Torque3D/Engine/source/ts/collada/colladaUtils.cpp
AzaezelX 5ffa3b81f1 dial back nullPtr usage
while it still remains a good idea to port as many NULL compares and assignments over to nullPtr as feasable, we do still need to sort out how to better support scripted empty, false, and zero assigns for things like objectIDs.

this means we'll need to both fully convert the backend of the parser to support that kind of thing, but also alter most if not all exisiting NULLs. up to and including things like SAFE_DELETE. while that's certainly feasable, given there's aproximatel 400 nullptr assigns/checks prior to this commit, and roughly 1800 of the prior, if it terminates in a script call and not an aip one direct, we'll be dialing that back until such time as fork fully fopcused on converting and resolving any lingering mismatches is completed.
2025-12-29 17:45:09 -06:00

3065 lines
125 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include <algorithm>
#include "console/console.h"
#include "gfx/bitmap/gBitmap.h"
#include "ts/collada/colladaUtils.h"
#include "materials/matInstance.h"
//special handling for export classes
#include "persistence/taml/fsTinyXml.h"
#include "T3D/convexShape.h"
using namespace ColladaUtils;
#define MAX_PATH_LENGTH 256
// Helper macro to create Collada elements
#define CREATE_ELEMENT(container, name, type) \
type* name = daeSafeCast<type>(container->createAndPlace(#name));
ColladaUtils::ImportOptions& ColladaUtils::getOptions()
{
static ImportOptions options;
return options;
}
//------------------------------------------------------------------------------
// Utility functions
// Convert a transform from the Collada model coordinate system to the DTS coordinate
// system
void ColladaUtils::convertTransform(MatrixF& mat)
{
MatrixF rot(true);
switch (ColladaUtils::getOptions().upAxis)
{
case UPAXISTYPE_X_UP:
// rotate 90 around Y-axis, then 90 around Z-axis
rot(0,0) = 0.0f; rot(1,0) = 1.0f;
rot(1,1) = 0.0f; rot(2,1) = 1.0f;
rot(0,2) = 1.0f; rot(2,2) = 0.0f;
// pre-multiply the transform by the rotation matrix
mat.mulL(rot);
break;
case UPAXISTYPE_Y_UP:
// rotate 180 around Y-axis, then 90 around X-axis
rot(0,0) = -1.0f;
rot(1,1) = 0.0f; rot(2,1) = 1.0f;
rot(1,2) = 1.0f; rot(2,2) = 0.0f;
// pre-multiply the transform by the rotation matrix
mat.mulL(rot);
break;
case UPAXISTYPE_Z_UP:
default:
// nothing to do
break;
}
}
/// Find the COMMON profile element in an effect
const domProfile_COMMON* ColladaUtils::findEffectCommonProfile(const domEffect* effect)
{
if (effect) {
// Find the COMMON profile
const domFx_profile_abstract_Array& profiles = effect->getFx_profile_abstract_array();
for (S32 iProfile = 0; iProfile < profiles.getCount(); iProfile++) {
if (profiles[iProfile]->getElementType() == COLLADA_TYPE::PROFILE_COMMON)
return daeSafeCast<domProfile_COMMON>(profiles[iProfile]);
}
}
return NULL;
}
/// Find the <diffuse> element in the COMMON profile of an effect
const domCommon_color_or_texture_type_complexType* ColladaUtils::findEffectDiffuse(const domEffect* effect)
{
const domProfile_COMMON* profile = findEffectCommonProfile(effect);
if (profile) {
if (profile->getTechnique()->getLambert())
return profile->getTechnique()->getLambert()->getDiffuse();
else if (profile->getTechnique()->getPhong())
return profile->getTechnique()->getPhong()->getDiffuse();
else if (profile->getTechnique()->getBlinn())
return profile->getTechnique()->getBlinn()->getDiffuse();
}
return NULL;
}
/// Find the <specular> element in the COMMON profile of an effect
const domCommon_color_or_texture_type_complexType* ColladaUtils::findEffectSpecular(const domEffect* effect)
{
const domProfile_COMMON* profile = findEffectCommonProfile(effect);
if (profile) {
if (profile->getTechnique()->getLambert())
return NULL; // no <specular> element for Lambert shader
else if (profile->getTechnique()->getPhong())
return profile->getTechnique()->getPhong()->getSpecular();
else if (profile->getTechnique()->getBlinn())
return profile->getTechnique()->getBlinn()->getSpecular();
}
return NULL;
}
const domFx_sampler2D_common_complexType* ColladaUtils::getTextureSampler(const domEffect* effect,
const domCommon_color_or_texture_type_complexType* texture)
{
// <texture texture="new_param_SID">.<newparam>.<sampler2D>
if (texture) {
const domCommon_color_or_texture_type_complexType::domTexture* domTex = texture->getTexture();
if (domTex && domTex->getTexture()) {
daeSIDResolver resolver(const_cast<domEffect*>(effect), domTex->getTexture());
const domCommon_newparam_type* param = daeSafeCast<domCommon_newparam_type>(resolver.getElement());
if (param)
return param->getSampler2D();
}
}
return NULL;
}
String ColladaUtils::getSamplerImagePath(const domEffect* effect,
const domFx_sampler2D_common_complexType* sampler2D)
{
// <sampler2D>.<source>.<newparam>.<surface>.<init_from>.<image>.<init_from>
const domProfile_COMMON* profile = findEffectCommonProfile(effect);
if (profile && sampler2D && sampler2D->getSource()) {
// Resolve the SID to get the <surface> param
daeSIDResolver resolver(const_cast<domProfile_COMMON*>(profile), sampler2D->getSource()->getValue());
domCommon_newparam_type* surfaceParam = daeSafeCast<domCommon_newparam_type>(resolver.getElement());
// Get the surface <init_from> element
if (surfaceParam && surfaceParam->getSurface()) {
const domFx_surface_init_common* surfaceInit = surfaceParam->getSurface()->getFx_surface_init_common();
if (surfaceInit && surfaceInit->getInit_from_array().getCount()) {
// Resolve the ID to get the <image>, then read the texture path
xsIDREF& idRef = surfaceInit->getInit_from_array()[0]->getValue();
const domImage* image = daeSafeCast<domImage>(idRef.getElement());
if (image && image->getInit_from())
return resolveImagePath(image);
}
}
}
return "";
}
// Resolve image path into something we can use.
String ColladaUtils::resolveImagePath(const domImage* image)
{
// 1. If the URI string contains an absolute path, use it if
// it is inside the Torque folder, otherwise force textures
// to be in the same folder as the shape.
// 2. If the URI string contains a relative path, append it
// to the shape path (since materials.tscript cannot handle
// relative paths).
Torque::Path imagePath;
String imageStr(image->getInit_from()->getValue().originalStr().c_str());
// Trim leading "file://"
if (imageStr.compare("file://", 7) == 0)
imageStr.erase(0, 7);
// Trim leading slash from absolute windows paths. eg. /D:/
if ((imageStr.compare("/", 1) == 0) && (imageStr.find(':') == 2))
imageStr.erase(0, 1);
// Replace %20 with space
imageStr.replace("%20", " ");
if (Platform::isFullPath(imageStr))
{
// Absolute path => check for outside the Torque game folder
imagePath = String( Platform::makeRelativePathName(imageStr, Platform::getMainDotCsDir()) );
if ( !imagePath.getRoot().isEmpty() || // different drive (eg. C:/ vs D:/)
(imagePath.getPath().find("/") == 0) || // different OS (eg. /home vs C:/home)
(imagePath.getPath().find("../") == 0) ) // same drive, outside Torque game folder
{
// Force these to the shape folder
imagePath.setRoot("");
imagePath.setPath("");
}
}
else
{
// Relative path => prepend with shape path
Torque::Path tempPath(imageStr);
imagePath = TSShapeLoader::getShapePath();
imagePath.appendPath(tempPath);
imagePath.setFileName(tempPath.getFileName());
}
// No need to specify the path if it is in the same folder as the model
if (imagePath.getPath() == TSShapeLoader::getShapePath().getPath())
imagePath.setPath("");
// Don't care about the extension
imagePath.setExtension("");
return imagePath.getFullPath();
}
//-----------------------------------------------------------------------------
// Construct the appropriate child class
BasePrimitive* BasePrimitive::get(const daeElement* element)
{
switch (element->getElementType()) {
case COLLADA_TYPE::TRIANGLES: return new ColladaPrimitive<domTriangles>(element);
case COLLADA_TYPE::TRISTRIPS: return new ColladaPrimitive<domTristrips>(element);
case COLLADA_TYPE::TRIFANS: return new ColladaPrimitive<domTrifans>(element);
case COLLADA_TYPE::POLYGONS: return new ColladaPrimitive<domPolygons>(element);
case COLLADA_TYPE::POLYLIST: return new ColladaPrimitive<domPolylist>(element);
default: return 0;
}
}
//------------------------------------------------------------------------------
// Collada animation curves
/// Determine which elements are being targeted
void AnimData::parseTargetString(const char* target, S32 fullCount, const char* elements[])
{
// Assume targeting all elements at offset 0
targetValueCount = fullCount;
targetValueOffset = 0;
// Check for array syntax: (n) or (n)(m)
if (const char* p = dStrchr(target, '(')) {
S32 indN, indM;
if (dSscanf(p, "(%d)(%d)", &indN, &indM) == 2) {
targetValueOffset = (indN * 4) + indM; // @todo: 4x4 matrix only
targetValueCount = 1;
}
else if (dSscanf(p, "(%d)", &indN) == 1) {
targetValueOffset = indN;
targetValueCount = 1;
}
}
else if (const char* p2 = dStrrchr(target, '.')) {
// Check for named elements
for (S32 iElem = 0; elements[iElem][0] != 0; iElem++) {
if (!String::compare(p2, elements[iElem])) {
targetValueOffset = iElem;
targetValueCount = 1;
break;
}
}
}
}
/// Solve the cubic spline B(s) = param for s
F32 AnimData::invertParamCubic(F32 param, F32 x0, F32 x1, F32 x2, F32 x3) const
{
const F64 INVERTPARAMCUBIC_TOL = 1.0e-09;
const F64 INVERTPARAMCUBIC_SMALLERTOL = 1.0e-20;
const F64 INVERTPARAMCUBIC_MAXIT = 100;
// check input value for outside range
if ((param - x0) < INVERTPARAMCUBIC_SMALLERTOL)
return 0.0f;
else if ((x3 - param) < INVERTPARAMCUBIC_SMALLERTOL)
return 1.0f;
U32 iterations = 0;
// de Casteljau Subdivision.
F32 u = 0.0f;
F32 v = 1.0f;
while (iterations < INVERTPARAMCUBIC_MAXIT) {
F64 a = (x0 + x1)*0.5f;
F64 b = (x1 + x2)*0.5f;
F64 c = (x2 + x3)*0.5f;
F64 d = (a + b)*0.5f;
F64 e = (b + c)*0.5f;
F64 f = (d + e)*0.5f;
if (mFabs(f - param) < INVERTPARAMCUBIC_TOL)
break;
if (f < param) {
x0 = f;
x1 = e;
x2 = c;
u = (u + v)*0.5f;
}
else {
x1 = a;
x2 = d;
x3 = f;
v = (u + v)*0.5f;
}
iterations++;
}
return mClampF((u+v)*0.5f, 0.0f, 1.0f);
}
/// Get the interpolated value at time 't'
void AnimData::interpValue(F32 t, U32 offset, double* value) const
{
// handle degenerate animation data
if (input.size() == 0)
{
*value = 0.0f;
return;
}
else if (input.size() == 1)
{
*value = output.getStringArrayData(0)[offset];
return;
}
// clamp time to valid range
F32 curveStart = input.getFloatValue(0);
F32 curveEnd = input.getFloatValue(input.size()-1);
t = mClampF(t, curveStart, curveEnd);
// find the index of the input keyframe BEFORE 't'
S32 index;
for (index = 0; index < input.size()-2; index++) {
if (input.getFloatValue(index + 1) > t)
break;
}
// get the data for the two control points either side of 't'
Point2F v0;
v0.x = input.getFloatValue(index);
v0.y = output.getStringArrayData(index)[offset];
Point2F v3;
v3.x = input.getFloatValue(index + 1);
v3.y = output.getStringArrayData(index + 1)[offset];
// If spline interpolation is specified but the tangents are not available,
// default to LINEAR.
const char* interp_method = interpolation.getStringValue(index);
if (dStrEqual(interp_method, "BEZIER") ||
dStrEqual(interp_method, "HERMITE") ||
dStrEqual(interp_method, "CARDINAL")) {
const double* inArray = inTangent.getStringArrayData(index + 1);
const double* outArray = outTangent.getStringArrayData(index);
if (!inArray || !outArray)
interp_method = "LINEAR";
}
if (dStrEqual(interp_method, "STEP")) {
// STEP interpolation
*value = v0.y;
}
else if (dStrEqual(interp_method, "BEZIER") ||
dStrEqual(interp_method, "HERMITE") ||
dStrEqual(interp_method, "CARDINAL") ||
dStrEqual(interp_method, "BSPLINE"))
{
// Cubic spline interpolation. The only difference between the 4 supported
// forms is in the calculation of the other 2 control points:
// BEZIER: control points are specified explicitly
// HERMITE: tangents are specified, need to offset to get the control points
// CARDINAL: (baked) tangents are specified, need to offset to get the control points
// BSPLINE: control points are based on previous and next points
// Get the 2 extra control points
Point2F v1, v2;
if (dStrEqual(interp_method, "BSPLINE")) {
// v0 and v3 are the center points => need to
// get the control points before and after them
v1 = v0;
v2 = v3;
if (index > 0) {
v0.x = input.getFloatValue(index-1);
v0.y = output.getStringArrayData(index-1)[offset];
}
else {
// mirror P1 through P0
v0 = v1 + (v1 - v2);
}
if (index < (input.size()-2)) {
v3.x = input.getFloatValue(index+2);
v3.y = output.getStringArrayData(index+2)[offset];
}
else {
// mirror P0 through P1
v3 = v2 + (v2 - v1);
}
}
else {
const double* inArray = inTangent.getStringArrayData(index + 1);
const double* outArray = outTangent.getStringArrayData(index);
if (output.stride() == inTangent.stride()) {
// This degenerate form (1D control points) does 2 things wrong:
// 1) it does not specify the key (time) value
// 2) the control point is specified as a tangent for both bezier and hermite
// => interpolate to get the key values, and offset the tangent values
v1.set((v0.x*2 + v3.x)/3, v0.y + outArray[offset]);
v2.set((v0.x + v3.x*2)/3, v3.y - inArray[offset]);
}
else {
// the expected form (2D control points)
v1.set(outArray[offset*2], outArray[offset*2+1]);
v2.set(inArray[offset*2], inArray[offset*2+1]);
// if this is a hermite or cardinal spline, treat the values as tangents
if (dStrEqual(interp_method, "HERMITE") || dStrEqual(interp_method, "CARDINAL")) {
v1.set(v0.x + v1.x, v3.y - v1.y);
v2.set(v0.x + v2.x, v3.x - v2.y);
}
}
}
// find 's' that gives the desired 't' value
F32 s = invertParamCubic(t, v0.x, v1.x, v2.x, v3.x);
// Calculate the output value using Bernstein evaluation and the
// computed 's' value
F32 c = 3.0f*(v1.y - v0.y);
F32 e = 3.0f*(v2.y - v1.y);
*value = (((v3.y - v0.y - e)*s + e - c)*s + c)*s + v0.y;
}
else {
// default to LINEAR interpolation
F32 s = mClampF((t - v0.x) / (v3.x - v0.x), 0.0f, 1.0f);
*value = v0.y + (v3.y - v0.y) * s;
}
}
void AnimData::interpValue(F32 t, U32 offset, const char** value) const
{
if (input.size() == 0)
*value = "";
else if (input.size() == 1)
*value = output.getStringValue(0);
else
{
// clamp time to valid range
F32 curveStart = input.getFloatValue(0);
F32 curveEnd = input.getFloatValue(input.size()-1);
t = mClampF(t, curveStart, curveEnd);
// find the index of the input keyframe BEFORE 't'
S32 index;
for (index = 0; index < input.size()-2; index++) {
if (input.getFloatValue(index + 1) > t)
break;
}
// String values only support STEP interpolation, so just get the
// value at the input keyframe
*value = output.getStringValue(index);
}
}
//------------------------------------------------------------------------------
// Collada document conditioners
static void conditioner_fixupTextureSIDs(domCOLLADA* root)
{
for (S32 iLib = 0; iLib < root->getLibrary_effects_array().getCount(); iLib++) {
domLibrary_effects* lib = root->getLibrary_effects_array()[iLib];
for (S32 iEffect = 0; iEffect < lib->getEffect_array().getCount(); iEffect++) {
domEffect* effect = lib->getEffect_array()[iEffect];
const domCommon_color_or_texture_type_complexType* diffuse = findEffectDiffuse(effect);
if (!diffuse || !diffuse->getTexture())
continue;
// Resolve the SID => if it is an <image>, add <sampler2D> and
// <surface> elements to conform to the Collada spec.
const char *image_sid = diffuse->getTexture()->getTexture();
daeSIDResolver resolver(effect, image_sid);
if (!daeSafeCast<domImage>(resolver.getElement()))
continue;
daeErrorHandler::get()->handleWarning(avar("Fixup %s <diffuse>.<texture> "
"pointing at <image> instead of <sampler2D>", effect->getID()));
// Generate SIDs for the new sampler2D and surface elements
std::string sampler_sid(std::string(image_sid) + "-sampler");
std::string surface_sid(std::string(image_sid) + "-surface");
domProfile_COMMON* profile = const_cast<domProfile_COMMON*>(findEffectCommonProfile(effect));
// Create <newparam>.<sampler2D>.<source>
{
CREATE_ELEMENT(profile, newparam, domCommon_newparam_type)
CREATE_ELEMENT(newparam, sampler2D, domFx_sampler2D_common)
CREATE_ELEMENT(sampler2D, source, domFx_sampler2D_common_complexType::domSource)
newparam->setSid(sampler_sid.c_str());
source->setValue(surface_sid.c_str());
}
// Create <newparam>.<surface>.<init_from>
{
CREATE_ELEMENT(profile, newparam, domCommon_newparam_type)
CREATE_ELEMENT(newparam, surface, domFx_surface_common)
CREATE_ELEMENT(surface, init_from, domFx_surface_init_from_common)
CREATE_ELEMENT(surface, format, domFx_surface_common_complexType::domFormat)
newparam->setSid(surface_sid.c_str());
surface->setType(FX_SURFACE_TYPE_ENUM_2D);
format->setValue("A8R8G8B8");
init_from->setValue(image_sid);
}
// Store sampler2D sid in the <diffuse>.<texture> "texture" attribute
diffuse->getTexture()->setTexture(sampler_sid.c_str());
}
}
}
static void conditioner_fixupImageURIs(domCOLLADA* root)
{
for (S32 iLib = 0; iLib < root->getLibrary_images_array().getCount(); iLib++) {
domLibrary_images* lib = root->getLibrary_images_array()[iLib];
for (S32 iImage = 0; iImage < lib->getImage_array().getCount(); iImage++) {
domImage* image = lib->getImage_array()[iImage];
if (image->getInit_from()) {
xsAnyURI& uri = image->getInit_from()->getValue();
// Replace '\' with '/'
if (uri.originalStr().find("\\") != std::string::npos) {
daeErrorHandler::get()->handleWarning(avar("Fixup invalid URI "
"in %s: \"%s\"", image->getID(), uri.originalStr().c_str()));
std::string str(uri.originalStr());
std::replace(str.begin(), str.end(), '\\', '/');
uri.set(str);
}
// Detect file://texture.jpg => this is an invalid URI and will
// not be parsed correctly
if (uri.scheme() == "file" &&
uri.pathFile().empty() &&
!uri.authority().empty()) {
daeErrorHandler::get()->handleWarning(avar("Fixup invalid URI "
"in %s: \"%s\"", image->getID(), uri.originalStr().c_str()));
uri.set(uri.authority());
}
}
}
}
}
static void conditioner_fixupTransparency(domCOLLADA* root)
{
// Transparency is another example of something simple made complicated by
// Collada. There are two (optional) elements that determine transparency:
//
// <transparent>: a color
// <transparency>: a percentage applied to the color values
//
// Additionally, <transparent> has an optional "opaque" attribute that changes
// the way transparency is determined. If set to A_ONE (the default), only the
// alpha value of the transparent color is used, and a value of "1" means fully
// opaque. If set to RGB_ZERO, only the RGB values of transparent are used, and
// a value of "0" means fully opaque.
//
// To further complicate matters, Google Sketchup (all versions) and FeelingSoftware
// ColladaMax (pre 3.03) export materials with the transparency element inverted
// (1-transparency)
// Get the <authoring_tool> string
const char *authoringTool = "";
if (const domAsset* asset = root->getAsset()) {
for (S32 iContrib = 0; iContrib < asset->getContributor_array().getCount(); iContrib++) {
const domAsset::domContributor* contrib = asset->getContributor_array()[iContrib];
if (contrib->getAuthoring_tool()) {
authoringTool = contrib->getAuthoring_tool()->getValue();
break;
}
}
}
// Check for a match with the known problem-tools
bool invertTransparency = false;
const char *toolNames[] = { "FBX COLLADA exporter", "Google SketchUp",
"Illusoft Collada Exporter", "FCollada" };
for (S32 iName = 0; iName < (sizeof(toolNames)/sizeof(toolNames[0])); iName++) {
if (dStrstr(authoringTool, toolNames[iName])) {
invertTransparency = true;
break;
}
}
if (!invertTransparency)
return;
// Invert transparency as required for each effect
for (S32 iLib = 0; iLib < root->getLibrary_effects_array().getCount(); iLib++) {
domLibrary_effects* lib = root->getLibrary_effects_array()[iLib];
for (S32 iEffect = 0; iEffect < lib->getEffect_array().getCount(); iEffect++) {
domEffect* effect = lib->getEffect_array()[iEffect];
// Find the common profile
const domProfile_COMMON* commonProfile = findEffectCommonProfile(effect);
if (!commonProfile)
continue;
domCommon_transparent_type* transparent = 0;
if (commonProfile->getTechnique()->getConstant())
transparent = commonProfile->getTechnique()->getConstant()->getTransparent();
else if (commonProfile->getTechnique()->getLambert())
transparent = commonProfile->getTechnique()->getLambert()->getTransparent();
else if (commonProfile->getTechnique()->getPhong())
transparent = commonProfile->getTechnique()->getPhong()->getTransparent();
else if (commonProfile->getTechnique()->getBlinn())
transparent = commonProfile->getTechnique()->getBlinn()->getTransparent();
if (!transparent)
continue;
// If the shader "opaque" attribute is not specified, set it to
// RGB_ZERO (the opposite of the Collada default), as this is what
// the bad exporter tools seem to assume.
if (!transparent->isAttributeSet("opaque")) {
daeErrorHandler::get()->handleWarning(avar("Setting <transparent> "
"\"opaque\" attribute to RGB_ZERO for %s <effect>", effect->getID()));
transparent->setOpaque(FX_OPAQUE_ENUM_RGB_ZERO);
}
}
}
}
static void conditioner_checkBindShapeMatrix(domCOLLADA* root)
{
for (S32 iLib = 0; iLib < root->getLibrary_controllers_array().getCount(); iLib++) {
domLibrary_controllers* lib = root->getLibrary_controllers_array().get(iLib);
for (S32 iCon = 0; iCon < lib->getController_array().getCount(); iCon++) {
domController* con = lib->getController_array().get(iCon);
if (con->getSkin() && con->getSkin()->getBind_shape_matrix()) {
MatrixF mat = vecToMatrixF<domMatrix>(con->getSkin()->getBind_shape_matrix()->getValue());
if (!mat.fullInverse()) {
daeErrorHandler::get()->handleWarning(avar("<bind_shape_matrix> "
"in %s <controller> is not invertible (may cause problems with "
"skinning)", con->getID()));
}
}
}
}
}
static void conditioner_fixupVertexWeightJoints(domCOLLADA* root)
{
for (S32 iLib = 0; iLib < root->getLibrary_controllers_array().getCount(); iLib++) {
domLibrary_controllers* lib = root->getLibrary_controllers_array().get(iLib);
for (S32 iCon = 0; iCon < lib->getController_array().getCount(); iCon++) {
domController* con = lib->getController_array().get(iCon);
if (con->getSkin() && con->getSkin()->getVertex_weights())
{
domInputLocalOffset_Array& vw_inputs = con->getSkin()->getVertex_weights()->getInput_array();
for (S32 vInput = 0; vInput < vw_inputs.getCount(); vInput++) {
domInputLocalOffset *vw_input = vw_inputs.get(vInput);
if (dStrEqual(vw_input->getSemantic(), "JOINT")) {
// Check if this input points at a float array (bad)
domSource* vw_source = daeSafeCast<domSource>(vw_input->getSource().getElement());
if (vw_source->getFloat_array()) {
// Copy the value from the <joints> JOINTS input instead
domInputLocal_Array& joint_inputs = con->getSkin()->getJoints()->getInput_array();
for (S32 jInput = 0; jInput < joint_inputs.getCount(); jInput++) {
domInputLocal *joint_input = joint_inputs.get(jInput);
if (dStrEqual(joint_input->getSemantic(), "JOINT")) {
vw_input->setSource(joint_input->getSource());
break;
}
}
}
}
}
}
}
}
}
static void conditioner_createDefaultClip(domCOLLADA* root)
{
// Check if the document has any <animation_clip>s
for (S32 iLib = 0; iLib < root->getLibrary_animation_clips_array().getCount(); iLib++) {
if (root->getLibrary_animation_clips_array()[iLib]->getAnimation_clip_array().getCount())
return;
}
// Get all top-level <animation>s into an array
domAnimation_Array animations;
for (S32 iAnimLib = 0; iAnimLib < root->getLibrary_animations_array().getCount(); iAnimLib++) {
const domLibrary_animations* libraryAnims = root->getLibrary_animations_array()[iAnimLib];
for (S32 iAnim = 0; iAnim < libraryAnims->getAnimation_array().getCount(); iAnim++)
animations.append(libraryAnims->getAnimation_array()[iAnim]);
}
if (!animations.getCount())
return;
daeErrorHandler::get()->handleWarning("Creating cyclic animation clip to "
"hold all animations");
// Get animation_clip library (create one if necessary)
if (!root->getLibrary_animation_clips_array().getCount()) {
root->createAndPlace("library_animation_clips");
}
domLibrary_animation_clips* libraryClips = root->getLibrary_animation_clips_array()[0];
// Create new animation_clip for the default sequence
CREATE_ELEMENT(libraryClips, animation_clip, domAnimation_clip)
animation_clip->setName("ambient");
animation_clip->setId("dummy_ambient_clip");
animation_clip->setStart(0);
animation_clip->setEnd(0);
// Add all top_level animations to the clip (sub-animations will be included
// when the clip is procesed)
for (S32 iAnim = 0; iAnim < animations.getCount(); iAnim++) {
if (!animations[iAnim]->getId())
animations[iAnim]->setId(avar("dummy-animation-id%d", iAnim));
CREATE_ELEMENT(animation_clip, instance_animation, domInstanceWithExtra)
std::string url(std::string("#") + animations[iAnim]->getId());
instance_animation->setUrl(url.c_str());
}
// Add the 'Torque' profile to specify the 'Cyclic' flag
CREATE_ELEMENT(animation_clip, extra, domExtra)
CREATE_ELEMENT(extra, technique, domTechnique)
CREATE_ELEMENT(technique, any, domAny)
technique->setProfile("Torque");
any->setElementName("cyclic");
any->setValue("1");
}
static void conditioner_fixupAnimation(domAnimation* anim)
{
S32 visibilityLen = dStrlen("/visibility");
for (S32 iChannel = 0; iChannel < anim->getChannel_array().getCount(); iChannel++) {
// Get the animation elements: <channel>, <sampler>
domChannel* channel = anim->getChannel_array()[iChannel];
domSampler* sampler = daeSafeCast<domSampler>(channel->getSource().getElement());
if (!sampler)
continue;
/*
// If using a spline interpolation type but no tangents are specified,
// fall back to LINEAR interpolation.
bool isSpline = false;
bool foundInTangent = false;
bool foundOutTangent = false;
for (int iInput = 0; iInput < sampler->getInput_array().getCount(); iInput++) {
const char *semantic = sampler->getInput_array()[iInput]->getSemantic();
if (dStrEqual(semantic, "INTERPOLATION")) {
if (
}
if (dStrEqual(semantic, "IN_TANGENT"))
foundInTangent = true;
if (dStrEqual(semantic, "OUT_TANGENT"))
foundOutTangent = true;
}
if (isSpline && (!foundInTangent || !foundOutTangent)) {
daeErrorHandler::get()->handleWarning(avar("%s type interpolation "
"specified for %s, but IN/OUT TANGENTS are not provided. Using "
"LINEAR interpolation instead.");
}
*/
// Find the animation channel target
daeSIDResolver resolver(channel, channel->getTarget());
daeElement* target = resolver.getElement();
if (!target) {
// Some exporters generate visibility animations but don't add the
// FCOLLADA extension, so the target doesn't actually exist! Detect
// this situation and add the extension manually so the animation
// still works.
if (dStrEndsWith(channel->getTarget(), "/visibility")) {
// Get parent SID string
char *parentSID = dStrdup(channel->getTarget());
parentSID[dStrlen(parentSID) - visibilityLen] = '\0';
// Find the parent element (should be a <node>)
daeSIDResolver parentResolver(channel, parentSID);
daeElement* parent = parentResolver.getElement();
delete [] parentSID;
if (parent && (parent->getElementType() == COLLADA_TYPE::NODE)) {
// Create the FCOLLADA extension
daeErrorHandler::get()->handleWarning(avar("Creating missing "
"visibility animation target: %s", channel->getTarget()));
// Check if the <visibility> element exists but is missing the SID
daeElement* vis = parent->getDescendant("visibility");
if (vis)
{
vis->setAttribute("sid", "visibility");
}
else
{
CREATE_ELEMENT(parent, extra, domExtra)
CREATE_ELEMENT(extra, technique, domTechnique)
CREATE_ELEMENT(technique, any, domAny)
technique->setProfile("FCOLLADA");
any->setElementName("visibility");
any->setAttribute("sid", "visibility");
any->setValue(""); // real initial value will be set when animation is processed in ColladaShapeLoader::processAnimation
}
}
}
}
}
// Process child animations
for (S32 iAnim = 0; iAnim < anim->getAnimation_array().getCount(); iAnim++)
conditioner_fixupAnimation(anim->getAnimation_array()[iAnim]);
}
/// Apply the set of model conditioners
void ColladaUtils::applyConditioners(domCOLLADA* root)
{
//--------------------------------------------------------------------------
// The built-in MAX FBX exporter specifies an <image> SID in the <texture>
// "texture" attribute instead of a <newparam> SID. Detect and fix this.
conditioner_fixupTextureSIDs(root);
//--------------------------------------------------------------------------
// The built-in MAX FBX exporter also generates invalid URI paths in the
// <image>.<init_from> tag, so fix that up too.
conditioner_fixupImageURIs(root);
//--------------------------------------------------------------------------
// Many exporters get transparency backwards. Check if the model was exported
// by one with a known issue and correct it.
conditioner_fixupTransparency(root);
//--------------------------------------------------------------------------
// Some exporters (AutoDesk) generate invalid bind_shape matrices. Warn if
// the bind_shape_matrix is not invertible.
conditioner_checkBindShapeMatrix(root);
//--------------------------------------------------------------------------
// The PoserPro exporter points the <vertex_weights> JOINT input to the
// inverse bind matrices instead of the joint names array. Detect and fix it.
conditioner_fixupVertexWeightJoints(root);
//--------------------------------------------------------------------------
// If the model contains <animation>s but no <animation_clip>s, just put all
// top level animations into a single clip.
conditioner_createDefaultClip(root);
//--------------------------------------------------------------------------
// Apply some animation fixups:
// 1) Some exporters (eg. Blender) generate "BEZIER" type animation curves,
// but do not specify the IN and OUT tangent data arrays. Detect this and
// fall back to LINEAR interpolation.
// 2) Some exporters generate visibility animations but don't add the FCOLLADA
// extension, so the target doesn't actually exist! Detect this situation
// and add the extension manually so the animation still works.
for (S32 iLib = 0; iLib < root->getLibrary_animations_array().getCount(); iLib++) {
const domLibrary_animations* lib = root->getLibrary_animations_array()[iLib];
for (S32 iAnim = 0; iAnim < lib->getAnimation_array().getCount(); iAnim++)
conditioner_fixupAnimation(lib->getAnimation_array()[iAnim]);
}
}
Torque::Path ColladaUtils::findTexture(const Torque::Path& diffuseMap)
{
Vector<Torque::Path> foundPaths;
GBitmap::sFindFiles(diffuseMap, &foundPaths);
if (foundPaths.size() > 0)
return Torque::Path(foundPaths[0]);
// If unable to load texture in current directory
// look in the parent directory. But never look in the root.
Torque::Path newPath(diffuseMap);
String filePath = newPath.getPath();
String::SizeType slash = filePath.find('/', filePath.length(), String::Right);
if (slash != String::NPos)
{
slash = filePath.find('/', filePath.length(), String::Right);
if (slash != String::NPos)
{
String truncPath = filePath.substr(0, slash);
newPath.setPath(truncPath);
return findTexture(newPath);
}
}
return String::EmptyString;
}
void ColladaUtils::exportColladaHeader(tinyxml2::XMLElement* rootNode)
{
tinyxml2::XMLDocument* doc = rootNode->GetDocument();
tinyxml2::XMLElement* assetNode = doc->NewElement("asset");
rootNode->LinkEndChild(assetNode);
tinyxml2::XMLElement* contributorNode = doc->NewElement("contributor");
assetNode->LinkEndChild(contributorNode);
tinyxml2::XMLElement* authorNode = doc->NewElement("author");
contributorNode->LinkEndChild(authorNode);
tinyxml2::XMLText* authorNodeText = doc->NewText("Torque3D MIT User");
authorNode->LinkEndChild(authorNodeText);
tinyxml2::XMLElement* authoringToolNode = doc->NewElement("authoring_tool");
contributorNode->LinkEndChild(authoringToolNode);
tinyxml2::XMLText* authorText = doc->NewText(avar("%s %s Object Exporter", getEngineProductString(), getVersionString()));
authoringToolNode->LinkEndChild(authorText);
//tinyxml2::XMLElement* commentsNode = doc->NewElement("comments");
//contributorNode->LinkEndChild(commentsNode);
// Get the current time
Platform::LocalTime lt;
Platform::getLocalTime(lt);
String localTime = Platform::localTimeToString(lt);
localTime.replace('\t', ' ');
tinyxml2::XMLElement* createdNode = doc->NewElement("created");
assetNode->LinkEndChild(createdNode);
tinyxml2::XMLText* createdText = doc->NewText(avar("%s", localTime.c_str()));
createdNode->LinkEndChild(createdText);
tinyxml2::XMLElement* modifiedNode = doc->NewElement("modified");
assetNode->LinkEndChild(modifiedNode);
tinyxml2::XMLText* modifiedText = doc->NewText(avar("%s", localTime.c_str()));
modifiedNode->LinkEndChild(modifiedText);
//tinyxml2::XMLElement* revisionNode = doc->NewElement("revision");
//assetNode->LinkEndChild(revisionNode);
//tinyxml2::XMLElement* titleNode = doc->NewElement("title");
//assetNode->LinkEndChild(titleNode);
//tinyxml2::XMLElement* subjectNode = doc->NewElement("subject");
//assetNode->LinkEndChild(subjectNode);
//tinyxml2::XMLElement* keywordsNode = doc->NewElement("keywords");
//assetNode->LinkEndChild(keywordsNode);
// Torque uses Z_UP with 1 unit equal to 1 meter by default
tinyxml2::XMLElement* unitNode = doc->NewElement("unit");
assetNode->LinkEndChild(unitNode);
unitNode->SetAttribute("name", "meter");
unitNode->SetAttribute("meter", "1");
tinyxml2::XMLElement* axisNode = doc->NewElement("up_axis");
assetNode->LinkEndChild(axisNode);
tinyxml2::XMLText* axisText = doc->NewText("Z_UP");
axisNode->LinkEndChild(axisText);
}
void ColladaUtils::exportColladaMaterials(tinyxml2::XMLElement* rootNode, const OptimizedPolyList& mesh, Vector<String>& matNames, const Torque::Path& colladaFile)
{
tinyxml2::XMLDocument* doc = rootNode->GetDocument();
// First the image library
tinyxml2::XMLElement* imgLibNode = doc->NewElement("library_images");
rootNode->LinkEndChild(imgLibNode);
for (U32 i = 0; i < mesh.mMaterialList.size(); i++)
{
BaseMatInstance* baseInst = mesh.mMaterialList[i];
matNames.push_back(String::ToString("Material%d", i));
Material* mat = dynamic_cast<Material*>(baseInst->getMaterial());
if (!mat)
continue;
String diffuseMap;
if (mat->getName() && mat->getName()[0])
matNames.last() = mat->mMapTo;
// Handle an auto-generated "Default Material" specially
if (mat->isAutoGenerated())
{
Torque::Path diffusePath;
if (mat->getDiffuseMap(0))
diffusePath = Torque::Path(mat->getDiffuseMapAsset(0)->getImageFile());
else
diffusePath = String("warningMat");
matNames.last() = diffusePath.getFileName();
diffuseMap += diffusePath.getFullFileName();
}
else
{
if (mat->getDiffuseMap(0))
diffuseMap += Torque::Path(mat->getDiffuseMapAsset(0)->getImageFile());
else
diffuseMap += "warningMat";
}
Torque::Path diffusePath = findTexture(colladaFile.getPath() + "/" + diffuseMap);
// If we didn't get a path
if (diffusePath.getFullPath().isNotEmpty())
diffuseMap = Torque::Path::MakeRelativePath(diffusePath, colladaFile);
tinyxml2::XMLElement* imageNode = doc->NewElement("image");
imgLibNode->LinkEndChild(imageNode);
imageNode->SetAttribute("id", avar("%s", matNames.last().c_str()));
imageNode->SetAttribute("name", avar("%s", matNames.last().c_str()));
tinyxml2::XMLElement* initNode = doc->NewElement("init_from");
imageNode->LinkEndChild(initNode);
tinyxml2::XMLText* initText = doc->NewText(avar("file://%s", diffuseMap.c_str())); // "the file://" is needed to load the texture in some old apps (ex: 3ds Max 2009)
initNode->LinkEndChild(initText);
}
// Next the effects library
tinyxml2::XMLElement* effectLibNode = doc->NewElement("library_effects");
rootNode->LinkEndChild(effectLibNode);
for (U32 i = 0; i < mesh.mMaterialList.size(); i++)
{
BaseMatInstance* baseInst = mesh.mMaterialList[i];
Material* mat = dynamic_cast<Material*>(baseInst->getMaterial());
if (!mat)
continue;
tinyxml2::XMLElement* effectNode = doc->NewElement("effect");
effectLibNode->LinkEndChild(effectNode);
effectNode->SetAttribute("id", avar("%s-effect", matNames[i].c_str()));
effectNode->SetAttribute("name", avar("%s-effect", matNames[i].c_str()));
tinyxml2::XMLElement* profileNode = doc->NewElement("profile_COMMON");
effectNode->LinkEndChild(profileNode);
// ---------------------------
tinyxml2::XMLElement* newParamNode = doc->NewElement("newparam");
profileNode->LinkEndChild(newParamNode);
newParamNode->SetAttribute("sid", avar("%s-surface", matNames[i].c_str()));
tinyxml2::XMLElement* surfaceNode = doc->NewElement("surface");
newParamNode->LinkEndChild(surfaceNode);
surfaceNode->SetAttribute("type", "2D");
tinyxml2::XMLElement* initNode2 = doc->NewElement("init_from");
surfaceNode->LinkEndChild(initNode2);
tinyxml2::XMLText* init2Text = doc->NewText(avar("%s", matNames[i].c_str()));
initNode2->LinkEndChild(init2Text);
tinyxml2::XMLElement* formatNode = doc->NewElement("format");
surfaceNode->LinkEndChild(formatNode);
tinyxml2::XMLText* formatText = doc->NewText("A8R8G8B8");
formatNode->LinkEndChild(formatText);
// ---------------------------
tinyxml2::XMLElement* newParam2Node = doc->NewElement("newparam");
profileNode->LinkEndChild(newParam2Node);
newParam2Node->SetAttribute("sid", avar("%s-sampler", matNames[i].c_str()));
tinyxml2::XMLElement* sampler2DNode = doc->NewElement("sampler2D");
newParam2Node->LinkEndChild(sampler2DNode);
tinyxml2::XMLElement* sourceSampler2DNode = doc->NewElement("source");
sampler2DNode->LinkEndChild(sourceSampler2DNode);
tinyxml2::XMLText* sourceSampler2DText = doc->NewText(avar("%s-surface", matNames[i].c_str()));
sourceSampler2DNode->LinkEndChild(sourceSampler2DText);
// ---------------------------
tinyxml2::XMLElement* techniqueNode = doc->NewElement("technique");
profileNode->LinkEndChild(techniqueNode);
techniqueNode->SetAttribute("sid", "common");
tinyxml2::XMLElement* blinnNode = doc->NewElement("blinn");
techniqueNode->LinkEndChild(blinnNode);
// ---------------------------
tinyxml2::XMLElement* emissionNode = doc->NewElement("emission");
blinnNode->LinkEndChild(emissionNode);
tinyxml2::XMLElement* colorEmissionNode = doc->NewElement("color");
emissionNode->LinkEndChild(colorEmissionNode);
colorEmissionNode->SetAttribute("sid", "emission");
tinyxml2::XMLText* colorEmissionNodeText = doc->NewText("0.0 0.0 0.0 1.0");
colorEmissionNode->LinkEndChild(colorEmissionNodeText);
// ---------------------------
tinyxml2::XMLElement* ambientNode = doc->NewElement("ambient");
blinnNode->LinkEndChild(ambientNode);
tinyxml2::XMLElement* colorAmbientNode = doc->NewElement("color");
ambientNode->LinkEndChild(colorAmbientNode);
colorAmbientNode->SetAttribute("sid", "ambient");
tinyxml2::XMLText* colorAmbientNodeText = doc->NewText("0.0 0.0 0.0 1.0");
colorAmbientNode->LinkEndChild(colorAmbientNodeText);
// ---------------------------
tinyxml2::XMLElement* diffuseNode = doc->NewElement("diffuse");
blinnNode->LinkEndChild(diffuseNode);
tinyxml2::XMLElement* textureDiffuseNode = doc->NewElement("texture");
diffuseNode->LinkEndChild(textureDiffuseNode);
textureDiffuseNode->SetAttribute("texture", avar("%s-sampler", matNames[i].c_str()));
textureDiffuseNode->SetAttribute("texcoord", "UVMap");
// Extra info useful for getting the texture to show up correctly in MAYA and 3DS Max
tinyxml2::XMLElement* extraNode = doc->NewElement("extra");
textureDiffuseNode->LinkEndChild(extraNode);
tinyxml2::XMLElement* extraTechNode = doc->NewElement("technique");
extraNode->LinkEndChild(extraTechNode);
extraTechNode->SetAttribute("profile", "MAYA");
tinyxml2::XMLElement* extraWrapUNode = doc->NewElement("wrapU");
extraTechNode->LinkEndChild(extraWrapUNode);
extraWrapUNode->SetAttribute("sid", "wrapU0");
tinyxml2::XMLText* extraWrapUText = doc->NewText("TRUE");
extraWrapUNode->LinkEndChild(extraWrapUText);
tinyxml2::XMLElement* extraWrapVNode = doc->NewElement("wrapV");
extraTechNode->LinkEndChild(extraWrapVNode);
extraWrapVNode->SetAttribute("sid", "wrapV0");
tinyxml2::XMLText* extraWrapVText = doc->NewText("TRUE");
extraWrapVNode->LinkEndChild(extraWrapVText);
tinyxml2::XMLElement* extraBlendNode = doc->NewElement("blend_mode");
extraTechNode->LinkEndChild(extraBlendNode);
tinyxml2::XMLText* extraBlendText = doc->NewText("ADD");
extraBlendNode->LinkEndChild(extraBlendText);
// ---------------------------
tinyxml2::XMLElement* specularNode = doc->NewElement("specular");
blinnNode->LinkEndChild(specularNode);
tinyxml2::XMLElement* colorSpecularNode = doc->NewElement("color");
specularNode->LinkEndChild(colorSpecularNode);
colorSpecularNode->SetAttribute("sid", "specular");
tinyxml2::XMLText* colorSpecularNodeText = doc->NewText("0.5 0.5 0.5 1.0");
colorSpecularNode->LinkEndChild(colorSpecularNodeText);
// ---------------------------
tinyxml2::XMLElement* shininessNode = doc->NewElement("shininess");
blinnNode->LinkEndChild(shininessNode);
tinyxml2::XMLElement* colorShininessNode = doc->NewElement("float");
shininessNode->LinkEndChild(colorShininessNode);
colorShininessNode->SetAttribute("sid", "shininess");
tinyxml2::XMLText* colorShininessNodeText = doc->NewText("1.0");
colorShininessNode->LinkEndChild(colorShininessNodeText);
// ---------------------------
tinyxml2::XMLElement* reflectiveNode = doc->NewElement("reflective");
blinnNode->LinkEndChild(reflectiveNode);
tinyxml2::XMLElement* colorReflectiveNode = doc->NewElement("color");
reflectiveNode->LinkEndChild(colorReflectiveNode);
colorReflectiveNode->SetAttribute("sid", "reflective");
tinyxml2::XMLText* colorReflectiveNodeText = doc->NewText("0.0 0.0 0.0 1.0");
colorReflectiveNode->LinkEndChild(colorReflectiveNodeText);
// ---------------------------
tinyxml2::XMLElement* reflectivityNode = doc->NewElement("reflectivity");
blinnNode->LinkEndChild(reflectivityNode);
tinyxml2::XMLElement* floatReflectivityNode = doc->NewElement("float");
reflectivityNode->LinkEndChild(floatReflectivityNode);
floatReflectivityNode->SetAttribute("sid", "reflectivity");
tinyxml2::XMLText* floatReflectivityText = doc->NewText("0.5");
floatReflectivityNode->LinkEndChild(floatReflectivityText);
// ---------------------------
tinyxml2::XMLElement* transparentNode = doc->NewElement("transparent");
blinnNode->LinkEndChild(transparentNode);
transparentNode->SetAttribute("opaque", "RGB_ZERO");
tinyxml2::XMLElement* colorTransparentNode = doc->NewElement("color");
transparentNode->LinkEndChild(colorTransparentNode);
colorTransparentNode->SetAttribute("sid", "transparent");
tinyxml2::XMLText* colorTransparentNodeText = doc->NewText("0.0 0.0 0.0 1.0");
colorTransparentNode->LinkEndChild(colorTransparentNodeText);
// ---------------------------
tinyxml2::XMLElement* transparencyNode = doc->NewElement("transparency");
blinnNode->LinkEndChild(transparencyNode);
tinyxml2::XMLElement* floatTransparencyNode = doc->NewElement("float");
transparencyNode->LinkEndChild(floatTransparencyNode);
floatTransparencyNode->SetAttribute("sid", "transparency");
tinyxml2::XMLText* floatTransparencyText = doc->NewText("0.0");
floatTransparencyNode->LinkEndChild(floatTransparencyText);
// ---------------------------
tinyxml2::XMLElement* refractionNode = doc->NewElement("index_of_refraction");
blinnNode->LinkEndChild(refractionNode);
tinyxml2::XMLElement* colorRefractionNode = doc->NewElement("float");
refractionNode->LinkEndChild(colorRefractionNode);
colorRefractionNode->SetAttribute("sid", "index_of_refraction");
tinyxml2::XMLText* colorRefractionNodeText = doc->NewText("1");
colorRefractionNode->LinkEndChild(colorRefractionNodeText);
}
// Finally the material library
tinyxml2::XMLElement* matLibNode = doc->NewElement("library_materials");
rootNode->LinkEndChild(matLibNode);
for (U32 i = 0; i < mesh.mMaterialList.size(); i++)
{
BaseMatInstance* baseInst = mesh.mMaterialList[i];
Material* mat = dynamic_cast<Material*>(baseInst->getMaterial());
if (!mat)
continue;
tinyxml2::XMLElement* materialNode = doc->NewElement("material");
matLibNode->LinkEndChild(materialNode);
materialNode->SetAttribute("id", avar("%s-material", matNames[i].c_str()));
materialNode->SetAttribute("name", matNames[i].c_str());
tinyxml2::XMLElement* instEffectNode = doc->NewElement("instance_effect");
materialNode->LinkEndChild(instEffectNode);
instEffectNode->SetAttribute("url", avar("#%s-effect", matNames[i].c_str()));
}
}
void ColladaUtils::exportColladaMaterials(tinyxml2::XMLElement* rootNode, const ExportData& exportData, const Torque::Path& colladaFile)
{
tinyxml2::XMLDocument* doc = rootNode->GetDocument();
// First the image library
tinyxml2::XMLElement* imgLibNode = doc->NewElement("library_images");
rootNode->LinkEndChild(imgLibNode);
Vector<String> matNames;
for (U32 i = 0; i < exportData.materials.size(); i++)
{
BaseMatInstance* baseInst = exportData.materials[i];
matNames.push_back(String::ToString("Material%d", i));
Material* mat = dynamic_cast<Material*>(baseInst->getMaterial());
if (!mat)
continue;
String diffuseMap;
if (mat->getName() && mat->getName()[0])
matNames.last() = mat->mMapTo;
// Handle an auto-generated "Default Material" specially
if (mat->isAutoGenerated())
{
Torque::Path diffusePath;
if (mat->getDiffuseMap(0))
diffusePath = Torque::Path(mat->getDiffuseMapAsset(0)->getImageFile());
else
diffusePath = String("warningMat");
matNames.last() = diffusePath.getFileName();
diffuseMap += diffusePath.getFullFileName();
}
else
{
if (mat->getDiffuseMap(0))
diffuseMap += Torque::Path(mat->getDiffuseMapAsset(0)->getImageFile());
else
diffuseMap += "warningMat";
}
Torque::Path diffusePath = findTexture(colladaFile.getPath() + "/" + diffuseMap);
// If we didn't get a path
if (diffusePath.getFullPath().isNotEmpty())
diffuseMap = Torque::Path::MakeRelativePath(diffusePath, colladaFile);
tinyxml2::XMLElement* imageNode = doc->NewElement("image");
imgLibNode->LinkEndChild(imageNode);
imageNode->SetAttribute("id", avar("%s", matNames.last().c_str()));
imageNode->SetAttribute("name", avar("%s", matNames.last().c_str()));
tinyxml2::XMLElement* initNode = doc->NewElement("init_from");
imageNode->LinkEndChild(initNode);
tinyxml2::XMLText* initText = doc->NewText(avar("file://%s", diffuseMap.c_str())); // "the file://" is needed to load the texture in some old apps (ex: 3ds Max 2009)
initNode->LinkEndChild(initText);
}
// Next the effects library
tinyxml2::XMLElement* effectLibNode = doc->NewElement("library_effects");
rootNode->LinkEndChild(effectLibNode);
for (U32 i = 0; i < exportData.materials.size(); i++)
{
BaseMatInstance* baseInst = exportData.materials[i];
Material* mat = dynamic_cast<Material*>(baseInst->getMaterial());
if (!mat)
continue;
tinyxml2::XMLElement* effectNode = doc->NewElement("effect");
effectLibNode->LinkEndChild(effectNode);
effectNode->SetAttribute("id", avar("%s-effect", matNames[i].c_str()));
effectNode->SetAttribute("name", avar("%s-effect", matNames[i].c_str()));
tinyxml2::XMLElement* profileNode = doc->NewElement("profile_COMMON");
effectNode->LinkEndChild(profileNode);
// ---------------------------
tinyxml2::XMLElement* newParamNode = doc->NewElement("newparam");
profileNode->LinkEndChild(newParamNode);
newParamNode->SetAttribute("sid", avar("%s-surface", matNames[i].c_str()));
tinyxml2::XMLElement* surfaceNode = doc->NewElement("surface");
newParamNode->LinkEndChild(surfaceNode);
surfaceNode->SetAttribute("type", "2D");
tinyxml2::XMLElement* initNode2 = doc->NewElement("init_from");
surfaceNode->LinkEndChild(initNode2);
tinyxml2::XMLText* init2Text = doc->NewText(avar("%s", matNames[i].c_str()));
initNode2->LinkEndChild(init2Text);
tinyxml2::XMLElement* formatNode = doc->NewElement("format");
surfaceNode->LinkEndChild(formatNode);
tinyxml2::XMLText* formatText = doc->NewText("A8R8G8B8");
formatNode->LinkEndChild(formatText);
// ---------------------------
tinyxml2::XMLElement* newParam2Node = doc->NewElement("newparam");
profileNode->LinkEndChild(newParam2Node);
newParam2Node->SetAttribute("sid", avar("%s-sampler", matNames[i].c_str()));
tinyxml2::XMLElement* sampler2DNode = doc->NewElement("sampler2D");
newParam2Node->LinkEndChild(sampler2DNode);
tinyxml2::XMLElement* sourceSampler2DNode = doc->NewElement("source");
sampler2DNode->LinkEndChild(sourceSampler2DNode);
tinyxml2::XMLText* sourceSampler2DText = doc->NewText(avar("%s-surface", matNames[i].c_str()));
sourceSampler2DNode->LinkEndChild(sourceSampler2DText);
// ---------------------------
tinyxml2::XMLElement* techniqueNode = doc->NewElement("technique");
profileNode->LinkEndChild(techniqueNode);
techniqueNode->SetAttribute("sid", "common");
tinyxml2::XMLElement* blinnNode = doc->NewElement("blinn");
techniqueNode->LinkEndChild(blinnNode);
// ---------------------------
tinyxml2::XMLElement* emissionNode = doc->NewElement("emission");
blinnNode->LinkEndChild(emissionNode);
tinyxml2::XMLElement* colorEmissionNode = doc->NewElement("color");
emissionNode->LinkEndChild(colorEmissionNode);
colorEmissionNode->SetAttribute("sid", "emission");
tinyxml2::XMLText* colorEmissionNodeText = doc->NewText("0.0 0.0 0.0 1.0");
colorEmissionNode->LinkEndChild(colorEmissionNodeText);
// ---------------------------
tinyxml2::XMLElement* ambientNode = doc->NewElement("ambient");
blinnNode->LinkEndChild(ambientNode);
tinyxml2::XMLElement* colorAmbientNode = doc->NewElement("color");
ambientNode->LinkEndChild(colorAmbientNode);
colorAmbientNode->SetAttribute("sid", "ambient");
tinyxml2::XMLText* colorAmbientNodeText = doc->NewText("0.0 0.0 0.0 1.0");
colorAmbientNode->LinkEndChild(colorAmbientNodeText);
// ---------------------------
tinyxml2::XMLElement* diffuseNode = doc->NewElement("diffuse");
blinnNode->LinkEndChild(diffuseNode);
tinyxml2::XMLElement* textureDiffuseNode = doc->NewElement("texture");
diffuseNode->LinkEndChild(textureDiffuseNode);
textureDiffuseNode->SetAttribute("texture", avar("%s-sampler", matNames[i].c_str()));
textureDiffuseNode->SetAttribute("texcoord", "UVMap");
// Extra info useful for getting the texture to show up correctly in MAYA and 3DS Max
tinyxml2::XMLElement* extraNode = doc->NewElement("extra");
textureDiffuseNode->LinkEndChild(extraNode);
tinyxml2::XMLElement* extraTechNode = doc->NewElement("technique");
extraNode->LinkEndChild(extraTechNode);
extraTechNode->SetAttribute("profile", "MAYA");
tinyxml2::XMLElement* extraWrapUNode = doc->NewElement("wrapU");
extraTechNode->LinkEndChild(extraWrapUNode);
extraWrapUNode->SetAttribute("sid", "wrapU0");
tinyxml2::XMLText* extraWrapUText = doc->NewText("TRUE");
extraWrapUNode->LinkEndChild(extraWrapUText);
tinyxml2::XMLElement* extraWrapVNode = doc->NewElement("wrapV");
extraTechNode->LinkEndChild(extraWrapVNode);
extraWrapVNode->SetAttribute("sid", "wrapV0");
tinyxml2::XMLText* extraWrapVText = doc->NewText("TRUE");
extraWrapVNode->LinkEndChild(extraWrapVText);
tinyxml2::XMLElement* extraBlendNode = doc->NewElement("blend_mode");
extraTechNode->LinkEndChild(extraBlendNode);
tinyxml2::XMLText* extraBlendText = doc->NewText("ADD");
extraBlendNode->LinkEndChild(extraBlendText);
// ---------------------------
tinyxml2::XMLElement* specularNode = doc->NewElement("specular");
blinnNode->LinkEndChild(specularNode);
tinyxml2::XMLElement* colorSpecularNode = doc->NewElement("color");
specularNode->LinkEndChild(colorSpecularNode);
colorSpecularNode->SetAttribute("sid", "specular");
tinyxml2::XMLText* colorSpecularNodeText = doc->NewText("0.5 0.5 0.5 1.0");
colorSpecularNode->LinkEndChild(colorSpecularNodeText);
// ---------------------------
tinyxml2::XMLElement* shininessNode = doc->NewElement("shininess");
blinnNode->LinkEndChild(shininessNode);
tinyxml2::XMLElement* colorShininessNode = doc->NewElement("float");
shininessNode->LinkEndChild(colorShininessNode);
colorShininessNode->SetAttribute("sid", "shininess");
tinyxml2::XMLText* colorShininessNodeText = doc->NewText("1.0");
colorShininessNode->LinkEndChild(colorShininessNodeText);
// ---------------------------
tinyxml2::XMLElement* reflectiveNode = doc->NewElement("reflective");
blinnNode->LinkEndChild(reflectiveNode);
tinyxml2::XMLElement* colorReflectiveNode = doc->NewElement("color");
reflectiveNode->LinkEndChild(colorReflectiveNode);
colorReflectiveNode->SetAttribute("sid", "reflective");
tinyxml2::XMLText* colorReflectiveNodeText = doc->NewText("0.0 0.0 0.0 1.0");
colorReflectiveNode->LinkEndChild(colorReflectiveNodeText);
// ---------------------------
tinyxml2::XMLElement* reflectivityNode = doc->NewElement("reflectivity");
blinnNode->LinkEndChild(reflectivityNode);
tinyxml2::XMLElement* floatReflectivityNode = doc->NewElement("float");
reflectivityNode->LinkEndChild(floatReflectivityNode);
floatReflectivityNode->SetAttribute("sid", "reflectivity");
tinyxml2::XMLText* floatReflectivityText = doc->NewText("0.5");
floatReflectivityNode->LinkEndChild(floatReflectivityText);
// ---------------------------
tinyxml2::XMLElement* transparentNode = doc->NewElement("transparent");
blinnNode->LinkEndChild(transparentNode);
transparentNode->SetAttribute("opaque", "RGB_ZERO");
tinyxml2::XMLElement* colorTransparentNode = doc->NewElement("color");
transparentNode->LinkEndChild(colorTransparentNode);
colorTransparentNode->SetAttribute("sid", "transparent");
tinyxml2::XMLText* colorTransparentNodeText = doc->NewText("0.0 0.0 0.0 1.0");
colorTransparentNode->LinkEndChild(colorTransparentNodeText);
// ---------------------------
tinyxml2::XMLElement* transparencyNode = doc->NewElement("transparency");
blinnNode->LinkEndChild(transparencyNode);
tinyxml2::XMLElement* floatTransparencyNode = doc->NewElement("float");
transparencyNode->LinkEndChild(floatTransparencyNode);
floatTransparencyNode->SetAttribute("sid", "transparency");
tinyxml2::XMLText* floatTransparencyText = doc->NewText("0.0");
floatTransparencyNode->LinkEndChild(floatTransparencyText);
// ---------------------------
tinyxml2::XMLElement* refractionNode = doc->NewElement("index_of_refraction");
blinnNode->LinkEndChild(refractionNode);
tinyxml2::XMLElement* colorRefractionNode = doc->NewElement("float");
refractionNode->LinkEndChild(colorRefractionNode);
colorRefractionNode->SetAttribute("sid", "index_of_refraction");
tinyxml2::XMLText* colorRefractionNodeText = doc->NewText("1");
colorRefractionNode->LinkEndChild(colorRefractionNodeText);
}
// Finally the material library
tinyxml2::XMLElement* matLibNode = doc->NewElement("library_materials");
rootNode->LinkEndChild(matLibNode);
for (U32 i = 0; i < exportData.materials.size(); i++)
{
BaseMatInstance* baseInst = exportData.materials[i];
Material* mat = dynamic_cast<Material*>(baseInst->getMaterial());
if (!mat)
continue;
tinyxml2::XMLElement* materialNode = doc->NewElement("material");
matLibNode->LinkEndChild(materialNode);
materialNode->SetAttribute("id", avar("%s-material", matNames[i].c_str()));
materialNode->SetAttribute("name", matNames[i].c_str());
tinyxml2::XMLElement* instEffectNode = doc->NewElement("instance_effect");
materialNode->LinkEndChild(instEffectNode);
instEffectNode->SetAttribute("url", avar("#%s-effect", matNames[i].c_str()));
}
}
void ColladaUtils::exportColladaTriangles(tinyxml2::XMLElement* meshNode, const OptimizedPolyList& mesh, const String& meshName, const Vector<String>& matNames)
{
tinyxml2::XMLDocument* doc = meshNode->GetDocument();
// Start at -1 so we will export polygons that do not have a material.
for (S32 i = -1; i < matNames.size(); i++)
{
// Calculate the number of triangles that uses this Material
U32 triangleCount = 0;
for (U32 j = 0; j < mesh.mPolyList.size(); j++)
{
const OptimizedPolyList::Poly& poly = mesh.mPolyList[j];
if (poly.material != i)
continue;
if (poly.vertexCount < 3)
continue;
if (poly.type == OptimizedPolyList::TriangleList ||
poly.type == OptimizedPolyList::TriangleFan ||
poly.type == OptimizedPolyList::TriangleStrip)
{
triangleCount += poly.vertexCount - 2;
}
else
AssertISV(false, "ColladaUtils::exportColladaTriangles(): Unknown Poly type!");
}
// Make sure that we are actually using this Material
if (triangleCount == 0)
continue;
tinyxml2::XMLElement* trianglesNode = doc->NewElement("triangles");
meshNode->LinkEndChild(trianglesNode);
trianglesNode->SetAttribute("material", ( i > -1 ) ? avar("%s-material", matNames[i].c_str()) : "" );
trianglesNode->SetAttribute("count", avar("%d", triangleCount));
tinyxml2::XMLElement* trianglesVertInputNode = doc->NewElement("input");
trianglesNode->LinkEndChild(trianglesVertInputNode);
trianglesVertInputNode->SetAttribute("semantic", "VERTEX");
trianglesVertInputNode->SetAttribute("source", avar("#%s-mesh-vertices", meshName.c_str()));
trianglesVertInputNode->SetAttribute("offset", "0");
tinyxml2::XMLElement* trianglesNormalInputNode = doc->NewElement("input");
trianglesNode->LinkEndChild(trianglesNormalInputNode);
trianglesNormalInputNode->SetAttribute("semantic", "NORMAL");
trianglesNormalInputNode->SetAttribute("source", avar("#%s-mesh-normals", meshName.c_str()));
trianglesNormalInputNode->SetAttribute("offset", "1");
tinyxml2::XMLElement* trianglesUV0InputNode = doc->NewElement("input");
trianglesNode->LinkEndChild(trianglesUV0InputNode);
trianglesUV0InputNode->SetAttribute("semantic", "TEXCOORD");
trianglesUV0InputNode->SetAttribute("source", avar("#%s-mesh-map-0", meshName.c_str()));
trianglesUV0InputNode->SetAttribute("offset", "2");
trianglesUV0InputNode->SetAttribute("set", "0");
tinyxml2::XMLElement* polyNode = doc->NewElement("p");
trianglesNode->LinkEndChild(polyNode);
Vector<U32> tempIndices;
tempIndices.reserve(4);
for (U32 j = 0; j < mesh.mPolyList.size(); j++)
{
const OptimizedPolyList::Poly& poly = mesh.mPolyList[j];
if (poly.vertexCount < 3)
continue;
if (poly.material != i)
continue;
tempIndices.setSize(poly.vertexCount);
dMemset(tempIndices.address(), 0, poly.vertexCount);
if (poly.type == OptimizedPolyList::TriangleStrip)
{
tempIndices[0] = 0;
U32 idx = 1;
for (U32 k = 1; k < poly.vertexCount; k += 2)
tempIndices[idx++] = k;
for (U32 k = ((poly.vertexCount - 1) & (~0x1)); k > 0; k -= 2)
tempIndices[idx++] = k;
}
else if (poly.type == OptimizedPolyList::TriangleList ||
poly.type == OptimizedPolyList::TriangleFan)
{
for (U32 k = 0; k < poly.vertexCount; k++)
tempIndices[k] = k;
}
else
AssertISV(false, "ColladaUtils::exportColladaTriangles(): Unknown Poly type!");
const U32& firstIdx = mesh.mIndexList[poly.vertexStart];
const OptimizedPolyList::VertIndex& firstVertIdx = mesh.mVertexList[firstIdx];
for (U32 k = 1; k < poly.vertexCount - 1; k++)
{
const U32& secondIdx = mesh.mIndexList[poly.vertexStart + tempIndices[k]];
const U32& thirdIdx = mesh.mIndexList[poly.vertexStart + tempIndices[k + 1]];
const OptimizedPolyList::VertIndex& secondVertIdx = mesh.mVertexList[secondIdx];
const OptimizedPolyList::VertIndex& thirdVertIdx = mesh.mVertexList[thirdIdx];
// Note the reversed winding on the triangles
const char* tri = avar("%d %d %d %d %d %d %d %d %d ",
thirdVertIdx.vertIdx, thirdVertIdx.normalIdx, thirdVertIdx.uv0Idx,
secondVertIdx.vertIdx, secondVertIdx.normalIdx, secondVertIdx.uv0Idx,
firstVertIdx.vertIdx, firstVertIdx.normalIdx, firstVertIdx.uv0Idx);
tinyxml2::XMLText* triangleText = doc->NewText(tri);
polyNode->LinkEndChild(triangleText);
}
}
}
}
void ColladaUtils::exportColladaTriangles(tinyxml2::XMLElement* meshNode, const ExportData& exportData, const U32 detailLevel, const String& meshName)
{
tinyxml2::XMLDocument* doc = meshNode->GetDocument();
// Calculate the number of triangles that uses this Material
U32 triangleCount = 0;
const ExportData::detailLevel* dl = &exportData.detailLevels[detailLevel];
for (S32 i = 0; i < dl->materialRefList.size(); i++)
{
int matIdx;
dl->materialRefList.tryGetValue(i, matIdx);
BaseMatInstance* baseInst = exportData.materials[matIdx];
Material* mat = dynamic_cast<Material*>(baseInst->getMaterial());
if (!mat)
continue;
String matName;
if (mat->getName() && mat->getName()[0])
matName = mat->mMapTo;
for (U32 j = 0; j < dl->mesh.mPolyList.size(); j++)
{
const OptimizedPolyList::Poly& poly = dl->mesh.mPolyList[j];
if (poly.material != i)
continue;
if (poly.vertexCount < 3)
continue;
if (poly.type == OptimizedPolyList::TriangleList ||
poly.type == OptimizedPolyList::TriangleFan ||
poly.type == OptimizedPolyList::TriangleStrip)
{
triangleCount += poly.vertexCount - 2;
}
else
AssertISV(false, "ColladaUtils::exportColladaTriangles(): Unknown Poly type!");
}
// Make sure that we are actually using this Material
if (triangleCount == 0)
continue;
tinyxml2::XMLElement* trianglesNode = doc->NewElement("triangles");
meshNode->LinkEndChild(trianglesNode);
trianglesNode->SetAttribute("material", (i > -1) ? avar("%s-material", matName.c_str()) : "");
trianglesNode->SetAttribute("count", avar("%d", triangleCount));
tinyxml2::XMLElement* trianglesVertInputNode = doc->NewElement("input");
trianglesNode->LinkEndChild(trianglesVertInputNode);
trianglesVertInputNode->SetAttribute("semantic", "VERTEX");
trianglesVertInputNode->SetAttribute("source", avar("#%s-mesh-vertices", meshName.c_str()));
trianglesVertInputNode->SetAttribute("offset", "0");
tinyxml2::XMLElement* trianglesNormalInputNode = doc->NewElement("input");
trianglesNode->LinkEndChild(trianglesNormalInputNode);
trianglesNormalInputNode->SetAttribute("semantic", "NORMAL");
trianglesNormalInputNode->SetAttribute("source", avar("#%s-mesh-normals", meshName.c_str()));
trianglesNormalInputNode->SetAttribute("offset", "1");
tinyxml2::XMLElement* trianglesUV0InputNode = doc->NewElement("input");
trianglesNode->LinkEndChild(trianglesUV0InputNode);
trianglesUV0InputNode->SetAttribute("semantic", "TEXCOORD");
trianglesUV0InputNode->SetAttribute("source", avar("#%s-mesh-map-0", meshName.c_str()));
trianglesUV0InputNode->SetAttribute("offset", "2");
trianglesUV0InputNode->SetAttribute("set", "0");
tinyxml2::XMLElement* polyNode = doc->NewElement("p");
trianglesNode->LinkEndChild(polyNode);
Vector<U32> tempIndices;
tempIndices.reserve(4);
for (U32 j = 0; j < dl->mesh.mPolyList.size(); j++)
{
const OptimizedPolyList::Poly& poly = dl->mesh.mPolyList[j];
if (poly.vertexCount < 3)
continue;
if (poly.material != i)
continue;
tempIndices.setSize(poly.vertexCount);
dMemset(tempIndices.address(), 0, poly.vertexCount);
if (poly.type == OptimizedPolyList::TriangleStrip)
{
tempIndices[0] = 0;
U32 idx = 1;
for (U32 k = 1; k < poly.vertexCount; k += 2)
tempIndices[idx++] = k;
for (U32 k = ((poly.vertexCount - 1) & (~0x1)); k > 0; k -= 2)
tempIndices[idx++] = k;
}
else if (poly.type == OptimizedPolyList::TriangleList ||
poly.type == OptimizedPolyList::TriangleFan)
{
for (U32 k = 0; k < poly.vertexCount; k++)
tempIndices[k] = k;
}
else
AssertISV(false, "ColladaUtils::exportColladaTriangles(): Unknown Poly type!");
const U32& firstIdx = dl->mesh.mIndexList[poly.vertexStart];
const OptimizedPolyList::VertIndex& firstVertIdx = dl->mesh.mVertexList[firstIdx];
for (U32 k = 1; k < poly.vertexCount - 1; k++)
{
const U32& secondIdx = dl->mesh.mIndexList[poly.vertexStart + tempIndices[k]];
const U32& thirdIdx = dl->mesh.mIndexList[poly.vertexStart + tempIndices[k + 1]];
const OptimizedPolyList::VertIndex& secondVertIdx = dl->mesh.mVertexList[secondIdx];
const OptimizedPolyList::VertIndex& thirdVertIdx = dl->mesh.mVertexList[thirdIdx];
// Note the reversed winding on the triangles
const char* tri = avar("%d %d %d %d %d %d %d %d %d ",
thirdVertIdx.vertIdx, thirdVertIdx.normalIdx, thirdVertIdx.uv0Idx,
secondVertIdx.vertIdx, secondVertIdx.normalIdx, secondVertIdx.uv0Idx,
firstVertIdx.vertIdx, firstVertIdx.normalIdx, firstVertIdx.uv0Idx);
tinyxml2::XMLText* triangleText = doc->NewText(tri);
polyNode->LinkEndChild(triangleText);
}
}
}
}
void ColladaUtils::exportColladaCollisionTriangles(tinyxml2::XMLElement* meshNode, const ExportData& exportData, const U32 collisionIdx)
{
tinyxml2::XMLDocument* doc = meshNode->GetDocument();
// Calculate the number of triangles that uses this Material
U32 triangleCount = 0;
const ExportData::colMesh* col = &exportData.colMeshes[collisionIdx];
String meshName = col->colMeshName;
for (U32 j = 0; j < col->mesh.mPolyList.size(); j++)
{
const OptimizedPolyList::Poly& poly = col->mesh.mPolyList[j];
if (poly.vertexCount < 3)
continue;
if (poly.type == OptimizedPolyList::TriangleList ||
poly.type == OptimizedPolyList::TriangleFan ||
poly.type == OptimizedPolyList::TriangleStrip)
{
triangleCount += poly.vertexCount - 2;
}
else
AssertISV(false, "ColladaUtils::exportColladaCollisionTriangles(): Unknown Poly type!");
}
// Make sure that we are actually using this Material
if (triangleCount == 0)
return;
tinyxml2::XMLElement* trianglesNode = doc->NewElement("triangles");
meshNode->LinkEndChild(trianglesNode);
trianglesNode->SetAttribute("material", "");
trianglesNode->SetAttribute("count", avar("%d", triangleCount));
tinyxml2::XMLElement* trianglesVertInputNode = doc->NewElement("input");
trianglesNode->LinkEndChild(trianglesVertInputNode);
trianglesVertInputNode->SetAttribute("semantic", "VERTEX");
trianglesVertInputNode->SetAttribute("source", avar("#%s-mesh-vertices", meshName.c_str()));
trianglesVertInputNode->SetAttribute("offset", "0");
tinyxml2::XMLElement* trianglesNormalInputNode = doc->NewElement("input");
trianglesNode->LinkEndChild(trianglesNormalInputNode);
trianglesNormalInputNode->SetAttribute("semantic", "NORMAL");
trianglesNormalInputNode->SetAttribute("source", avar("#%s-mesh-normals", meshName.c_str()));
trianglesNormalInputNode->SetAttribute("offset", "1");
tinyxml2::XMLElement* trianglesUV0InputNode = doc->NewElement("input");
trianglesNode->LinkEndChild(trianglesUV0InputNode);
trianglesUV0InputNode->SetAttribute("semantic", "TEXCOORD");
trianglesUV0InputNode->SetAttribute("source", avar("#%s-mesh-map-0", meshName.c_str()));
trianglesUV0InputNode->SetAttribute("offset", "2");
trianglesUV0InputNode->SetAttribute("set", "0");
tinyxml2::XMLElement* polyNode = doc->NewElement("p");
trianglesNode->LinkEndChild(polyNode);
Vector<U32> tempIndices;
tempIndices.reserve(4);
for (U32 j = 0; j < col->mesh.mPolyList.size(); j++)
{
const OptimizedPolyList::Poly& poly = col->mesh.mPolyList[j];
if (poly.vertexCount < 3)
continue;
tempIndices.setSize(poly.vertexCount);
dMemset(tempIndices.address(), 0, poly.vertexCount);
if (poly.type == OptimizedPolyList::TriangleStrip)
{
tempIndices[0] = 0;
U32 idx = 1;
for (U32 k = 1; k < poly.vertexCount; k += 2)
tempIndices[idx++] = k;
for (U32 k = ((poly.vertexCount - 1) & (~0x1)); k > 0; k -= 2)
tempIndices[idx++] = k;
}
else if (poly.type == OptimizedPolyList::TriangleList ||
poly.type == OptimizedPolyList::TriangleFan)
{
for (U32 k = 0; k < poly.vertexCount; k++)
tempIndices[k] = k;
}
else
AssertISV(false, "ColladaUtils::exportColladaTriangles(): Unknown Poly type!");
const U32& firstIdx = col->mesh.mIndexList[poly.vertexStart];
const OptimizedPolyList::VertIndex& firstVertIdx = col->mesh.mVertexList[firstIdx];
for (U32 k = 1; k < poly.vertexCount - 1; k++)
{
const U32& secondIdx = col->mesh.mIndexList[poly.vertexStart + tempIndices[k]];
const U32& thirdIdx = col->mesh.mIndexList[poly.vertexStart + tempIndices[k + 1]];
const OptimizedPolyList::VertIndex& secondVertIdx = col->mesh.mVertexList[secondIdx];
const OptimizedPolyList::VertIndex& thirdVertIdx = col->mesh.mVertexList[thirdIdx];
// Note the reversed winding on the triangles
const char* tri = avar("%d %d %d %d %d %d %d %d %d ",
thirdVertIdx.vertIdx, thirdVertIdx.normalIdx, thirdVertIdx.uv0Idx,
secondVertIdx.vertIdx, secondVertIdx.normalIdx, secondVertIdx.uv0Idx,
firstVertIdx.vertIdx, firstVertIdx.normalIdx, firstVertIdx.uv0Idx);
tinyxml2::XMLText* triangleText = doc->NewText(tri);
polyNode->LinkEndChild(triangleText);
}
}
}
void ColladaUtils::exportColladaMesh(tinyxml2::XMLElement* rootNode, const OptimizedPolyList& mesh, const String& meshName, const Vector<String>& matNames)
{
tinyxml2::XMLDocument* doc = rootNode->GetDocument();
tinyxml2::XMLElement* libGeomsNode = doc->NewElement("library_geometries");
rootNode->LinkEndChild(libGeomsNode);
tinyxml2::XMLElement* geometryNode = doc->NewElement("geometry");
libGeomsNode->LinkEndChild(geometryNode);
geometryNode->SetAttribute("id", avar("%s-mesh", meshName.c_str()));
geometryNode->SetAttribute("name", avar("%s", meshName.c_str()));
tinyxml2::XMLElement* meshNode = doc->NewElement("mesh");
geometryNode->LinkEndChild(meshNode);
// Save out the vertices
tinyxml2::XMLElement* vertsSourceNode = doc->NewElement("source");
meshNode->LinkEndChild(vertsSourceNode);
vertsSourceNode->SetAttribute("id", avar("%s-mesh-positions", meshName.c_str()));
tinyxml2::XMLElement* vertsNode = doc->NewElement("float_array");
vertsSourceNode->LinkEndChild(vertsNode);
vertsNode->SetAttribute("id", avar("%s-mesh-positions-array", meshName.c_str()));
vertsNode->SetAttribute("count", avar("%d", mesh.mPoints.size() * 3));
for (U32 i = 0; i < mesh.mPoints.size(); i++)
{
const Point3F& vert = mesh.mPoints[i];
tinyxml2::XMLText* vertText = doc->NewText(avar("%.4f %.4f %.4f ", vert.x, vert.y, vert.z));
vertsNode->LinkEndChild(vertText);
}
// Save the vertex accessor
tinyxml2::XMLElement* vertsTechNode = doc->NewElement("technique_common");
vertsSourceNode->LinkEndChild(vertsTechNode);
tinyxml2::XMLElement* vertsAccNode = doc->NewElement("accessor");
vertsTechNode->LinkEndChild(vertsAccNode);
vertsAccNode->SetAttribute("source", avar("#%s-mesh-positions-array", meshName.c_str()));
vertsAccNode->SetAttribute("count", avar("%d", mesh.mPoints.size()));
vertsAccNode->SetAttribute("stride", "3");
tinyxml2::XMLElement* vertsAccXNode = doc->NewElement("param");
vertsAccNode->LinkEndChild(vertsAccXNode);
vertsAccXNode->SetAttribute("name", "X");
vertsAccXNode->SetAttribute("type", "float");
tinyxml2::XMLElement* vertsAccYNode = doc->NewElement("param");
vertsAccNode->LinkEndChild(vertsAccYNode);
vertsAccYNode->SetAttribute("name", "Y");
vertsAccYNode->SetAttribute("type", "float");
tinyxml2::XMLElement* vertsAccZNode = doc->NewElement("param");
vertsAccNode->LinkEndChild(vertsAccZNode);
vertsAccZNode->SetAttribute("name", "Z");
vertsAccZNode->SetAttribute("type", "float");
// Save out the normals
tinyxml2::XMLElement* normalsSourceNode = doc->NewElement("source");
meshNode->LinkEndChild(normalsSourceNode);
normalsSourceNode->SetAttribute("id", avar("%s-mesh-normals", meshName.c_str()));
tinyxml2::XMLElement* normalsNode = doc->NewElement("float_array");
normalsSourceNode->LinkEndChild(normalsNode);
normalsNode->SetAttribute("id", avar("%s-mesh-normals-array", meshName.c_str()));
normalsNode->SetAttribute("count", avar("%d", mesh.mNormals.size() * 3));
for (U32 i = 0; i < mesh.mNormals.size(); i++)
{
const Point3F& normal = mesh.mNormals[i];
tinyxml2::XMLText* normalText = doc->NewText(avar("%.4f %.4f %.4f ", normal.x, normal.y, normal.z));
normalsNode->LinkEndChild(normalText);
}
// Save the normals accessor
tinyxml2::XMLElement* normalsTechNode = doc->NewElement("technique_common");
normalsSourceNode->LinkEndChild(normalsTechNode);
tinyxml2::XMLElement* normalsAccNode = doc->NewElement("accessor");
normalsTechNode->LinkEndChild(normalsAccNode);
normalsAccNode->SetAttribute("source", avar("#%s-mesh-normals-array", meshName.c_str()));
normalsAccNode->SetAttribute("count", avar("%d", mesh.mNormals.size()));
normalsAccNode->SetAttribute("stride", "3");
tinyxml2::XMLElement* normalsAccXNode = doc->NewElement("param");
normalsAccNode->LinkEndChild(normalsAccXNode);
normalsAccXNode->SetAttribute("name", "X");
normalsAccXNode->SetAttribute("type", "float");
tinyxml2::XMLElement* normalsAccYNode = doc->NewElement("param");
normalsAccNode->LinkEndChild(normalsAccYNode);
normalsAccYNode->SetAttribute("name", "Y");
normalsAccYNode->SetAttribute("type", "float");
tinyxml2::XMLElement* normalsAccZNode = doc->NewElement("param");
normalsAccNode->LinkEndChild(normalsAccZNode);
normalsAccZNode->SetAttribute("name", "Z");
normalsAccZNode->SetAttribute("type", "float");
// Save out the uvs
tinyxml2::XMLElement* uv0SourceNode = doc->NewElement("source");
meshNode->LinkEndChild(uv0SourceNode);
uv0SourceNode->SetAttribute("id", avar("%s-mesh-map-0", meshName.c_str()));
tinyxml2::XMLElement* uv0Node = doc->NewElement("float_array");
uv0SourceNode->LinkEndChild(uv0Node);
uv0Node->SetAttribute("id", avar("%s-mesh-map-0-array", meshName.c_str()));
uv0Node->SetAttribute("count", avar("%d", mesh.mUV0s.size() * 2));
for (U32 i = 0; i < mesh.mUV0s.size(); i++)
{
const Point2F& uv0 = mesh.mUV0s[i];
tinyxml2::XMLText* uv0Text = doc->NewText(avar("%.4f %.4f ", uv0.x, 1.0f - uv0.y)); // COLLADA uvs are upside down compared to Torque
uv0Node->LinkEndChild(uv0Text);
}
// Save the uv0 accessor
tinyxml2::XMLElement* uv0TechNode = doc->NewElement("technique_common");
uv0SourceNode->LinkEndChild(uv0TechNode);
tinyxml2::XMLElement* uv0AccNode = doc->NewElement("accessor");
uv0TechNode->LinkEndChild(uv0AccNode);
uv0AccNode->SetAttribute("source", avar("#%s-mesh-map-0-array", meshName.c_str()));
uv0AccNode->SetAttribute("count", avar("%d", mesh.mUV0s.size()));
uv0AccNode->SetAttribute("stride", "2");
tinyxml2::XMLElement* uv0AccSNode = doc->NewElement("param");
uv0AccNode->LinkEndChild(uv0AccSNode);
uv0AccSNode->SetAttribute("name", "S");
uv0AccSNode->SetAttribute("type", "float");
tinyxml2::XMLElement* uv0AccTNode = doc->NewElement("param");
uv0AccNode->LinkEndChild(uv0AccTNode);
uv0AccTNode->SetAttribute("name", "T");
uv0AccTNode->SetAttribute("type", "float");
// Define the vertices position array
tinyxml2::XMLElement* verticesNode = doc->NewElement("vertices");
meshNode->LinkEndChild(verticesNode);
verticesNode->SetAttribute("id", avar("%s-mesh-vertices", meshName.c_str()));
tinyxml2::XMLElement* verticesInputNode = doc->NewElement("input");
verticesNode->LinkEndChild(verticesInputNode);
verticesInputNode->SetAttribute("semantic", "POSITION");
verticesInputNode->SetAttribute("source", avar("#%s-mesh-positions", meshName.c_str()));
exportColladaTriangles(meshNode, mesh, meshName, matNames);
// Extra info useful for COLLADAMaya importer (OpenCOLLADA)
tinyxml2::XMLElement* extraGeoNode = doc->NewElement("extra");
libGeomsNode->LinkEndChild(extraGeoNode);
tinyxml2::XMLElement* extraGeoNodeTech = doc->NewElement("technique");
extraGeoNode->LinkEndChild(extraGeoNodeTech);
extraGeoNodeTech->SetAttribute("profile", "OpenCOLLADAMaya");
tinyxml2::XMLElement* mayaNode2Id = doc->NewElement("originalMayaNodeId");
extraGeoNodeTech->LinkEndChild(mayaNode2Id);
mayaNode2Id->SetAttribute("sid", "originalMayaNodeId");
tinyxml2::XMLText* mayaIdMesh = doc->NewText(avar("%s", meshName.c_str()));
mayaNode2Id->LinkEndChild(mayaIdMesh);
tinyxml2::XMLElement* doubleSidedId = doc->NewElement("double_sided");
extraGeoNodeTech->LinkEndChild(doubleSidedId);
doubleSidedId->SetAttribute("sid", "double_sided");
tinyxml2::XMLText* doubleSideIdText = doc->NewText("1");
doubleSidedId->LinkEndChild(doubleSideIdText);
tinyxml2::XMLElement* paramExtraNode = doc->NewElement("param");
extraGeoNodeTech->LinkEndChild(paramExtraNode);
paramExtraNode->SetAttribute("sid", "colladaId");
paramExtraNode->SetAttribute("type", "string");
tinyxml2::XMLText* mayaParamMesh = doc->NewText(avar("%s-mesh", meshName.c_str()));
paramExtraNode->LinkEndChild(mayaParamMesh);
}
void ColladaUtils::exportColladaMesh(tinyxml2::XMLElement* rootNode, const ExportData& exportData, const String& meshName)
{
tinyxml2::XMLDocument* doc = rootNode->GetDocument();
tinyxml2::XMLElement* libGeomsNode = doc->NewElement("library_geometries");
rootNode->LinkEndChild(libGeomsNode);
for (U32 d = 0; d < exportData.detailLevels.size(); d++)
{
char lodMeshName[256];
dSprintf(lodMeshName, 256, "%s%d", meshName.c_str(), exportData.detailLevels[d].size);
char lodMeshID[256];
dSprintf(lodMeshID, 256, "%s-mesh", lodMeshName);
tinyxml2::XMLElement* geometryNode = doc->NewElement("geometry");
libGeomsNode->LinkEndChild(geometryNode);
geometryNode->SetAttribute("id", lodMeshID);
geometryNode->SetAttribute("name", lodMeshName);
tinyxml2::XMLElement* meshNode = doc->NewElement("mesh");
geometryNode->LinkEndChild(meshNode);
// Save out the vertices
tinyxml2::XMLElement* vertsSourceNode = doc->NewElement("source");
meshNode->LinkEndChild(vertsSourceNode);
vertsSourceNode->SetAttribute("id", avar("%s-mesh-positions", lodMeshName));
tinyxml2::XMLElement* vertsNode = doc->NewElement("float_array");
vertsSourceNode->LinkEndChild(vertsNode);
vertsNode->SetAttribute("id", avar("%s-mesh-positions-array", lodMeshName));
vertsNode->SetAttribute("count", avar("%d", exportData.detailLevels[d].mesh.mPoints.size() * 3));
for (U32 i = 0; i < exportData.detailLevels[d].mesh.mPoints.size(); i++)
{
const Point3F& vert = exportData.detailLevels[d].mesh.mPoints[i];
tinyxml2::XMLText* vertText = doc->NewText(avar("%.4f %.4f %.4f ", vert.x, vert.y, vert.z));
vertsNode->LinkEndChild(vertText);
}
// Save the vertex accessor
tinyxml2::XMLElement* vertsTechNode = doc->NewElement("technique_common");
vertsSourceNode->LinkEndChild(vertsTechNode);
tinyxml2::XMLElement* vertsAccNode = doc->NewElement("accessor");
vertsTechNode->LinkEndChild(vertsAccNode);
vertsAccNode->SetAttribute("source", avar("#%s-mesh-positions-array", lodMeshName));
vertsAccNode->SetAttribute("count", avar("%d", exportData.detailLevels[d].mesh.mPoints.size()));
vertsAccNode->SetAttribute("stride", "3");
tinyxml2::XMLElement* vertsAccXNode = doc->NewElement("param");
vertsAccNode->LinkEndChild(vertsAccXNode);
vertsAccXNode->SetAttribute("name", "X");
vertsAccXNode->SetAttribute("type", "float");
tinyxml2::XMLElement* vertsAccYNode = doc->NewElement("param");
vertsAccNode->LinkEndChild(vertsAccYNode);
vertsAccYNode->SetAttribute("name", "Y");
vertsAccYNode->SetAttribute("type", "float");
tinyxml2::XMLElement* vertsAccZNode = doc->NewElement("param");
vertsAccNode->LinkEndChild(vertsAccZNode);
vertsAccZNode->SetAttribute("name", "Z");
vertsAccZNode->SetAttribute("type", "float");
// Save out the normals
tinyxml2::XMLElement* normalsSourceNode = doc->NewElement("source");
meshNode->LinkEndChild(normalsSourceNode);
normalsSourceNode->SetAttribute("id", avar("%s-mesh-normals", lodMeshName));
tinyxml2::XMLElement* normalsNode = doc->NewElement("float_array");
normalsSourceNode->LinkEndChild(normalsNode);
normalsNode->SetAttribute("id", avar("%s-mesh-normals-array", lodMeshName));
normalsNode->SetAttribute("count", avar("%d", exportData.detailLevels[d].mesh.mNormals.size() * 3));
for (U32 i = 0; i < exportData.detailLevels[d].mesh.mNormals.size(); i++)
{
const Point3F& normal = exportData.detailLevels[d].mesh.mNormals[i];
tinyxml2::XMLText* normalText = doc->NewText(avar("%.4f %.4f %.4f ", normal.x, normal.y, normal.z));
normalsNode->LinkEndChild(normalText);
}
// Save the normals accessor
tinyxml2::XMLElement* normalsTechNode = doc->NewElement("technique_common");
normalsSourceNode->LinkEndChild(normalsTechNode);
tinyxml2::XMLElement* normalsAccNode = doc->NewElement("accessor");
normalsTechNode->LinkEndChild(normalsAccNode);
normalsAccNode->SetAttribute("source", avar("#%s-mesh-normals-array", lodMeshName));
normalsAccNode->SetAttribute("count", avar("%d", exportData.detailLevels[d].mesh.mNormals.size()));
normalsAccNode->SetAttribute("stride", "3");
tinyxml2::XMLElement* normalsAccXNode = doc->NewElement("param");
normalsAccNode->LinkEndChild(normalsAccXNode);
normalsAccXNode->SetAttribute("name", "X");
normalsAccXNode->SetAttribute("type", "float");
tinyxml2::XMLElement* normalsAccYNode = doc->NewElement("param");
normalsAccNode->LinkEndChild(normalsAccYNode);
normalsAccYNode->SetAttribute("name", "Y");
normalsAccYNode->SetAttribute("type", "float");
tinyxml2::XMLElement* normalsAccZNode = doc->NewElement("param");
normalsAccNode->LinkEndChild(normalsAccZNode);
normalsAccZNode->SetAttribute("name", "Z");
normalsAccZNode->SetAttribute("type", "float");
// Save out the uvs
tinyxml2::XMLElement* uv0SourceNode = doc->NewElement("source");
meshNode->LinkEndChild(uv0SourceNode);
uv0SourceNode->SetAttribute("id", avar("%s-mesh-map-0", lodMeshName));
tinyxml2::XMLElement* uv0Node = doc->NewElement("float_array");
uv0SourceNode->LinkEndChild(uv0Node);
uv0Node->SetAttribute("id", avar("%s-mesh-map-0-array", lodMeshName));
uv0Node->SetAttribute("count", avar("%d", exportData.detailLevels[d].mesh.mUV0s.size() * 2));
for (U32 i = 0; i < exportData.detailLevels[d].mesh.mUV0s.size(); i++)
{
const Point2F& uv0 = exportData.detailLevels[d].mesh.mUV0s[i];
tinyxml2::XMLText* uv0Text = doc->NewText(avar("%.4f %.4f ", uv0.x, 1.0f - uv0.y)); // COLLADA uvs are upside down compared to Torque
uv0Node->LinkEndChild(uv0Text);
}
// Save the uv0 accessor
tinyxml2::XMLElement* uv0TechNode = doc->NewElement("technique_common");
uv0SourceNode->LinkEndChild(uv0TechNode);
tinyxml2::XMLElement* uv0AccNode = doc->NewElement("accessor");
uv0TechNode->LinkEndChild(uv0AccNode);
uv0AccNode->SetAttribute("source", avar("#%s-mesh-map-0-array", lodMeshName));
uv0AccNode->SetAttribute("count", avar("%d", exportData.detailLevels[d].mesh.mUV0s.size()));
uv0AccNode->SetAttribute("stride", "2");
tinyxml2::XMLElement* uv0AccSNode = doc->NewElement("param");
uv0AccNode->LinkEndChild(uv0AccSNode);
uv0AccSNode->SetAttribute("name", "S");
uv0AccSNode->SetAttribute("type", "float");
tinyxml2::XMLElement* uv0AccTNode = doc->NewElement("param");
uv0AccNode->LinkEndChild(uv0AccTNode);
uv0AccTNode->SetAttribute("name", "T");
uv0AccTNode->SetAttribute("type", "float");
// Define the vertices position array
tinyxml2::XMLElement* verticesNode = doc->NewElement("vertices");
meshNode->LinkEndChild(verticesNode);
verticesNode->SetAttribute("id", avar("%s-mesh-vertices", lodMeshName));
tinyxml2::XMLElement* verticesInputNode = doc->NewElement("input");
verticesNode->LinkEndChild(verticesInputNode);
verticesInputNode->SetAttribute("semantic", "POSITION");
verticesInputNode->SetAttribute("source", avar("#%s-mesh-positions", lodMeshName));
Vector<String> mapNames;
//exportColladaTriangles(meshNode, exportData.detailLevels[d].mesh, lodMeshName, mapNames);
exportColladaTriangles(meshNode, exportData, d, lodMeshName);
// Extra info useful for COLLADAMaya importer (OpenCOLLADA)
tinyxml2::XMLElement* extraGeoNode = doc->NewElement("extra");
libGeomsNode->LinkEndChild(extraGeoNode);
tinyxml2::XMLElement* extraGeoNodeTech = doc->NewElement("technique");
extraGeoNode->LinkEndChild(extraGeoNodeTech);
extraGeoNodeTech->SetAttribute("profile", "OpenCOLLADAMaya");
tinyxml2::XMLElement* mayaNode2Id = doc->NewElement("originalMayaNodeId");
extraGeoNodeTech->LinkEndChild(mayaNode2Id);
mayaNode2Id->SetAttribute("sid", "originalMayaNodeId");
tinyxml2::XMLText* mayaIdMesh = doc->NewText(avar("%s", lodMeshName));
mayaNode2Id->LinkEndChild(mayaIdMesh);
tinyxml2::XMLElement* doubleSidedId = doc->NewElement("double_sided");
extraGeoNodeTech->LinkEndChild(doubleSidedId);
doubleSidedId->SetAttribute("sid", "double_sided");
tinyxml2::XMLText* doubleSideIdText = doc->NewText("1");
doubleSidedId->LinkEndChild(doubleSideIdText);
tinyxml2::XMLElement* paramExtraNode = doc->NewElement("param");
extraGeoNodeTech->LinkEndChild(paramExtraNode);
paramExtraNode->SetAttribute("sid", "colladaId");
paramExtraNode->SetAttribute("type", "string");
tinyxml2::XMLText* mayaParamMesh = doc->NewText(avar("%s-mesh", lodMeshName));
paramExtraNode->LinkEndChild(mayaParamMesh);
}
//And now collisions
for (U32 d = 0; d < exportData.colMeshes.size(); d++)
{
const char* colMeshName = exportData.colMeshes[d].colMeshName;
char colMeshId[256];
dSprintf(colMeshId, 256, "%s-mesh", colMeshName);
tinyxml2::XMLElement* geometryNode = doc->NewElement("geometry");
libGeomsNode->LinkEndChild(geometryNode);
geometryNode->SetAttribute("id", colMeshId);
geometryNode->SetAttribute("name", colMeshName);
tinyxml2::XMLElement* meshNode = doc->NewElement("mesh");
geometryNode->LinkEndChild(meshNode);
// Save out the vertices
tinyxml2::XMLElement* vertsSourceNode = doc->NewElement("source");
meshNode->LinkEndChild(vertsSourceNode);
vertsSourceNode->SetAttribute("id", avar("%s-mesh-positions", colMeshName));
tinyxml2::XMLElement* vertsNode = doc->NewElement("float_array");
vertsSourceNode->LinkEndChild(vertsNode);
vertsNode->SetAttribute("id", avar("%s-mesh-positions-array", colMeshName));
vertsNode->SetAttribute("count", avar("%d", exportData.colMeshes[d].mesh.mPoints.size() * 3));
for (U32 i = 0; i < exportData.colMeshes[d].mesh.mPoints.size(); i++)
{
const Point3F& vert = exportData.colMeshes[d].mesh.mPoints[i];
tinyxml2::XMLText* vertText = doc->NewText(avar("%.4f %.4f %.4f ", vert.x, vert.y, vert.z));
vertsNode->LinkEndChild(vertText);
}
// Save the vertex accessor
tinyxml2::XMLElement* vertsTechNode = doc->NewElement("technique_common");
vertsSourceNode->LinkEndChild(vertsTechNode);
tinyxml2::XMLElement* vertsAccNode = doc->NewElement("accessor");
vertsTechNode->LinkEndChild(vertsAccNode);
vertsAccNode->SetAttribute("source", avar("#%s-mesh-positions-array", colMeshName));
vertsAccNode->SetAttribute("count", avar("%d", exportData.colMeshes[d].mesh.mPoints.size()));
vertsAccNode->SetAttribute("stride", "3");
tinyxml2::XMLElement* vertsAccXNode = doc->NewElement("param");
vertsAccNode->LinkEndChild(vertsAccXNode);
vertsAccXNode->SetAttribute("name", "X");
vertsAccXNode->SetAttribute("type", "float");
tinyxml2::XMLElement* vertsAccYNode = doc->NewElement("param");
vertsAccNode->LinkEndChild(vertsAccYNode);
vertsAccYNode->SetAttribute("name", "Y");
vertsAccYNode->SetAttribute("type", "float");
tinyxml2::XMLElement* vertsAccZNode = doc->NewElement("param");
vertsAccNode->LinkEndChild(vertsAccZNode);
vertsAccZNode->SetAttribute("name", "Z");
vertsAccZNode->SetAttribute("type", "float");
// Save out the normals
tinyxml2::XMLElement* normalsSourceNode = doc->NewElement("source");
meshNode->LinkEndChild(normalsSourceNode);
normalsSourceNode->SetAttribute("id", avar("%s-mesh-normals", colMeshName));
tinyxml2::XMLElement* normalsNode = doc->NewElement("float_array");
normalsSourceNode->LinkEndChild(normalsNode);
normalsNode->SetAttribute("id", avar("%s-mesh-normals-array", colMeshName));
normalsNode->SetAttribute("count", avar("%d", exportData.colMeshes[d].mesh.mNormals.size() * 3));
for (U32 i = 0; i < exportData.colMeshes[d].mesh.mNormals.size(); i++)
{
const Point3F& normal = exportData.colMeshes[d].mesh.mNormals[i];
tinyxml2::XMLText* normalText = doc->NewText(avar("%.4f %.4f %.4f ", normal.x, normal.y, normal.z));
normalsNode->LinkEndChild(normalText);
}
// Save the normals accessor
tinyxml2::XMLElement* normalsTechNode = doc->NewElement("technique_common");
normalsSourceNode->LinkEndChild(normalsTechNode);
tinyxml2::XMLElement* normalsAccNode = doc->NewElement("accessor");
normalsTechNode->LinkEndChild(normalsAccNode);
normalsAccNode->SetAttribute("source", avar("#%s-mesh-normals-array", colMeshName));
normalsAccNode->SetAttribute("count", avar("%d", exportData.colMeshes[d].mesh.mNormals.size()));
normalsAccNode->SetAttribute("stride", "3");
tinyxml2::XMLElement* normalsAccXNode = doc->NewElement("param");
normalsAccNode->LinkEndChild(normalsAccXNode);
normalsAccXNode->SetAttribute("name", "X");
normalsAccXNode->SetAttribute("type", "float");
tinyxml2::XMLElement* normalsAccYNode = doc->NewElement("param");
normalsAccNode->LinkEndChild(normalsAccYNode);
normalsAccYNode->SetAttribute("name", "Y");
normalsAccYNode->SetAttribute("type", "float");
tinyxml2::XMLElement* normalsAccZNode = doc->NewElement("param");
normalsAccNode->LinkEndChild(normalsAccZNode);
normalsAccZNode->SetAttribute("name", "Z");
normalsAccZNode->SetAttribute("type", "float");
// Save out the uvs
tinyxml2::XMLElement* uv0SourceNode = doc->NewElement("source");
meshNode->LinkEndChild(uv0SourceNode);
uv0SourceNode->SetAttribute("id", avar("%s-mesh-map-0", colMeshName));
tinyxml2::XMLElement* uv0Node = doc->NewElement("float_array");
uv0SourceNode->LinkEndChild(uv0Node);
uv0Node->SetAttribute("id", avar("%s-mesh-map-0-array", colMeshName));
uv0Node->SetAttribute("count", avar("%d", exportData.colMeshes[d].mesh.mUV0s.size() * 2));
for (U32 i = 0; i < exportData.colMeshes[d].mesh.mUV0s.size(); i++)
{
const Point2F& uv0 = exportData.colMeshes[d].mesh.mUV0s[i];
tinyxml2::XMLText* uv0Text = doc->NewText(avar("%.4f %.4f ", uv0.x, 1.0f - uv0.y)); // COLLADA uvs are upside down compared to Torque
uv0Node->LinkEndChild(uv0Text);
}
// Save the uv0 accessor
tinyxml2::XMLElement* uv0TechNode = doc->NewElement("technique_common");
uv0SourceNode->LinkEndChild(uv0TechNode);
tinyxml2::XMLElement* uv0AccNode = doc->NewElement("accessor");
uv0TechNode->LinkEndChild(uv0AccNode);
uv0AccNode->SetAttribute("source", avar("#%s-mesh-map-0-array", colMeshName));
uv0AccNode->SetAttribute("count", avar("%d", exportData.colMeshes[d].mesh.mUV0s.size()));
uv0AccNode->SetAttribute("stride", "2");
tinyxml2::XMLElement* uv0AccSNode = doc->NewElement("param");
uv0AccNode->LinkEndChild(uv0AccSNode);
uv0AccSNode->SetAttribute("name", "S");
uv0AccSNode->SetAttribute("type", "float");
tinyxml2::XMLElement* uv0AccTNode = doc->NewElement("param");
uv0AccNode->LinkEndChild(uv0AccTNode);
uv0AccTNode->SetAttribute("name", "T");
uv0AccTNode->SetAttribute("type", "float");
// Define the vertices position array
tinyxml2::XMLElement* verticesNode = doc->NewElement("vertices");
meshNode->LinkEndChild(verticesNode);
verticesNode->SetAttribute("id", avar("%s-mesh-vertices", colMeshName));
tinyxml2::XMLElement* verticesInputNode = doc->NewElement("input");
verticesNode->LinkEndChild(verticesInputNode);
verticesInputNode->SetAttribute("semantic", "POSITION");
verticesInputNode->SetAttribute("source", avar("#%s-mesh-positions", colMeshName));
Vector<String> mapNames;
//exportColladaTriangles(meshNode, exportData.detailLevels[d].mesh, lodMeshName, mapNames);
exportColladaCollisionTriangles(meshNode, exportData, d);
// Extra info useful for COLLADAMaya importer (OpenCOLLADA)
tinyxml2::XMLElement* extraGeoNode = doc->NewElement("extra");
libGeomsNode->LinkEndChild(extraGeoNode);
tinyxml2::XMLElement* extraGeoNodeTech = doc->NewElement("technique");
extraGeoNode->LinkEndChild(extraGeoNodeTech);
extraGeoNodeTech->SetAttribute("profile", "OpenCOLLADAMaya");
tinyxml2::XMLElement* mayaNode2Id = doc->NewElement("originalMayaNodeId");
extraGeoNodeTech->LinkEndChild(mayaNode2Id);
mayaNode2Id->SetAttribute("sid", "originalMayaNodeId");
tinyxml2::XMLText* mayaIdMesh = doc->NewText(avar("%s", colMeshName));
mayaNode2Id->LinkEndChild(mayaIdMesh);
tinyxml2::XMLElement* doubleSidedId = doc->NewElement("double_sided");
extraGeoNodeTech->LinkEndChild(doubleSidedId);
doubleSidedId->SetAttribute("sid", "double_sided");
tinyxml2::XMLText* doubleSideIdText = doc->NewText("1");
doubleSidedId->LinkEndChild(doubleSideIdText);
tinyxml2::XMLElement* paramExtraNode = doc->NewElement("param");
extraGeoNodeTech->LinkEndChild(paramExtraNode);
paramExtraNode->SetAttribute("sid", "colladaId");
paramExtraNode->SetAttribute("type", "string");
tinyxml2::XMLText* mayaParamMesh = doc->NewText(avar("%s-mesh", colMeshName));
paramExtraNode->LinkEndChild(mayaParamMesh);
}
}
void ColladaUtils::exportColladaScene(tinyxml2::XMLElement* rootNode, const String& meshName, const Vector<String>& matNames)
{
tinyxml2::XMLDocument* doc = rootNode->GetDocument();
tinyxml2::XMLElement* libSceneNode = doc->NewElement("library_visual_scenes");
rootNode->LinkEndChild(libSceneNode);
tinyxml2::XMLElement* visSceneNode = doc->NewElement("visual_scene");
libSceneNode->LinkEndChild(visSceneNode);
visSceneNode->SetAttribute("id", "RootNode");
visSceneNode->SetAttribute("name", "RootNode");
tinyxml2::XMLElement* nodeNode = doc->NewElement("node");
visSceneNode->LinkEndChild(nodeNode);
nodeNode->SetAttribute("id", avar("%s", meshName.c_str()));
nodeNode->SetAttribute("name", avar("%s", meshName.c_str()));
nodeNode->SetAttribute("type", "NODE");
tinyxml2::XMLElement* instanceGeomNode = doc->NewElement("instance_geometry");
nodeNode->LinkEndChild(instanceGeomNode);
instanceGeomNode->SetAttribute("url", avar("#%s-mesh", meshName.c_str()));
instanceGeomNode->SetAttribute("name", avar("%s", meshName.c_str()));
tinyxml2::XMLElement* bindMatNode = doc->NewElement("bind_material");
instanceGeomNode->LinkEndChild(bindMatNode);
tinyxml2::XMLElement* techniqueNode = doc->NewElement("technique_common");
bindMatNode->LinkEndChild(techniqueNode);
// Bind the materials
for (U32 i = 0; i < matNames.size(); i++)
{
tinyxml2::XMLElement* instMatNode = doc->NewElement("instance_material");
techniqueNode->LinkEndChild(instMatNode);
instMatNode->SetAttribute("symbol", avar("%s-material", matNames[i].c_str()));
instMatNode->SetAttribute("target", avar("#%s-material", matNames[i].c_str()));
tinyxml2::XMLElement* bindVertexNode = doc->NewElement("bind_vertex_input");
instMatNode->LinkEndChild(bindVertexNode);
//bindVertexNode->SetAttribute("semantic", avar("%s-mesh-map-0", meshName.c_str()));
bindVertexNode->SetAttribute("semantic", "UVMap");
bindVertexNode->SetAttribute("input_semantic", "TEXCOORD");
bindVertexNode->SetAttribute("input_set", "0");
}
// Extra info useful for COLLADAMax importer (OpenCOLLADA)
tinyxml2::XMLElement* extraInsGeoNode = doc->NewElement("extra");
nodeNode->LinkEndChild(extraInsGeoNode);
tinyxml2::XMLElement* extraInsGeoTechNode = doc->NewElement("technique");
extraInsGeoNode->LinkEndChild(extraInsGeoTechNode);
extraInsGeoTechNode->SetAttribute("profile", "OpenCOLLADA");
tinyxml2::XMLElement* castShadowsNode = doc->NewElement("cast_shadows");
extraInsGeoTechNode->LinkEndChild(castShadowsNode);
castShadowsNode->SetAttribute("sid", "cast_shadows");
castShadowsNode->SetAttribute("type", "bool");
tinyxml2::XMLText* castShadowsText = doc->NewText("1");
castShadowsNode->LinkEndChild(castShadowsText);
//-----------------------------
tinyxml2::XMLElement* receiveShadowsNode = doc->NewElement("receive_shadows");
extraInsGeoTechNode->LinkEndChild(receiveShadowsNode);
receiveShadowsNode->SetAttribute("sid", "receive_shadows");
receiveShadowsNode->SetAttribute("type", "bool");
tinyxml2::XMLText* receiveShadowsText = doc->NewText("1");
receiveShadowsNode->LinkEndChild(receiveShadowsText);
//-----------------------------
tinyxml2::XMLElement* primaryVisibiltyNode = doc->NewElement("primary_visibility");
extraInsGeoTechNode->LinkEndChild(primaryVisibiltyNode);
primaryVisibiltyNode->SetAttribute("sid", "primary_visibility");
primaryVisibiltyNode->SetAttribute("type", "int");
tinyxml2::XMLText* primaryVisibiltyText = doc->NewText("1");
primaryVisibiltyNode->LinkEndChild(primaryVisibiltyText);
//-----------------------------
tinyxml2::XMLElement* secondaryVisibilityNode = doc->NewElement("secondary_visibility");
extraInsGeoTechNode->LinkEndChild(secondaryVisibilityNode);
secondaryVisibilityNode->SetAttribute("sid", "secondary_visibility");
secondaryVisibilityNode->SetAttribute("type", "int");
tinyxml2::XMLText* secondaryVisibilityText = doc->NewText("1");
secondaryVisibilityNode->LinkEndChild(secondaryVisibilityText);
// Extra info useful for COLLADAMaya importer (OpenCOLLADA)
tinyxml2::XMLElement* extra2InsGeoNode = doc->NewElement("extra");
nodeNode->LinkEndChild(extra2InsGeoNode);
tinyxml2::XMLElement* extra2InsGeoTechNode = doc->NewElement("technique");
extra2InsGeoNode->LinkEndChild(extra2InsGeoTechNode);
extra2InsGeoTechNode->SetAttribute("profile", "OpenCOLLADAMaya");
tinyxml2::XMLElement* mayaNodeId = doc->NewElement("originalMayaNodeId");
extra2InsGeoTechNode->LinkEndChild(mayaNodeId);
mayaNodeId->SetAttribute("sid", "originalMayaNodeId");
mayaNodeId->SetAttribute("type", "string");
tinyxml2::XMLText* mayaNodeIdMesh = doc->NewText(avar("%s", meshName.c_str()));
mayaNodeId->LinkEndChild(mayaNodeIdMesh);
tinyxml2::XMLElement* paramExtraNode = doc->NewElement("param");
extra2InsGeoTechNode->LinkEndChild(paramExtraNode);
paramExtraNode->SetAttribute("sid", "colladaId");
paramExtraNode->SetAttribute("type", "string");
tinyxml2::XMLText* mayaParamMesh = doc->NewText(avar("%s", meshName.c_str()));
paramExtraNode->LinkEndChild(mayaParamMesh);
//-----------------------------
tinyxml2::XMLElement* sceneNode = doc->NewElement("scene");
rootNode->LinkEndChild(sceneNode);
tinyxml2::XMLElement* instVisSceneNode = doc->NewElement("instance_visual_scene");
sceneNode->LinkEndChild(instVisSceneNode);
instVisSceneNode->SetAttribute("url", "#RootNode");
}
void ColladaUtils::exportColladaScene(tinyxml2::XMLElement* rootNode, const ExportData& exportData, const String& meshName)
{
tinyxml2::XMLDocument* doc = rootNode->GetDocument();
tinyxml2::XMLElement* libSceneNode = doc->NewElement("library_visual_scenes");
rootNode->LinkEndChild(libSceneNode);
tinyxml2::XMLElement* visSceneNode = doc->NewElement("visual_scene");
libSceneNode->LinkEndChild(visSceneNode);
visSceneNode->SetAttribute("id", "RootNode");
visSceneNode->SetAttribute("name", "RootNode");
for (U32 d = 0; d < exportData.detailLevels.size(); d++)
{
char lodMeshName[256];
dSprintf(lodMeshName, 256, "%s%d", meshName.c_str(), exportData.detailLevels[d].size);
tinyxml2::XMLElement* nodeNode = doc->NewElement("node");
visSceneNode->LinkEndChild(nodeNode);
nodeNode->SetAttribute("id", lodMeshName);
nodeNode->SetAttribute("name", lodMeshName);
nodeNode->SetAttribute("type", "NODE");
tinyxml2::XMLElement* instanceGeomNode = doc->NewElement("instance_geometry");
nodeNode->LinkEndChild(instanceGeomNode);
instanceGeomNode->SetAttribute("url", avar("#%s%d-mesh", meshName.c_str(), exportData.detailLevels[d].size));
instanceGeomNode->SetAttribute("name", lodMeshName);
tinyxml2::XMLElement* bindMatNode = doc->NewElement("bind_material");
instanceGeomNode->LinkEndChild(bindMatNode);
tinyxml2::XMLElement* techniqueNode = doc->NewElement("technique_common");
bindMatNode->LinkEndChild(techniqueNode);
// Bind the materials
for (U32 i = 0; i < exportData.detailLevels[d].materialRefList.size(); i++)
{
int matIdx;
exportData.detailLevels[d].materialRefList.tryGetValue(i, matIdx);
BaseMatInstance* baseInst = exportData.materials[matIdx];
Material* mat = dynamic_cast<Material*>(baseInst->getMaterial());
if (!mat)
continue;
String matName;
if (mat->getName() && mat->getName()[0])
matName = mat->mMapTo;
tinyxml2::XMLElement* instMatNode = doc->NewElement("instance_material");
techniqueNode->LinkEndChild(instMatNode);
instMatNode->SetAttribute("symbol", avar("%s-material", matName.c_str()));
instMatNode->SetAttribute("target", avar("#%s-material", matName.c_str()));
tinyxml2::XMLElement* bindVertexNode = doc->NewElement("bind_vertex_input");
instMatNode->LinkEndChild(bindVertexNode);
//bindVertexNode->SetAttribute("semantic", avar("%s-mesh-map-0", meshName.c_str()));
bindVertexNode->SetAttribute("semantic", "UVMap");
bindVertexNode->SetAttribute("input_semantic", "TEXCOORD");
bindVertexNode->SetAttribute("input_set", "0");
}
// Extra info useful for COLLADAMax importer (OpenCOLLADA)
tinyxml2::XMLElement* extraInsGeoNode = doc->NewElement("extra");
nodeNode->LinkEndChild(extraInsGeoNode);
tinyxml2::XMLElement* extraInsGeoTechNode = doc->NewElement("technique");
extraInsGeoNode->LinkEndChild(extraInsGeoTechNode);
extraInsGeoTechNode->SetAttribute("profile", "OpenCOLLADA");
tinyxml2::XMLElement* castShadowsNode = doc->NewElement("cast_shadows");
extraInsGeoTechNode->LinkEndChild(castShadowsNode);
castShadowsNode->SetAttribute("sid", "cast_shadows");
castShadowsNode->SetAttribute("type", "bool");
tinyxml2::XMLText* castShadowsText = doc->NewText("1");
castShadowsNode->LinkEndChild(castShadowsText);
//-----------------------------
tinyxml2::XMLElement* receiveShadowsNode = doc->NewElement("receive_shadows");
extraInsGeoTechNode->LinkEndChild(receiveShadowsNode);
receiveShadowsNode->SetAttribute("sid", "receive_shadows");
receiveShadowsNode->SetAttribute("type", "bool");
tinyxml2::XMLText* receiveShadowsText = doc->NewText("1");
receiveShadowsNode->LinkEndChild(receiveShadowsText);
//-----------------------------
tinyxml2::XMLElement* primaryVisibiltyNode = doc->NewElement("primary_visibility");
extraInsGeoTechNode->LinkEndChild(primaryVisibiltyNode);
primaryVisibiltyNode->SetAttribute("sid", "primary_visibility");
primaryVisibiltyNode->SetAttribute("type", "int");
tinyxml2::XMLText* primaryVisibiltyText = doc->NewText("1");
primaryVisibiltyNode->LinkEndChild(primaryVisibiltyText);
//-----------------------------
tinyxml2::XMLElement* secondaryVisibilityNode = doc->NewElement("secondary_visibility");
extraInsGeoTechNode->LinkEndChild(secondaryVisibilityNode);
secondaryVisibilityNode->SetAttribute("sid", "secondary_visibility");
secondaryVisibilityNode->SetAttribute("type", "int");
tinyxml2::XMLText* secondaryVisibilityText = doc->NewText("1");
secondaryVisibilityNode->LinkEndChild(secondaryVisibilityText);
// Extra info useful for COLLADAMaya importer (OpenCOLLADA)
tinyxml2::XMLElement* extra2InsGeoNode = doc->NewElement("extra");
nodeNode->LinkEndChild(extra2InsGeoNode);
tinyxml2::XMLElement* extra2InsGeoTechNode = doc->NewElement("technique");
extra2InsGeoNode->LinkEndChild(extra2InsGeoTechNode);
extra2InsGeoTechNode->SetAttribute("profile", "OpenCOLLADAMaya");
tinyxml2::XMLElement* mayaNodeId = doc->NewElement("originalMayaNodeId");
extra2InsGeoTechNode->LinkEndChild(mayaNodeId);
mayaNodeId->SetAttribute("sid", "originalMayaNodeId");
mayaNodeId->SetAttribute("type", "string");
tinyxml2::XMLText* mayaNodeIdMesh = doc->NewText(lodMeshName);
mayaNodeId->LinkEndChild(mayaNodeIdMesh);
tinyxml2::XMLElement* paramExtraNode = doc->NewElement("param");
extra2InsGeoTechNode->LinkEndChild(paramExtraNode);
paramExtraNode->SetAttribute("sid", "colladaId");
paramExtraNode->SetAttribute("type", "string");
tinyxml2::XMLText* mayaParamMesh = doc->NewText(lodMeshName);
paramExtraNode->LinkEndChild(mayaParamMesh);
}
//Collisions
for (U32 d = 0; d < exportData.colMeshes.size(); d++)
{
const char* colMeshName = exportData.colMeshes[d].colMeshName;
tinyxml2::XMLElement* nodeNode = doc->NewElement("node");
visSceneNode->LinkEndChild(nodeNode);
nodeNode->SetAttribute("id", colMeshName);
nodeNode->SetAttribute("name", colMeshName);
nodeNode->SetAttribute("type", "NODE");
tinyxml2::XMLElement* instanceGeomNode = doc->NewElement("instance_geometry");
nodeNode->LinkEndChild(instanceGeomNode);
instanceGeomNode->SetAttribute("url", avar("#%s-mesh", colMeshName));
instanceGeomNode->SetAttribute("name", colMeshName);
tinyxml2::XMLElement* bindMatNode = doc->NewElement("bind_material");
instanceGeomNode->LinkEndChild(bindMatNode);
tinyxml2::XMLElement* techniqueNode = doc->NewElement("technique_common");
bindMatNode->LinkEndChild(techniqueNode);
tinyxml2::XMLElement* instMatNode = doc->NewElement("instance_material");
techniqueNode->LinkEndChild(instMatNode);
instMatNode->SetAttribute("symbol", avar("%s-material", colMeshName));
instMatNode->SetAttribute("target", avar("#%s-material", colMeshName));
tinyxml2::XMLElement* bindVertexNode = doc->NewElement("bind_vertex_input");
instMatNode->LinkEndChild(bindVertexNode);
//bindVertexNode->SetAttribute("semantic", avar("%s-mesh-map-0", meshName.c_str()));
bindVertexNode->SetAttribute("semantic", "UVMap");
bindVertexNode->SetAttribute("input_semantic", "TEXCOORD");
bindVertexNode->SetAttribute("input_set", "0");
// Extra info useful for COLLADAMax importer (OpenCOLLADA)
tinyxml2::XMLElement* extraInsGeoNode = doc->NewElement("extra");
nodeNode->LinkEndChild(extraInsGeoNode);
tinyxml2::XMLElement* extraInsGeoTechNode = doc->NewElement("technique");
extraInsGeoNode->LinkEndChild(extraInsGeoTechNode);
extraInsGeoTechNode->SetAttribute("profile", "OpenCOLLADA");
tinyxml2::XMLElement* castShadowsNode = doc->NewElement("cast_shadows");
extraInsGeoTechNode->LinkEndChild(castShadowsNode);
castShadowsNode->SetAttribute("sid", "cast_shadows");
castShadowsNode->SetAttribute("type", "bool");
tinyxml2::XMLText* castShadowsText = doc->NewText("1");
castShadowsNode->LinkEndChild(castShadowsText);
//-----------------------------
tinyxml2::XMLElement* receiveShadowsNode = doc->NewElement("receive_shadows");
extraInsGeoTechNode->LinkEndChild(receiveShadowsNode);
receiveShadowsNode->SetAttribute("sid", "receive_shadows");
receiveShadowsNode->SetAttribute("type", "bool");
tinyxml2::XMLText* receiveShadowsText = doc->NewText("1");
receiveShadowsNode->LinkEndChild(receiveShadowsText);
//-----------------------------
tinyxml2::XMLElement* primaryVisibiltyNode = doc->NewElement("primary_visibility");
extraInsGeoTechNode->LinkEndChild(primaryVisibiltyNode);
primaryVisibiltyNode->SetAttribute("sid", "primary_visibility");
primaryVisibiltyNode->SetAttribute("type", "int");
tinyxml2::XMLText* primaryVisibiltyText = doc->NewText("1");
primaryVisibiltyNode->LinkEndChild(primaryVisibiltyText);
//-----------------------------
tinyxml2::XMLElement* secondaryVisibilityNode = doc->NewElement("secondary_visibility");
extraInsGeoTechNode->LinkEndChild(secondaryVisibilityNode);
secondaryVisibilityNode->SetAttribute("sid", "secondary_visibility");
secondaryVisibilityNode->SetAttribute("type", "int");
tinyxml2::XMLText* secondaryVisibilityText = doc->NewText("1");
secondaryVisibilityNode->LinkEndChild(secondaryVisibilityText);
// Extra info useful for COLLADAMaya importer (OpenCOLLADA)
tinyxml2::XMLElement* extra2InsGeoNode = doc->NewElement("extra");
nodeNode->LinkEndChild(extra2InsGeoNode);
tinyxml2::XMLElement* extra2InsGeoTechNode = doc->NewElement("technique");
extra2InsGeoNode->LinkEndChild(extra2InsGeoTechNode);
extra2InsGeoTechNode->SetAttribute("profile", "OpenCOLLADAMaya");
tinyxml2::XMLElement* mayaNodeId = doc->NewElement("originalMayaNodeId");
extra2InsGeoTechNode->LinkEndChild(mayaNodeId);
mayaNodeId->SetAttribute("sid", "originalMayaNodeId");
mayaNodeId->SetAttribute("type", "string");
tinyxml2::XMLText* mayaNodeIdMesh = doc->NewText(colMeshName);
mayaNodeId->LinkEndChild(mayaNodeIdMesh);
tinyxml2::XMLElement* paramExtraNode = doc->NewElement("param");
extra2InsGeoTechNode->LinkEndChild(paramExtraNode);
paramExtraNode->SetAttribute("sid", "colladaId");
paramExtraNode->SetAttribute("type", "string");
tinyxml2::XMLText* mayaParamMesh = doc->NewText(colMeshName);
paramExtraNode->LinkEndChild(mayaParamMesh);
}
//-----------------------------
tinyxml2::XMLElement* sceneNode = doc->NewElement("scene");
rootNode->LinkEndChild(sceneNode);
tinyxml2::XMLElement* instVisSceneNode = doc->NewElement("instance_visual_scene");
sceneNode->LinkEndChild(instVisSceneNode);
instVisSceneNode->SetAttribute("url", "#RootNode");
}
void ColladaUtils::exportToCollada(const Torque::Path& colladaFile, const OptimizedPolyList& mesh, const String& meshName)
{
// Get the mesh name
String outMeshName = meshName;
if (outMeshName.isEmpty())
outMeshName = colladaFile.getFileName();
// The XML document that will hold all of our data
VfsXMLDocument doc;
// Add a standard XML declaration to the top
tinyxml2::XMLDeclaration* xmlDecl = doc.NewDeclaration();
doc.LinkEndChild(xmlDecl);
// Create our Collada root node and populate a couple standard attributes
tinyxml2::XMLElement* rootNode = doc.NewElement("COLLADA");
rootNode->SetAttribute("xmlns", "http://www.collada.org/2005/11/COLLADASchema");
rootNode->SetAttribute("version", "1.4.1");
//rootNode->SetAttribute("xmlns:xsi", "http://www.w3.org/2001/XMLSchema-instance"); //T3D Collada loader complaint about this.
// Add the root node to the document
doc.LinkEndChild(rootNode);
// Save out our header info
exportColladaHeader(rootNode);
// Save out the materials
Vector<String> mapNames;
exportColladaMaterials(rootNode, mesh, mapNames, colladaFile);
S32 suffix;
String baseMeshName = String::GetTrailingNumber(outMeshName, suffix);
// Save out our geometry
exportColladaMesh(rootNode, mesh, baseMeshName, mapNames);
// Save out our scene nodes
exportColladaScene(rootNode, baseMeshName, mapNames);
// Write out the actual Collada file
char fullPath[MAX_PATH_LENGTH];
Platform::makeFullPathName(colladaFile.getFullPath(), fullPath, MAX_PATH_LENGTH);
if (!doc.SaveFile(fullPath))
Con::errorf("ColladaUtils::exportToCollada(): Unable to export to %s", fullPath);
}
void ColladaUtils::exportToCollada(const Torque::Path& colladaFile, const ExportData& exportData)
{
// Get the mesh name
String outMeshName = colladaFile.getFileName();
// The XML document that will hold all of our data
VfsXMLDocument doc;
// Add a standard XML declaration to the top
tinyxml2::XMLDeclaration* xmlDecl = doc.NewDeclaration();
doc.LinkEndChild(xmlDecl);
// Create our Collada root node and populate a couple standard attributes
tinyxml2::XMLElement* rootNode = doc.NewElement("COLLADA");
rootNode->SetAttribute("xmlns", "http://www.collada.org/2005/11/COLLADASchema");
rootNode->SetAttribute("version", "1.4.1");
//rootNode->SetAttribute("xmlns:xsi", "http://www.w3.org/2001/XMLSchema-instance"); //T3D Collada loader complaint about this.
// Add the root node to the document
doc.LinkEndChild(rootNode);
// Save out our header info
exportColladaHeader(rootNode);
// Save out the materials
Vector<String> mapNames;
exportColladaMaterials(rootNode, exportData, colladaFile);
S32 suffix;
String baseMeshName = String::GetTrailingNumber(outMeshName, suffix);
// Save out our geometry
exportColladaMesh(rootNode, exportData, baseMeshName);
// Save out our scene nodes
exportColladaScene(rootNode, exportData, baseMeshName);
// Write out the actual Collada file
char fullPath[MAX_PATH_LENGTH];
Platform::makeFullPathName(colladaFile.getFullPath(), fullPath, MAX_PATH_LENGTH);
if (!doc.SaveFile(fullPath))
Con::errorf("ColladaUtils::exportToCollada(): Unable to export to %s", fullPath);
}
void ColladaUtils::ExportData::processData()
{
//This pref dictates if we 'backfill' lower LODs with higher ones if any given mesh being exported lacks that level.
//For example, if there are 2 meshes, and one has 500, 200, 100 and the other has 500 and 200 - if this setting is on, the second mesh
//will backfill the 200 to the 100 so it has all levels filled. If it's off, the second mesh will not render at the 100 level
bool fillLowDetailLevels = dAtob(Con::getVariable("$exportMesh::fillLowDetailLevels", "1"));
S32 numDetailLevels = numberOfDetailLevels();
detailLevels.clear();
detailLevels.setSize(numDetailLevels);
for (U32 meshNum = 0; meshNum < meshData.size(); ++meshNum)
{
for (U32 i = 0; i < numDetailLevels; ++i)
{
//Get our target size
S32 targetDetailLevelSize = getDetailLevelSize(i);
//alright, step through each meshdata and propagate the polyList info 'up' to fill
detailLevel* curDetail = &detailLevels[i];
curDetail->size = targetDetailLevelSize;
//Do we have a detail level for this?
S32 detailLevelIdx = -1;
for (S32 mdl = i; mdl >= 0; mdl--)
{
//walk backwards as needed to find our first valid detail level for this mesh. if we find none, just move on
S32 testDetailLevelSize = getDetailLevelSize(mdl);
detailLevelIdx = meshData[meshNum].hasDetailLevel(testDetailLevelSize);
if (detailLevelIdx != -1)
break;
}
if (detailLevelIdx == -1)
{
//found nothing backwards, so lets check if we're configured to back-fill the first detail levels
if (fillLowDetailLevels)
{
//if so, search forward, find the first valid detail and fill it in
for (S32 mdl = 0; mdl < numDetailLevels; mdl++)
{
//walk backwards as needed to find our first valid detail level for this mesh. if we find none, just move on
S32 testDetailLevelSize = getDetailLevelSize(mdl);
detailLevelIdx = meshData[meshNum].hasDetailLevel(testDetailLevelSize);
if (detailLevelIdx != -1)
break;
}
}
}
//If we found the detail level index, go ahead and build out the data for it
if (detailLevelIdx != -1)
{
curDetail->mesh.setTransform(&meshData[meshNum].meshTransform, meshData[meshNum].scale);
curDetail->mesh.setObject(meshData[meshNum].originatingObject);
if (meshData[meshNum].shapeInst != NULL)
{
if (!meshData[meshNum].shapeInst->buildPolyList(&curDetail->mesh, detailLevelIdx))
{
Con::errorf("TSStatic::buildExportPolyList - failed to build polylist for LOD %i", i);
continue;
}
}
else
{
//special handling classes
ConvexShape* convexShp = dynamic_cast<ConvexShape*>(meshData[meshNum].originatingObject);
if (convexShp != NULL)
{
if (!convexShp->buildPolyList(PLC_Export, &curDetail->mesh, meshData[meshNum].originatingObject->getWorldBox(), meshData[meshNum].originatingObject->getWorldSphere()))
{
Con::errorf("TSStatic::buildExportPolyList - failed to build ConvexShape polylist for LOD %i", i);
continue;
}
}
}
//lastly, get material
for (U32 matNum = 0; matNum < curDetail->mesh.mMaterialList.size(); matNum++)
{
S32 matIdx = hasMaterialInstance(curDetail->mesh.mMaterialList[matNum]);
if (matIdx == -1)
{
//cool, haven't already got this material, so lets store it out
materials.push_back(curDetail->mesh.mMaterialList[matNum]);
curDetail->materialRefList.insert(matNum, materials.size() - 1);
}
else
{
curDetail->materialRefList.insert(matNum, matIdx);
}
}
}
}
}
}