Torque3D/Engine/source/ts/assimp/assimpAppNode.cpp
marauder2k7 a5ed09fa57 fix assimp import
Assimp importer now sets the collada options to fix up axis transformation
bounds are now created by tsmesh
top level nodes are now added to the processNodes stack so bounds and other root nodes can be found correctly
2025-11-24 07:54:53 +00:00

314 lines
10 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "ts/loader/appSequence.h"
#include "ts/assimp/assimpAppNode.h"
#include "ts/assimp/assimpAppMesh.h"
#if !defined(TORQUE_DISABLE_MEMORY_MANAGER)
#ifdef new
#undef new
#endif
#endif
// assimp include files.
#include <assimp/cimport.h>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#include <assimp/types.h>
#if !defined(TORQUE_DISABLE_MEMORY_MANAGER)
# define _new new(__FILE__, __LINE__)
# define new _new
#endif
aiAnimation* AssimpAppNode::sActiveSequence = NULL;
F32 AssimpAppNode::sTimeMultiplier = 1.0f;
AssimpAppNode::AssimpAppNode(const aiScene* scene, const aiNode* node, AssimpAppNode* parentNode)
: mScene(scene),
mNode(node ? node : scene->mRootNode),
mInvertMeshes(false),
mLastTransformTime(TSShapeLoader::DefaultTime - 1),
mDefaultTransformValid(false)
{
appParent = parentNode;
// Initialize node and parent names.
mName = dStrdup(mNode->mName.C_Str());
if ( dStrlen(mName) == 0 )
{
const char* defaultName = "null";
mName = dStrdup(defaultName);
}
mParentName = dStrdup(parentNode ? parentNode->mName : "ROOT");
// Convert transformation matrix
assimpToTorqueMat(node->mTransformation, mNodeTransform);
Con::printf("[ASSIMP] Node Created: %s, Parent: %s", mName, mParentName);
}
MatrixF AssimpAppNode::getTransform(F32 time)
{
// Check if we can use the last computed transform
if (time == mLastTransformTime)
{
return mLastTransform;
}
if (appParent) {
// Get parent node's transform
mLastTransform = appParent->getTransform(time);
}
else {
// no parent (ie. root level) => scale by global shape <unit>
mLastTransform.identity();
mLastTransform.scale(ColladaUtils::getOptions().unit * ColladaUtils::getOptions().formatScaleFactor);
if (!isBounds())
ColladaUtils::convertTransform(mLastTransform);
}
// If this node is animated in the active sequence, fetch the animated transform
MatrixF mat(true);
if (sActiveSequence)
getAnimatedTransform(mat, time, sActiveSequence);
else
mat = mNodeTransform;
// Remove node scaling?
Point3F nodeScale = mat.getScale();
if (nodeScale != Point3F::One && appParent && ColladaUtils::getOptions().ignoreNodeScale)
{
nodeScale.x = nodeScale.x ? (1.0f / nodeScale.x) : 0;
nodeScale.y = nodeScale.y ? (1.0f / nodeScale.y) : 0;
nodeScale.z = nodeScale.z ? (1.0f / nodeScale.z) : 0;
mat.scale(nodeScale);
}
mLastTransform.mul(mat);
mLastTransformTime = time;
return mLastTransform;
}
void AssimpAppNode::getAnimatedTransform(MatrixF& mat, F32 t, aiAnimation* animSeq)
{
// Convert time `t` (in seconds) to a frame index
const F32 frameTime = (t * animSeq->mTicksPerSecond + 0.5f) + 1.0f;
// Loop through animation channels to find the matching node
for (U32 k = 0; k < animSeq->mNumChannels; ++k)
{
const aiNodeAnim* nodeAnim = animSeq->mChannels[k];
if (dStrcmp(mName, nodeAnim->mNodeName.C_Str()) != 0)
continue;
Point3F translation(Point3F::Zero);
QuatF rotation(QuatF::Identity);
Point3F scale(Point3F::One);
// Interpolate Translation Keys
if (nodeAnim->mNumPositionKeys > 0)
{
translation = interpolateVectorKey(nodeAnim->mPositionKeys, nodeAnim->mNumPositionKeys, frameTime);
}
// Interpolate Rotation Keys
if (nodeAnim->mNumRotationKeys > 0)
{
rotation = interpolateQuaternionKey(nodeAnim->mRotationKeys, nodeAnim->mNumRotationKeys, frameTime);
}
// Interpolate Scaling Keys
if (nodeAnim->mNumScalingKeys > 0)
{
scale = interpolateVectorKey(nodeAnim->mScalingKeys, nodeAnim->mNumScalingKeys, frameTime);
}
// Apply the interpolated transform components to the matrix
rotation.setMatrix(&mat);
mat.inverse();
mat.setPosition(translation);
mat.scale(scale);
return; // Exit after processing the matching node
}
// Default to the static node transformation if no animation data is found
mat = mNodeTransform;
}
Point3F AssimpAppNode::interpolateVectorKey(const aiVectorKey* keys, U32 numKeys, F32 frameTime)
{
if (numKeys == 1) // Single keyframe: use it directly
return Point3F(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z);
// Clamp frameTime to the bounds of the keyframes
if (frameTime <= keys[0].mTime) {
// Before the first keyframe, return the first key
return Point3F(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z);
}
if (frameTime >= keys[numKeys - 1].mTime) {
// After the last keyframe, return the last key
return Point3F(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z);
}
// Interpolate between the two nearest keyframes
for (U32 i = 1; i < numKeys; ++i)
{
if (frameTime < keys[i].mTime)
{
const F32 factor = (frameTime - keys[i - 1].mTime) / (keys[i].mTime - keys[i - 1].mTime);
Point3F start(keys[i - 1].mValue.x, keys[i - 1].mValue.y, keys[i - 1].mValue.z);
Point3F end(keys[i].mValue.x, keys[i].mValue.y, keys[i].mValue.z);
Point3F result;
result.interpolate(start, end, factor);
return result;
}
}
// Default to the last keyframe
return Point3F(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z);
}
QuatF AssimpAppNode::interpolateQuaternionKey(const aiQuatKey* keys, U32 numKeys, F32 frameTime)
{
if (numKeys == 1) // Single keyframe: use it directly
return QuatF(keys[0].mValue.x, keys[0].mValue.y, keys[0].mValue.z, keys[0].mValue.w);
for (U32 i = 1; i < numKeys; ++i)
{
if (frameTime < keys[i].mTime)
{
const F32 factor = (frameTime - keys[i - 1].mTime) / (keys[i].mTime - keys[i - 1].mTime);
QuatF start(keys[i - 1].mValue.x, keys[i - 1].mValue.y, keys[i - 1].mValue.z, keys[i - 1].mValue.w);
QuatF end(keys[i].mValue.x, keys[i].mValue.y, keys[i].mValue.z, keys[i].mValue.w);
QuatF result;
result.interpolate(start, end, factor);
return result;
}
}
// Default to the last keyframe
return QuatF(keys[numKeys - 1].mValue.x, keys[numKeys - 1].mValue.y, keys[numKeys - 1].mValue.z, keys[numKeys - 1].mValue.w);
}
bool AssimpAppNode::animatesTransform(const AppSequence* appSeq)
{
return false;
}
/// Get the world transform of the node at the specified time
MatrixF AssimpAppNode::getNodeTransform(F32 time)
{
// Avoid re-computing the default transform if possible
if (mDefaultTransformValid && time == TSShapeLoader::DefaultTime)
{
return mDefaultNodeTransform;
}
else
{
MatrixF nodeTransform = getTransform(time);
// Check for inverted node coordinate spaces => can happen when modelers
// use the 'mirror' tool in their 3d app. Shows up as negative <scale>
// transforms in the collada model.
if (m_matF_determinant(nodeTransform) < 0.0f)
{
// Mark this node as inverted so we can mirror mesh geometry, then
// de-invert the transform matrix
mInvertMeshes = true;
nodeTransform.scale(Point3F(1, 1, -1));
}
// Cache the default transform
if (time == TSShapeLoader::DefaultTime)
{
mDefaultTransformValid = true;
mDefaultNodeTransform = nodeTransform;
}
return nodeTransform;
}
}
void AssimpAppNode::assimpToTorqueMat(const aiMatrix4x4& inAssimpMat, MatrixF& outMat)
{
outMat.setRow(0, Point4F((F32)inAssimpMat.a1, (F32)inAssimpMat.a2,
(F32)inAssimpMat.a3, (F32)inAssimpMat.a4));
outMat.setRow(1, Point4F((F32)inAssimpMat.b1, (F32)inAssimpMat.b2,
(F32)inAssimpMat.b3, (F32)inAssimpMat.b4));
outMat.setRow(2, Point4F((F32)inAssimpMat.c1, (F32)inAssimpMat.c2,
(F32)inAssimpMat.c3, (F32)inAssimpMat.c4));
outMat.setRow(3, Point4F((F32)inAssimpMat.d1, (F32)inAssimpMat.d2,
(F32)inAssimpMat.d3, (F32)inAssimpMat.d4));
}
aiNode* AssimpAppNode::findChildNodeByName(const char* nodeName, aiNode* rootNode)
{
aiNode* retNode = NULL;
if (strcmp(nodeName, rootNode->mName.C_Str()) == 0)
return rootNode;
for (U32 i = 0; i < rootNode->mNumChildren; ++i)
{
retNode = findChildNodeByName(nodeName, rootNode->mChildren[i]);
if (retNode)
return retNode;
}
return nullptr;
}
void AssimpAppNode::addChild(AssimpAppNode* child)
{
mChildNodes.push_back(child);
}
void AssimpAppNode::addMesh(AssimpAppMesh* child)
{
mMeshes.push_back(child);
}
void AssimpAppNode::buildMeshList()
{
for (U32 i = 0; i < mNode->mNumMeshes; i++)
{
U32 meshIdx = mNode->mMeshes[i];
const aiMesh* mesh = mScene->mMeshes[meshIdx];
AssimpAppMesh* curMesh = new AssimpAppMesh(mesh, this);
mMeshes.push_back(curMesh);
}
}
void AssimpAppNode::buildChildList()
{
for (U32 i = 0; i < mNode->mNumChildren; i++)
{
const aiNode* node = mNode->mChildren[i];
mChildNodes.push_back(new AssimpAppNode(mScene, node, this));
}
}