return (*this);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::transpose()
|
|
{
|
|
m_matF_transpose(m);
|
|
return (*this);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::scale(const Point3F& p)
|
|
{
|
|
m_matF_scale(m,p);
|
|
return *this;
|
|
}
|
|
|
|
inline Point3F MatrixF::getScale() const
|
|
{
|
|
Point3F scale;
|
|
scale.x = mSqrt(m[0]*m[0] + m[4] * m[4] + m[8] * m[8]);
|
|
scale.y = mSqrt(m[1]*m[1] + m[5] * m[5] + m[9] * m[9]);
|
|
scale.z = mSqrt(m[2]*m[2] + m[6] * m[6] + m[10] * m[10]);
|
|
return scale;
|
|
}
|
|
|
|
inline void MatrixF::normalize()
|
|
{
|
|
m_matF_normalize(m);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::mul( const MatrixF &a )
|
|
{ // M * a -> M
|
|
AssertFatal(&a != this, "MatrixF::mul - a.mul(a) is invalid!");
|
|
|
|
MatrixF tempThis(*this);
|
|
m_matF_x_matF(tempThis, a, *this);
|
|
return (*this);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::mulL( const MatrixF &a )
|
|
{ // a * M -> M
|
|
AssertFatal(&a != this, "MatrixF::mulL - a.mul(a) is invalid!");
|
|
|
|
MatrixF tempThis(*this);
|
|
m_matF_x_matF(a, tempThis, *this);
|
|
return (*this);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::mul( const MatrixF &a, const MatrixF &b )
|
|
{ // a * b -> M
|
|
AssertFatal((&a != this) && (&b != this), "MatrixF::mul - a.mul(a, b) a.mul(b, a) a.mul(a, a) is invalid!");
|
|
|
|
m_matF_x_matF(a, b, *this);
|
|
return (*this);
|
|
}
|
|
|
|
|
|
inline MatrixF& MatrixF::mul(const F32 a)
|
|
{
|
|
for (U32 i = 0; i < 16; i++)
|
|
m[i] *= a;
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
inline MatrixF& MatrixF::mul(const MatrixF &a, const F32 b)
|
|
{
|
|
*this = a;
|
|
mul(b);
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline void MatrixF::mul( Point4F& p ) const
|
|
{
|
|
Point4F temp;
|
|
m_matF_x_point4F(*this, &p.x, &temp.x);
|
|
p = temp;
|
|
}
|
|
|
|
inline void MatrixF::mulP( Point3F& p) const
|
|
{
|
|
// M * p -> d
|
|
Point3F d;
|
|
m_matF_x_point3F(*this, &p.x, &d.x);
|
|
p = d;
|
|
}
|
|
|
|
inline void MatrixF::mulP( const Point3F &p, Point3F *d) const
|
|
{
|
|
// M * p -> d
|
|
m_matF_x_point3F(*this, &p.x, &d->x);
|
|
}
|
|
|
|
inline void MatrixF::mulV( VectorF& v) const
|
|
{
|
|
// M * v -> v
|
|
VectorF temp;
|
|
m_matF_x_vectorF(*this, &v.x, &temp.x);
|
|
v = temp;
|
|
}
|
|
|
|
inline void MatrixF::mulV( const VectorF &v, Point3F *d) const
|
|
{
|
|
// M * v -> d
|
|
m_matF_x_vectorF(*this, &v.x, &d->x);
|
|
}
|
|
|
|
inline void MatrixF::mul(Box3F& b) const
|
|
{
|
|
m_matF_x_box3F(*this, &b.minExtents.x, &b.maxExtents.x);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::add( const MatrixF& a )
|
|
{
|
|
for( U32 i = 0; i < 16; ++ i )
|
|
m[ i ] += a.m[ i ];
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline void MatrixF::getColumn(S32 col, Point4F *cptr) const
|
|
{
|
|
cptr->x = m[col];
|
|
cptr->y = m[col+4];
|
|
cptr->z = m[col+8];
|
|
cptr->w = m[col+12];
|
|
}
|
|
|
|
inline void MatrixF::getColumn(S32 col, Point3F *cptr) const
|
|
{
|
|
cptr->x = m[col];
|
|
cptr->y = m[col+4];
|
|
cptr->z = m[col+8];
|
|
}
|
|
|
|
inline void MatrixF::setColumn(S32 col, const Point4F &cptr)
|
|
{
|
|
m[col] = cptr.x;
|
|
m[col+4] = cptr.y;
|
|
m[col+8] = cptr.z;
|
|
m[col+12]= cptr.w;
|
|
}
|
|
|
|
inline void MatrixF::setColumn(S32 col, const Point3F &cptr)
|
|
{
|
|
m[col] = cptr.x;
|
|
m[col+4] = cptr.y;
|
|
m[col+8] = cptr.z;
|
|
}
|
|
|
|
|
|
inline void MatrixF::getRow(S32 col, Point4F *cptr) const
|
|
{
|
|
col *= 4;
|
|
cptr->x = m[col++];
|
|
cptr->y = m[col++];
|
|
cptr->z = m[col++];
|
|
cptr->w = m[col];
|
|
}
|
|
|
|
inline void MatrixF::getRow(S32 col, Point3F *cptr) const
|
|
{
|
|
col *= 4;
|
|
cptr->x = m[col++];
|
|
cptr->y = m[col++];
|
|
cptr->z = m[col];
|
|
}
|
|
|
|
inline void MatrixF::setRow(S32 col, const Point4F &cptr)
|
|
{
|
|
col *= 4;
|
|
m[col++] = cptr.x;
|
|
m[col++] = cptr.y;
|
|
m[col++] = cptr.z;
|
|
m[col] = cptr.w;
|
|
}
|
|
|
|
inline void MatrixF::setRow(S32 col, const Point3F &cptr)
|
|
{
|
|
col *= 4;
|
|
m[col++] = cptr.x;
|
|
m[col++] = cptr.y;
|
|
m[col] = cptr.z;
|
|
}
|
|
|
|
inline Point3F MatrixF::getPosition() const
|
|
{
|
|
return Point3F( m[3], m[3+4], m[3+8] );
|
|
}
|
|
|
|
inline void MatrixF::displace( const Point3F &delta )
|
|
{
|
|
m[3] += delta.x;
|
|
m[3+4] += delta.y;
|
|
m[3+8] += delta.z;
|
|
}
|
|
|
|
inline VectorF MatrixF::getForwardVector() const
|
|
{
|
|
VectorF vec;
|
|
getColumn( 1, &vec );
|
|
return vec;
|
|
}
|
|
|
|
inline VectorF MatrixF::getRightVector() const
|
|
{
|
|
VectorF vec;
|
|
getColumn( 0, &vec );
|
|
return vec;
|
|
}
|
|
|
|
inline VectorF MatrixF::getUpVector() const
|
|
{
|
|
VectorF vec;
|
|
getColumn( 2, &vec );
|
|
return vec;
|
|
}
|
|
|
|
//------------------------------------
|
|
// Math operator overloads
|
|
//------------------------------------
|
|
inline MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 )
|
|
{
|
|
// temp = m1 * m2
|
|
MatrixF temp;
|
|
m_matF_x_matF(m1, m2, temp);
|
|
return temp;
|
|
}
|
|
|
|
inline MatrixF& MatrixF::operator *= ( const MatrixF &m1 )
|
|
{
|
|
MatrixF tempThis(*this);
|
|
m_matF_x_matF(tempThis, m1, *this);
|
|
return (*this);
|
|
}
|
|
|
|
//------------------------------------
|
|
// Non-member methods
|
|
//------------------------------------
|
|
|
|
inline void mTransformPlane(const MatrixF& mat, const Point3F& scale, const PlaneF& plane, PlaneF * result)
|
|
{
|
|
m_matF_x_scale_x_planeF(mat, &scale.x, &plane.x, &result->x);
|
|
}
|
|
|
|
#endif //_MMATRIX_H_
|