mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-19 20:24:49 +00:00
Assimp importer now sets the collada options to fix up axis transformation bounds are now created by tsmesh top level nodes are now added to the processNodes stack so bounds and other root nodes can be found correctly
314 lines
10 KiB
C++
314 lines
10 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Copyright (c) 2012 GarageGames, LLC
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to
|
|
// deal in the Software without restriction, including without limitation the
|
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
// sell copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
// IN THE SOFTWARE.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "platform/platform.h"
|
|
#include "ts/loader/appSequence.h"
|
|
#include "ts/assimp/assimpAppNode.h"
|
|
#include "ts/assimp/assimpAppMesh.h"
|
|
|
|
|
|
#if !defined(TORQUE_DISABLE_MEMORY_MANAGER)
|
|
#ifdef new
|
|
#undef new
|
|
#endif
|
|
#endif
|
|
|
|
// assimp include files.
|
|
#include <assimp/cimport.h>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/postprocess.h>
|
|
#include <assimp/types.h>
|
|
|
|
#if !defined(TORQUE_DISABLE_MEMORY_MANAGER)
|
|
# define _new new(__FILE__, __LINE__)
|
|
# define new _new
|
|
#endif
|
|
|
|
|
|
aiAnimation* AssimpAppNode::sActiveSequence = NULL;
|
|
F32 AssimpAppNode::sTimeMultiplier = 1.0f;
|
|
|
|
AssimpAppNode::AssimpAppNode(const aiScene* scene, const aiNode* node, AssimpAppNode* parentNode)
|
|
: mScene(scene),
|
|
mNode(node ? node : scene->mRootNode),
|
|
mInvertMeshes(false),
|
|
mLastTransformTime(TSShapeLoader::DefaultTime - 1),
|
|
mDefaultTransformValid(false)
|
|
{
|
|
appParent = parentNode;
|
|
// Initialize node and parent names.
|
|
mName = dStrdup(mNode->mName.C_Str());
|
|
if ( dStrlen(mName) == 0 )
|
|
{
|
|
const char* defaultName = "null";
|
|
mName = dStrdup(defaultName);
|
|
}
|
|
mParentName = dStrdup(parentNode ? parentNode->mName : "ROOT");
|
|
// Convert transformation matrix
|
|
assimpToTorqueMat(node->mTransformation, mNodeTransform);
|
|
Con::printf("[ASSIMP] Node Created: %s, Parent: %s", mName, mParentName);
|
|
}
|
|
|
|
MatrixF AssimpAppNode::getTransform(F32 time)
|
|
{
|
|
// Check if we can use the last computed transform
|
|
if (time == mLastTransformTime)
|
|
{
|
|
return mLastTransform;
|
|
}
|
|
|
|
if (appParent) {
|
|
// Get parent node's transform
|
|
mLastTransform = appParent->getTransform(time);
|
|
}
|
|
else {
|
|
// no parent (ie. root level) => scale by global shape <unit>
|
|
mLastTransform.identity();
|
|
mLastTransform.scale(ColladaUtils::getOptions().unit * ColladaUtils::getOptions().formatScaleFactor);
|
|
if (!isBounds())
|
|
ColladaUtils::convertTransform(mLastTransform);
|
|
}
|
|
|
|
// If this node is animated in the active sequence, fetch the animated transform
|
|
MatrixF mat(true);
|
|
if (sActiveSequence)
|
|
getAnimatedTransform(mat, time, sActiveSequence);
|
|
else
|
|
mat = mNodeTransform;
|
|
|
|
// Remove node scaling?
|
|
Point3F nodeScale = mat.getScale();
|
|
if (nodeScale != Point3F::One && appParent && ColladaUtils::getOptions().ignoreNodeScale)
|
|
{
|
|
nodeScale.x = nodeScale.x ? (1.0f / nodeScale.x) : 0;
|
|
nodeScale.y = nodeScale.y ? (1.0f / nodeScale.y) : 0;
|
|
nodeScale.z = nodeScale.z ? (1.0f / nodeScale.z) : 0;
|
|
mat.scale(nodeScale);
|
|
}
|
|
|
|
mLastTransform.mul(mat);
|
|
|
|
mLastTransformTime = time;
|
|
return mLastTransform;
|
|
}
|
|
|
|
void AssimpAppNode::getAnimatedTransform(MatrixF& mat, F32 t, aiAnimation* animSeq)
|
|
{
|
|
// Convert time `t` (in seconds) to a frame index
|
|
const F32 frameTime = (t * animSeq->mTicksPerSecond + 0.5f) + 1.0f;
|
|
|
|
// Loop through animation channels to find the matching node
|
|
for (U32 k = 0; k < animSeq->mNumChannels; ++k)
|
|
{
|
|
const aiNodeAnim* nodeAnim = animSeq->mChannels[k];
|
|
if (dStrcmp(mName, nodeAnim->mNodeName.C_Str()) != 0)
|
|
continue;
|
|
|
|
Point3F translation(Point3F::Zero);
|
|
QuatF rotation(QuatF::Identity);
|
|
Point3F scale(Point3F::One);
|
|
|
|
// Interpolate Translation Keys
|
|
if (nodeAnim->mNumPositionKeys > 0)
|
|
{
|
|
translation = interpolateVectorKey(nodeAnim->mPositionKeys, nodeAnim->mNumPositionKeys, frameTime);
|
|
}
|
|
|
|
// Interpolate Rotation Keys
|
|
if (nodeAnim->mNumRotationKeys > 0)
|
|
{
|
|
rotation = interpolateQuaternionKey(nodeAnim->mRotationKeys, nodeAnim->mNumRotationKeys, frameTime);
|
|
}
|
|
|
|
// Interpolate Scaling Keys
|
|
if (nodeAnim->mNumScalingKeys > 0)
|
|
{
|
|
scale = interpolateVectorKey(nodeAnim->mScalingKeys, nodeAnim->mNumScalingKeys, frameTime);
|
|
}
|
|
|
|
// Apply the interpolated transform components to the matrix
|
|
rotation.setMatrix(&mat);
|
|
mat.inverse();
|
|
mat.setPosition(translation);
|
|
mat.scale(scale);
|
|
|
|
return; // Exit after processing the matching node
|
|
}
|
|
|
|
// Default to the static node transformation if no animation data is found
|
|
mat = mNodeTransform;
|
|
}
|
|
|
|
Point3F AssimpAppNode::interpolateVectorKey(const aiVectorKey* keys, U32 numKeys, F32 frameTime)
|
|
{
|
|
if (numKeys == 1) // Single keyframe: use it directly
|
|
return Point3F(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z);
|
|
|
|
// Clamp frameTime to the bounds of the keyframes
|
|
if (frameTime <= keys[0].mTime) {
|
|
// Before the first keyframe, return the first key
|
|
return Point3F(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z);
|
|
}
|
|
if (frameTime >= keys[numKeys - 1].mTime) {
|
|
// After the last keyframe, return the last key
|
|
return Point3F(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z);
|
|
}
|
|
|
|
// Interpolate between the two nearest keyframes
|
|
for (U32 i = 1; i < numKeys; ++i)
|
|
{
|
|
if (frameTime < keys[i].mTime)
|
|
{
|
|
const F32 factor = (frameTime - keys[i - 1].mTime) / (keys[i].mTime - keys[i - 1].mTime);
|
|
Point3F start(keys[i - 1].mValue.x, keys[i - 1].mValue.y, keys[i - 1].mValue.z);
|
|
Point3F end(keys[i].mValue.x, keys[i].mValue.y, keys[i].mValue.z);
|
|
Point3F result;
|
|
result.interpolate(start, end, factor);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// Default to the last keyframe
|
|
return Point3F(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z);
|
|
}
|
|
|
|
QuatF AssimpAppNode::interpolateQuaternionKey(const aiQuatKey* keys, U32 numKeys, F32 frameTime)
|
|
{
|
|
if (numKeys == 1) // Single keyframe: use it directly
|
|
return QuatF(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z, keys[0].mValue.w);
|
|
|
|
for (U32 i = 1; i < numKeys; ++i)
|
|
{
|
|
if (frameTime < keys[i].mTime)
|
|
{
|
|
const F32 factor = (frameTime - keys[i - 1].mTime) / (keys[i].mTime - keys[i - 1].mTime);
|
|
QuatF start(keys[i - 1].mValue.x, keys[i - 1].mValue.y, keys[i - 1].mValue.z, keys[i - 1].mValue.w);
|
|
QuatF end(keys[i].mValue.x, keys[i].mValue.y, keys[i].mValue.z, keys[i].mValue.w);
|
|
QuatF result;
|
|
result.interpolate(start, end, factor);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// Default to the last keyframe
|
|
return QuatF(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z, keys[numKeys - 1].mValue.w);
|
|
}
|
|
|
|
bool AssimpAppNode::animatesTransform(const AppSequence* appSeq)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/// Get the world transform of the node at the specified time
|
|
MatrixF AssimpAppNode::getNodeTransform(F32 time)
|
|
{
|
|
// Avoid re-computing the default transform if possible
|
|
if (mDefaultTransformValid && time == TSShapeLoader::DefaultTime)
|
|
{
|
|
return mDefaultNodeTransform;
|
|
}
|
|
else
|
|
{
|
|
MatrixF nodeTransform = getTransform(time);
|
|
|
|
// Check for inverted node coordinate spaces => can happen when modelers
|
|
// use the 'mirror' tool in their 3d app. Shows up as negative <scale>
|
|
// transforms in the collada model.
|
|
if (m_matF_determinant(nodeTransform) < 0.0f)
|
|
{
|
|
// Mark this node as inverted so we can mirror mesh geometry, then
|
|
// de-invert the transform matrix
|
|
mInvertMeshes = true;
|
|
nodeTransform.scale(Point3F(1, 1, -1));
|
|
}
|
|
|
|
// Cache the default transform
|
|
if (time == TSShapeLoader::DefaultTime)
|
|
{
|
|
mDefaultTransformValid = true;
|
|
mDefaultNodeTransform = nodeTransform;
|
|
}
|
|
|
|
return nodeTransform;
|
|
}
|
|
}
|
|
|
|
void AssimpAppNode::assimpToTorqueMat(const aiMatrix4x4& inAssimpMat, MatrixF& outMat)
|
|
{
|
|
outMat.setRow(0, Point4F((F32)inAssimpMat.a1, (F32)inAssimpMat.a2,
|
|
(F32)inAssimpMat.a3, (F32)inAssimpMat.a4));
|
|
|
|
outMat.setRow(1, Point4F((F32)inAssimpMat.b1, (F32)inAssimpMat.b2,
|
|
(F32)inAssimpMat.b3, (F32)inAssimpMat.b4));
|
|
|
|
outMat.setRow(2, Point4F((F32)inAssimpMat.c1, (F32)inAssimpMat.c2,
|
|
(F32)inAssimpMat.c3, (F32)inAssimpMat.c4));
|
|
|
|
outMat.setRow(3, Point4F((F32)inAssimpMat.d1, (F32)inAssimpMat.d2,
|
|
(F32)inAssimpMat.d3, (F32)inAssimpMat.d4));
|
|
}
|
|
|
|
aiNode* AssimpAppNode::findChildNodeByName(const char* nodeName, aiNode* rootNode)
|
|
{
|
|
aiNode* retNode = NULL;
|
|
if (strcmp(nodeName, rootNode->mName.C_Str()) == 0)
|
|
return rootNode;
|
|
|
|
for (U32 i = 0; i < rootNode->mNumChildren; ++i)
|
|
{
|
|
retNode = findChildNodeByName(nodeName, rootNode->mChildren[i]);
|
|
if (retNode)
|
|
return retNode;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void AssimpAppNode::addChild(AssimpAppNode* child)
|
|
{
|
|
mChildNodes.push_back(child);
|
|
}
|
|
|
|
void AssimpAppNode::addMesh(AssimpAppMesh* child)
|
|
{
|
|
mMeshes.push_back(child);
|
|
}
|
|
|
|
void AssimpAppNode::buildMeshList()
|
|
{
|
|
for (U32 i = 0; i < mNode->mNumMeshes; i++)
|
|
{
|
|
U32 meshIdx = mNode->mMeshes[i];
|
|
const aiMesh* mesh = mScene->mMeshes[meshIdx];
|
|
AssimpAppMesh* curMesh = new AssimpAppMesh(mesh, this);
|
|
mMeshes.push_back(curMesh);
|
|
}
|
|
}
|
|
|
|
void AssimpAppNode::buildChildList()
|
|
{
|
|
for (U32 i = 0; i < mNode->mNumChildren; i++)
|
|
{
|
|
const aiNode* node = mNode->mChildren[i];
|
|
mChildNodes.push_back(new AssimpAppNode(mScene, node, this));
|
|
}
|
|
}
|