Torque3D/Engine/source/navigation/navMesh.cpp
marauder2k7 30b9502e90 navmesh
cache tiles data if keep intermediate is on
(we only need to cache the results of recast)

fix tile generation (again)

Add !m_geo check so that buildTile can regen the geometry needed to build the tile again.
2025-07-23 21:02:44 +01:00

1883 lines
55 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2014 Daniel Buckmaster
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "navMesh.h"
#include "navContext.h"
#include <DetourDebugDraw.h>
#include <RecastDebugDraw.h>
#include "math/mathUtils.h"
#include "math/mRandom.h"
#include "console/consoleTypes.h"
#include "console/engineAPI.h"
#include "console/typeValidators.h"
#include "scene/sceneRenderState.h"
#include "gfx/gfxDrawUtil.h"
#include "renderInstance/renderPassManager.h"
#include "gfx/primBuilder.h"
#include "core/stream/bitStream.h"
#include "math/mathIO.h"
#include "core/stream/fileStream.h"
#include "T3D/assets/LevelAsset.h"
extern bool gEditingMission;
IMPLEMENT_CO_NETOBJECT_V1(NavMesh);
const U32 NavMesh::mMaxVertsPerPoly = 3;
SimObjectPtr<SimSet> NavMesh::smServerSet = NULL;
ImplementEnumType(NavMeshWaterMethod,
"The method used to include water surfaces in the NavMesh.\n")
{ NavMesh::Ignore, "Ignore", "Ignore all water surfaces.\n" },
{ NavMesh::Solid, "Solid", "Treat water surfaces as solid and walkable.\n" },
{ NavMesh::Impassable, "Impassable", "Treat water as an impassable obstacle.\n" },
EndImplementEnumType;
SimSet *NavMesh::getServerSet()
{
if(!smServerSet)
{
SimSet *set = NULL;
if(Sim::findObject("ServerNavMeshSet", set))
smServerSet = set;
else
{
smServerSet = new SimSet();
smServerSet->registerObject("ServerNavMeshSet");
Sim::getRootGroup()->addObject(smServerSet);
}
}
return smServerSet;
}
SimObjectPtr<EventManager> NavMesh::smEventManager = NULL;
EventManager *NavMesh::getEventManager()
{
if(!smEventManager)
{
smEventManager = new EventManager();
smEventManager->registerObject("NavEventManager");
Sim::getRootGroup()->addObject(smEventManager);
smEventManager->setMessageQueue("NavEventManagerQueue");
smEventManager->registerEvent("NavMeshCreated");
smEventManager->registerEvent("NavMeshRemoved");
smEventManager->registerEvent("NavMeshStartUpdate");
smEventManager->registerEvent("NavMeshUpdate");
smEventManager->registerEvent("NavMeshTileUpdate");
smEventManager->registerEvent("NavMeshUpdateBox");
smEventManager->registerEvent("NavMeshObstacleAdded");
smEventManager->registerEvent("NavMeshObstacleRemoved");
}
return smEventManager;
}
DefineEngineFunction(getNavMeshEventManager, S32, (),,
"@brief Get the EventManager object for all NavMesh updates.")
{
return NavMesh::getEventManager()->getId();
}
DefineEngineFunction(NavMeshUpdateAll, void, (S32 objid, bool remove), (0, false),
"@brief Update all NavMesh tiles that intersect the given object's world box.")
{
SceneObject *obj;
if(!Sim::findObject(objid, obj))
return;
obj->mPathfindingIgnore = remove;
SimSet *set = NavMesh::getServerSet();
for(U32 i = 0; i < set->size(); i++)
{
NavMesh *m = dynamic_cast<NavMesh*>(set->at(i));
if (m)
{
m->cancelBuild();
m->buildTiles(obj->getWorldBox());
}
}
}
DefineEngineFunction(NavMeshUpdateAroundObject, void, (S32 objid, bool remove), (0, false),
"@brief Update all NavMesh tiles that intersect the given object's world box.")
{
SceneObject *obj;
if (!Sim::findObject(objid, obj))
return;
obj->mPathfindingIgnore = remove;
SimSet *set = NavMesh::getServerSet();
for (U32 i = 0; i < set->size(); i++)
{
NavMesh *m = dynamic_cast<NavMesh*>(set->at(i));
if (m)
{
m->cancelBuild();
m->buildTiles(obj->getWorldBox());
}
}
}
DefineEngineFunction(NavMeshIgnore, void, (S32 objid, bool _ignore), (0, true),
"@brief Flag this object as not generating a navmesh result.")
{
SceneObject *obj;
if(!Sim::findObject(objid, obj))
return;
obj->mPathfindingIgnore = _ignore;
}
DefineEngineFunction(NavMeshUpdateOne, void, (S32 meshid, S32 objid, bool remove), (0, 0, false),
"@brief Update all tiles in a given NavMesh that intersect the given object's world box.")
{
NavMesh *mesh;
SceneObject *obj;
if(!Sim::findObject(meshid, mesh))
{
Con::errorf("NavMeshUpdateOne: cannot find NavMesh %d", meshid);
return;
}
if(!Sim::findObject(objid, obj))
{
Con::errorf("NavMeshUpdateOne: cannot find SceneObject %d", objid);
return;
}
if(remove)
obj->disableCollision();
mesh->buildTiles(obj->getWorldBox());
if(remove)
obj->enableCollision();
}
NavMesh::NavMesh()
: m_triareas(0),
m_solid(0),
m_chf(0),
m_cset(0),
m_pmesh(0),
m_dmesh(0)
{
mTypeMask |= StaticShapeObjectType | MarkerObjectType;
mFileName = StringTable->EmptyString();
mNetFlags.clear(Ghostable);
mSaveIntermediates = false;
nm = NULL;
ctx = NULL;
m_geo = NULL;
mWaterMethod = Ignore;
mCellSize = mCellHeight = 0.2f;
mWalkableHeight = 2.0f;
mWalkableClimb = 0.3f;
mWalkableRadius = 0.5f;
mWalkableSlope = 40.0f;
mBorderSize = 1;
mDetailSampleDist = 6.0f;
mDetailSampleMaxError = 1.0f;
mMaxEdgeLen = 12;
mMaxSimplificationError = 1.3f;
mMinRegionArea = 8;
mMergeRegionArea = 20;
mTileSize = 10.0f;
mMaxPolysPerTile = 128;
mSmallCharacters = false;
mRegularCharacters = true;
mLargeCharacters = false;
mVehicles = false;
mCoverSet = StringTable->EmptyString();
mInnerCover = false;
mCoverDist = 1.0f;
mPeekDist = 0.7f;
mAlwaysRender = false;
mBuilding = false;
mCurLinkID = 0;
}
NavMesh::~NavMesh()
{
dtFreeNavMesh(nm);
nm = NULL;
delete ctx;
ctx = NULL;
}
bool NavMesh::setProtectedDetailSampleDist(void *obj, const char *index, const char *data)
{
F32 dist = dAtof(data);
if(dist == 0.0f || dist >= 0.9f)
return true;
if (dist > 0.0f && dist < 0.9f)
{
NavMesh* ptr = static_cast<NavMesh*>(obj);
ptr->mDetailSampleDist = 0.9f;
}
Con::errorf("NavMesh::detailSampleDist must be 0 or greater than 0.9!");
return false;
}
bool NavMesh::setProtectedAlwaysRender(void *obj, const char *index, const char *data)
{
NavMesh *mesh = static_cast<NavMesh*>(obj);
bool always = dAtob(data);
if(always)
{
if(!gEditingMission)
mesh->mNetFlags.set(Ghostable);
}
else
{
if(!gEditingMission)
mesh->mNetFlags.clear(Ghostable);
}
mesh->mAlwaysRender = always;
mesh->setMaskBits(LoadFlag);
return true;
}
FRangeValidator ValidCellSize(0.01f, 10.0f);
void NavMesh::initPersistFields()
{
docsURL;
addGroup("NavMesh Options");
addField("fileName", TypeString, Offset(mFileName, NavMesh),
"Name of the data file to store this navmesh in (relative to engine executable).");
addField("waterMethod", TYPEID<NavMeshWaterMethod>(), Offset(mWaterMethod, NavMesh),
"The method to use to handle water surfaces.");
addFieldV("cellSize", TypeRangedF32, Offset(mCellSize, NavMesh), &ValidCellSize,
"Length/width of a voxel.");
addFieldV("cellHeight", TypeRangedF32, Offset(mCellHeight, NavMesh), &ValidCellSize,
"Height of a voxel.");
addFieldV("tileSize", TypeRangedF32, Offset(mTileSize, NavMesh), &CommonValidators::PositiveNonZeroFloat,
"The horizontal size of tiles.");
addFieldV("actorHeight", TypeRangedF32, Offset(mWalkableHeight, NavMesh), &CommonValidators::PositiveFloat,
"Height of an actor.");
addFieldV("actorClimb", TypeRangedF32, Offset(mWalkableClimb, NavMesh), &CommonValidators::PositiveFloat,
"Maximum climbing height of an actor.");
addFieldV("actorRadius", TypeRangedF32, Offset(mWalkableRadius, NavMesh), &CommonValidators::PositiveFloat,
"Radius of an actor.");
addFieldV("walkableSlope", TypeRangedF32, Offset(mWalkableSlope, NavMesh), &CommonValidators::ValidSlopeAngle,
"Maximum walkable slope in degrees.");
addField("smallCharacters", TypeBool, Offset(mSmallCharacters, NavMesh),
"Is this NavMesh for smaller-than-usual characters?");
addField("regularCharacters", TypeBool, Offset(mRegularCharacters, NavMesh),
"Is this NavMesh for regular-sized characters?");
addField("largeCharacters", TypeBool, Offset(mLargeCharacters, NavMesh),
"Is this NavMesh for larger-than-usual characters?");
addField("vehicles", TypeBool, Offset(mVehicles, NavMesh),
"Is this NavMesh for characters driving vehicles?");
endGroup("NavMesh Options");
addGroup("NavMesh Annotations");
addField("coverGroup", TypeString, Offset(mCoverSet, NavMesh),
"Name of the SimGroup to store cover points in.");
addField("innerCover", TypeBool, Offset(mInnerCover, NavMesh),
"Add cover points everywhere, not just on corners?");
addFieldV("coverDist", TypeRangedF32, Offset(mCoverDist, NavMesh), &CommonValidators::PositiveFloat,
"Distance from the edge of the NavMesh to search for cover.");
addFieldV("peekDist", TypeRangedF32, Offset(mPeekDist, NavMesh), &CommonValidators::PositiveFloat,
"Distance to the side of each cover point that peeking happens.");
endGroup("NavMesh Annotations");
addGroup("NavMesh Rendering");
addProtectedField("alwaysRender", TypeBool, Offset(mAlwaysRender, NavMesh),
&setProtectedAlwaysRender, &defaultProtectedGetFn,
"Display this NavMesh even outside the editor.");
endGroup("NavMesh Rendering");
addGroup("NavMesh Advanced Options");
addFieldV("borderSize", TypeRangedS32, Offset(mBorderSize, NavMesh), &CommonValidators::PositiveInt,
"Size of the non-walkable border around the navigation mesh (in voxels).");
addProtectedFieldV("detailSampleDist", TypeRangedF32, Offset(mDetailSampleDist, NavMesh),
&setProtectedDetailSampleDist, &defaultProtectedGetFn, &CommonValidators::PositiveFloat,
"Sets the sampling distance to use when generating the detail mesh.");
addFieldV("detailSampleError", TypeRangedF32, Offset(mDetailSampleMaxError, NavMesh), &CommonValidators::PositiveFloat,
"The maximum distance the detail mesh surface should deviate from heightfield data.");
addFieldV("maxEdgeLen", TypeRangedS32, Offset(mMaxEdgeLen, NavMesh), &CommonValidators::PositiveInt,
"The maximum allowed length for contour edges along the border of the mesh.");
addFieldV("simplificationError", TypeRangedF32, Offset(mMaxSimplificationError, NavMesh), &CommonValidators::PositiveFloat,
"The maximum distance a simplfied contour's border edges should deviate from the original raw contour.");
addFieldV("minRegionArea", TypeRangedS32, Offset(mMinRegionArea, NavMesh), &CommonValidators::PositiveInt,
"The minimum number of cells allowed to form isolated island areas.");
addFieldV("mergeRegionArea", TypeRangedS32, Offset(mMergeRegionArea, NavMesh), &CommonValidators::PositiveInt,
"Any regions with a span count smaller than this value will, if possible, be merged with larger regions.");
addFieldV("maxPolysPerTile", TypeRangedS32, Offset(mMaxPolysPerTile, NavMesh), &CommonValidators::NaturalNumber,
"The maximum number of polygons allowed in a tile.");
endGroup("NavMesh Advanced Options");
Parent::initPersistFields();
}
bool NavMesh::onAdd()
{
if(!Parent::onAdd())
return false;
mObjBox.set(Point3F(-0.5f, -0.5f, -0.5f),
Point3F( 0.5f, 0.5f, 0.5f));
resetWorldBox();
addToScene();
if(gEditingMission || mAlwaysRender)
{
mNetFlags.set(Ghostable);
if (isClientObject())
renderToDrawer();
}
if(isServerObject())
{
getServerSet()->addObject(this);
ctx = new NavContext();
setProcessTick(true);
if(getEventManager())
getEventManager()->postEvent("NavMeshCreated", getIdString());
}
load();
return true;
}
void NavMesh::onRemove()
{
if(getEventManager())
getEventManager()->postEvent("NavMeshRemoved", getIdString());
removeFromScene();
Parent::onRemove();
}
void NavMesh::setTransform(const MatrixF &mat)
{
Parent::setTransform(mat);
}
void NavMesh::setScale(const VectorF &scale)
{
Parent::setScale(scale);
}
S32 NavMesh::addLink(const Point3F &from, const Point3F &to, U32 flags)
{
Point3F rcFrom = DTStoRC(from), rcTo = DTStoRC(to);
mLinkVerts.push_back(rcFrom.x);
mLinkVerts.push_back(rcFrom.y);
mLinkVerts.push_back(rcFrom.z);
mLinkVerts.push_back(rcTo.x);
mLinkVerts.push_back(rcTo.y);
mLinkVerts.push_back(rcTo.z);
mLinksUnsynced.push_back(true);
mLinkRads.push_back(mWalkableRadius);
mLinkDirs.push_back(0);
mLinkAreas.push_back(OffMeshArea);
if (flags == 0) {
Point3F dir = to - from;
F32 drop = -dir.z;
dir.z = 0;
// If we drop more than we travel horizontally, we're a drop link.
if(drop > dir.len())
mLinkFlags.push_back(DropFlag);
else
mLinkFlags.push_back(JumpFlag);
}
mLinkIDs.push_back(1000 + mCurLinkID);
mLinkSelectStates.push_back(Unselected);
mDeleteLinks.push_back(false);
mCurLinkID++;
return mLinkIDs.size() - 1;
}
DefineEngineMethod(NavMesh, addLink, S32, (Point3F from, Point3F to, U32 flags), (0),
"Add a link to this NavMesh between two points.\n\n"
"")
{
return object->addLink(from, to, flags);
}
S32 NavMesh::getLink(const Point3F &pos)
{
for(U32 i = 0; i < mLinkIDs.size(); i++)
{
if(mDeleteLinks[i])
continue;
SphereF start(getLinkStart(i), mLinkRads[i]);
SphereF end(getLinkEnd(i), mLinkRads[i]);
if(start.isContained(pos) || end.isContained(pos))
return i;
}
return -1;
}
DefineEngineMethod(NavMesh, getLink, S32, (Point3F pos),,
"Get the off-mesh link closest to a given world point.")
{
return object->getLink(pos);
}
S32 NavMesh::getLinkCount()
{
return mLinkIDs.size();
}
DefineEngineMethod(NavMesh, getLinkCount, S32, (),,
"Return the number of links this mesh has.")
{
return object->getLinkCount();
}
LinkData NavMesh::getLinkFlags(U32 idx)
{
if(idx < mLinkIDs.size())
{
return LinkData(mLinkFlags[idx]);
}
return LinkData();
}
DefineEngineMethod(NavMesh, getLinkFlags, S32, (U32 id),,
"Get the flags set for a particular off-mesh link.")
{
return object->getLinkFlags(id).getFlags();
}
void NavMesh::setLinkFlags(U32 idx, const LinkData &d)
{
if(idx < mLinkIDs.size())
{
mLinkFlags[idx] = d.getFlags();
mLinksUnsynced[idx] = true;
}
}
DefineEngineMethod(NavMesh, setLinkFlags, void, (U32 id, U32 flags),,
"Set the flags of a particular off-mesh link.")
{
LinkData d(flags);
object->setLinkFlags(id, d);
}
Point3F NavMesh::getLinkStart(U32 idx)
{
return RCtoDTS(Point3F(
mLinkVerts[idx*6],
mLinkVerts[idx*6 + 1],
mLinkVerts[idx*6 + 2]));
}
DefineEngineMethod(NavMesh, getLinkStart, Point3F, (U32 id),,
"Get the starting point of an off-mesh link.")
{
return object->getLinkStart(id);
}
Point3F NavMesh::getLinkEnd(U32 idx)
{
return RCtoDTS(Point3F(
mLinkVerts[idx*6 + 3],
mLinkVerts[idx*6 + 4],
mLinkVerts[idx*6 + 5]));
}
DefineEngineMethod(NavMesh, getLinkEnd, Point3F, (U32 id),,
"Get the ending point of an off-mesh link.")
{
return object->getLinkEnd(id);
}
void NavMesh::selectLink(U32 idx, bool select, bool hover)
{
if(idx < mLinkIDs.size())
{
if(!select)
mLinkSelectStates[idx] = Unselected;
else
mLinkSelectStates[idx] = hover ? Hovered : Selected;
}
}
void NavMesh::eraseLink(U32 i)
{
mLinkVerts.erase(i*6, 6);
mLinksUnsynced.erase(i);
mLinkRads.erase(i);
mLinkDirs.erase(i);
mLinkAreas.erase(i);
mLinkFlags.erase(i);
mLinkIDs.erase(i);
mLinkSelectStates.erase(i);
mDeleteLinks.erase(i);
}
void NavMesh::eraseLinks()
{
mLinkVerts.clear();
mLinksUnsynced.clear();
mLinkRads.clear();
mLinkDirs.clear();
mLinkAreas.clear();
mLinkFlags.clear();
mLinkIDs.clear();
mLinkSelectStates.clear();
mDeleteLinks.clear();
}
void NavMesh::setLinkCount(U32 c)
{
eraseLinks();
mLinkVerts.setSize(c * 6);
mLinksUnsynced.setSize(c);
mLinkRads.setSize(c);
mLinkDirs.setSize(c);
mLinkAreas.setSize(c);
mLinkFlags.setSize(c);
mLinkIDs.setSize(c);
mLinkSelectStates.setSize(c);
mDeleteLinks.setSize(c);
}
void NavMesh::deleteLink(U32 idx)
{
if(idx < mLinkIDs.size())
{
mDeleteLinks[idx] = true;
if(mLinksUnsynced[idx])
eraseLink(idx);
else
mLinksUnsynced[idx] = true;
}
}
DefineEngineMethod(NavMesh, deleteLink, void, (U32 id),,
"Delete a given off-mesh link.")
{
object->deleteLink(id);
}
DefineEngineMethod(NavMesh, deleteLinks, void, (),,
"Deletes all off-mesh links on this NavMesh.")
{
//object->eraseLinks();
}
static void buildCallback(SceneObject* object, void* key)
{
SceneContainer::CallbackInfo* info = reinterpret_cast<SceneContainer::CallbackInfo*>(key);
if (!object->mPathfindingIgnore)
object->buildPolyList(info->context, info->polyList, info->boundingBox, info->boundingSphere);
}
bool NavMesh::build(bool background, bool saveIntermediates)
{
if(mBuilding)
cancelBuild();
else
{
if(getEventManager())
getEventManager()->postEvent("NavMeshStartUpdate", getIdString());
}
mBuilding = true;
ctx->startTimer(RC_TIMER_TOTAL);
dtFreeNavMesh(nm);
// Allocate a new navmesh.
nm = dtAllocNavMesh();
if(!nm)
{
Con::errorf("Could not allocate dtNavMesh for NavMesh %s", getIdString());
return false;
}
Box3F worldBox = getWorldBox();
SceneContainer::CallbackInfo info;
info.context = PLC_Navigation;
info.boundingBox = worldBox;
m_geo = new RecastPolyList;
info.polyList = m_geo;
info.key = this;
getContainer()->findObjects(worldBox, StaticObjectType | DynamicShapeObjectType, buildCallback, &info);
// Parse water objects into the same list, but remember how much geometry was /not/ water.
U32 nonWaterVertCount = m_geo->getVertCount();
U32 nonWaterTriCount = m_geo->getTriCount();
if (mWaterMethod != Ignore)
{
getContainer()->findObjects(worldBox, WaterObjectType, buildCallback, &info);
}
// Check for no geometry.
if (!m_geo->getVertCount())
{
m_geo->clear();
return false;
}
m_geo->getChunkyMesh();
// Needed for the recast config and generation params.
Box3F rc_box = DTStoRC(getWorldBox());
S32 gw = 0, gh = 0;
rcCalcGridSize(rc_box.minExtents, rc_box.maxExtents, mCellSize, &gw, &gh);
const S32 ts = (S32)(mTileSize / mCellSize);
const S32 tw = (gw + ts - 1) / ts;
const S32 th = (gh + ts - 1) / ts;
Con::printf("NavMesh::Build - Tiles %d x %d", tw, th);
U32 tileBits = mMin(getBinLog2(getNextPow2(tw * th)), 14);
if (tileBits > 14) tileBits = 14;
U32 maxTiles = 1 << tileBits;
U32 polyBits = 22 - tileBits;
mMaxPolysPerTile = 1 << polyBits;
// Build navmesh parameters from console members.
dtNavMeshParams params;
rcVcopy(params.orig, rc_box.minExtents);
params.tileWidth = mTileSize;
params.tileHeight = mTileSize;
params.maxTiles = maxTiles;
params.maxPolys = mMaxPolysPerTile;
// Initialise our navmesh.
if(dtStatusFailed(nm->init(&params)))
{
Con::errorf("Could not init dtNavMesh for NavMesh %s", getIdString());
return false;
}
// Update links to be deleted.
for(U32 i = 0; i < mLinkIDs.size();)
{
if(mDeleteLinks[i])
eraseLink(i);
else
i++;
}
mLinksUnsynced.fill(false);
mCurLinkID = 0;
mSaveIntermediates = saveIntermediates;
updateTiles(true);
if(!background)
{
while(!mDirtyTiles.empty())
buildNextTile();
}
return true;
}
DefineEngineMethod(NavMesh, build, bool, (bool background, bool save), (true, false),
"@brief Create a Recast nav mesh.")
{
return object->build(background, save);
}
void NavMesh::cancelBuild()
{
mDirtyTiles.clear();
ctx->stopTimer(RC_TIMER_TOTAL);
mBuilding = false;
}
DefineEngineMethod(NavMesh, cancelBuild, void, (),,
"@brief Cancel the current NavMesh build.")
{
object->cancelBuild();
}
void NavMesh::inspectPostApply()
{
if(mBuilding)
cancelBuild();
}
void NavMesh::createNewFile()
{
// We need to construct a default file name
String levelAssetId(Con::getVariable("$Client::LevelAsset"));
LevelAsset* levelAsset;
if (!Sim::findObject(levelAssetId.c_str(), levelAsset))
{
Con::errorf("NavMesh::createNewFile() - Unable to find current level's LevelAsset. Unable to construct NavMesh filePath");
return;
}
Torque::Path basePath(levelAsset->getNavmeshPath());
if (basePath.isEmpty())
basePath = (Torque::Path)(levelAsset->getLevelPath());
String fileName = Torque::FS::MakeUniquePath(basePath.getPath(), basePath.getFileName(), "nav");
mFileName = StringTable->insert(fileName.c_str());
}
void NavMesh::updateConfig()
{
//// Build rcConfig object from our console members.
//dMemset(&cfg, 0, sizeof(cfg));
//cfg.cs = mCellSize;
//cfg.ch = mCellHeight;
//Box3F box = DTStoRC(getWorldBox());
//rcVcopy(cfg.bmin, box.minExtents);
//rcVcopy(cfg.bmax, box.maxExtents);
//rcCalcGridSize(cfg.bmin, cfg.bmax, cfg.cs, &cfg.width, &cfg.height);
//cfg.walkableHeight = mCeil(mWalkableHeight / mCellHeight);
//cfg.walkableClimb = mCeil(mWalkableClimb / mCellHeight);
//cfg.walkableRadius = mCeil(mWalkableRadius / mCellSize);
//cfg.walkableSlopeAngle = mWalkableSlope;
//cfg.borderSize = cfg.walkableRadius + 3;
//cfg.detailSampleDist = mDetailSampleDist;
//cfg.detailSampleMaxError = mDetailSampleMaxError;
//cfg.maxEdgeLen = mMaxEdgeLen;
//cfg.maxSimplificationError = mMaxSimplificationError;
//cfg.maxVertsPerPoly = mMaxVertsPerPoly;
//cfg.minRegionArea = mMinRegionArea;
//cfg.mergeRegionArea = mMergeRegionArea;
//cfg.tileSize = mTileSize / cfg.cs;
}
S32 NavMesh::getTile(const Point3F& pos)
{
if(mBuilding)
return -1;
for(U32 i = 0; i < mTiles.size(); i++)
{
if(mTiles[i].box.isContained(pos))
return i;
}
return -1;
}
Box3F NavMesh::getTileBox(U32 id)
{
if(mBuilding || id >= mTiles.size())
return Box3F::Invalid;
return mTiles[id].box;
}
void NavMesh::updateTiles(bool dirty)
{
PROFILE_SCOPE(NavMesh_updateTiles);
if(!isProperlyAdded())
return;
mTiles.clear();
mDirtyTiles.clear();
const Box3F &box = DTStoRC(getWorldBox());
if(box.isEmpty())
return;
// Calculate tile dimensions.
const F32* bmin = box.minExtents;
const F32* bmax = box.maxExtents;
S32 gw = 0, gh = 0;
rcCalcGridSize(bmin, bmax, mCellSize, &gw, &gh);
const S32 ts = (S32)(mTileSize / mCellSize);
const S32 tw = (gw + ts - 1) / ts;
const S32 th = (gh + ts - 1) / ts;
const F32 tcs = mTileSize;
// Iterate over tiles.
F32 tileBmin[3], tileBmax[3];
for(U32 y = 0; y < th; ++y)
{
for(U32 x = 0; x < tw; ++x)
{
tileBmin[0] = bmin[0] + x*tcs;
tileBmin[1] = bmin[1];
tileBmin[2] = bmin[2] + y*tcs;
tileBmax[0] = bmin[0] + (x+1)*tcs;
tileBmax[1] = bmax[1];
tileBmax[2] = bmin[2] + (y+1)*tcs;
mTiles.push_back(
Tile(RCtoDTS(tileBmin, tileBmax),
x, y,
tileBmin, tileBmax));
if(dirty)
mDirtyTiles.push_back_unique(mTiles.size() - 1);
}
}
}
void NavMesh::processTick(const Move *move)
{
buildNextTile();
}
void NavMesh::buildNextTile()
{
PROFILE_SCOPE(NavMesh_buildNextTile);
// this is just here so that load regens the mesh, also buildTile needs to regen incase geometry has changed.
if (!m_geo)
{
Box3F worldBox = getWorldBox();
SceneContainer::CallbackInfo info;
info.context = PLC_Navigation;
info.boundingBox = worldBox;
m_geo = new RecastPolyList;
info.polyList = m_geo;
info.key = this;
getContainer()->findObjects(worldBox, StaticObjectType | DynamicShapeObjectType, buildCallback, &info);
// Parse water objects into the same list, but remember how much geometry was /not/ water.
U32 nonWaterVertCount = m_geo->getVertCount();
U32 nonWaterTriCount = m_geo->getTriCount();
if (mWaterMethod != Ignore)
{
getContainer()->findObjects(worldBox, WaterObjectType, buildCallback, &info);
}
// Check for no geometry.
if (!m_geo->getVertCount())
{
m_geo->clear();
return;
}
m_geo->getChunkyMesh();
}
if(!mDirtyTiles.empty())
{
// Pop a single dirty tile and process it.
U32 i = mDirtyTiles.front();
mDirtyTiles.pop_front();
Tile &tile = mTiles[i];
// Remove any previous data.
nm->removeTile(nm->getTileRefAt(tile.x, tile.y, 0), 0, 0);
// Generate navmesh for this tile.
U32 dataSize = 0;
unsigned char* data = buildTileData(tile, dataSize);
// cache our result (these only exist if keep intermediates is ticked)
if (m_chf)
{
tile.chf = m_chf;
m_chf = 0;
}
if (m_solid)
{
tile.solid = m_solid;
m_solid = 0;
}
if (m_cset)
{
tile.cset = m_cset;
m_cset = 0;
}
if (m_pmesh)
{
tile.pmesh = m_pmesh;
m_pmesh = 0;
}
if (m_dmesh)
{
tile.dmesh = m_dmesh;
m_dmesh = 0;
}
if(data)
{
// Add new data (navmesh owns and deletes the data).
dtStatus status = nm->addTile(data, dataSize, DT_TILE_FREE_DATA, 0, 0);
int success = 1;
if(dtStatusFailed(status))
{
success = 0;
dtFree(data);
}
if(getEventManager())
{
String str = String::ToString("%d %d %d (%d, %d) %d %.3f %s",
getId(),
i, mTiles.size(),
tile.x, tile.y,
success,
ctx->getAccumulatedTime(RC_TIMER_TOTAL) / 1000.0f,
castConsoleTypeToString(tile.box));
getEventManager()->postEvent("NavMeshTileUpdate", str.c_str());
setMaskBits(LoadFlag);
}
}
// Did we just build the last tile?
if(mDirtyTiles.empty())
{
ctx->stopTimer(RC_TIMER_TOTAL);
if(getEventManager())
{
String str = String::ToString("%d", getId());
getEventManager()->postEvent("NavMeshUpdate", str.c_str());
setMaskBits(LoadFlag);
}
mBuilding = false;
}
}
}
unsigned char *NavMesh::buildTileData(const Tile &tile, U32 &dataSize)
{
cleanup();
const rcChunkyTriMesh* chunkyMesh = m_geo->getChunkyMesh();
// Push out tile boundaries a bit.
F32 tileBmin[3], tileBmax[3];
rcVcopy(tileBmin, tile.bmin);
rcVcopy(tileBmax, tile.bmax);
// Setup our rcConfig
dMemset(&m_cfg, 0, sizeof(m_cfg));
m_cfg.cs = mCellSize;
m_cfg.ch = mCellHeight;
m_cfg.walkableSlopeAngle = mWalkableSlope;
m_cfg.walkableHeight = (S32)mCeil(mWalkableHeight / m_cfg.ch);
m_cfg.walkableClimb = (S32)mFloor(mWalkableClimb / m_cfg.ch);
m_cfg.walkableRadius = (S32)mCeil(mWalkableRadius / m_cfg.cs);
m_cfg.maxEdgeLen = (S32)(mMaxEdgeLen / mCellSize);
m_cfg.maxSimplificationError = mMaxSimplificationError;
m_cfg.minRegionArea = (S32)mSquared((F32)mMinRegionArea);
m_cfg.mergeRegionArea = (S32)mSquared((F32)mMergeRegionArea);
m_cfg.maxVertsPerPoly = (S32)mMaxVertsPerPoly;
m_cfg.tileSize = (S32)(mTileSize / mCellSize);
m_cfg.borderSize = mMax(m_cfg.walkableRadius + 3, mBorderSize); // use the border size if it is bigger.
m_cfg.width = m_cfg.tileSize + m_cfg.borderSize * 2;
m_cfg.height = m_cfg.tileSize + m_cfg.borderSize * 2;
m_cfg.detailSampleDist = mDetailSampleDist < 0.9f ? 0 : mCellSize * mDetailSampleDist;
m_cfg.detailSampleMaxError = mCellHeight * mDetailSampleMaxError;
rcVcopy(m_cfg.bmin, tileBmin);
rcVcopy(m_cfg.bmax, tileBmax);
m_cfg.bmin[0] -= m_cfg.borderSize * m_cfg.cs;
m_cfg.bmin[2] -= m_cfg.borderSize * m_cfg.cs;
m_cfg.bmax[0] += m_cfg.borderSize * m_cfg.cs;
m_cfg.bmax[2] += m_cfg.borderSize * m_cfg.cs;
// Create a heightfield to voxelise our input geometry.
m_solid = rcAllocHeightfield();
if(!m_solid)
{
Con::errorf("Out of memory (rcHeightField) for NavMesh %s", getIdString());
return NULL;
}
if (!rcCreateHeightfield(ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch))
{
Con::errorf("Could not generate rcHeightField for NavMesh %s", getIdString());
return NULL;
}
m_triareas = new unsigned char[chunkyMesh->maxTrisPerChunk];
if (!m_triareas)
{
Con::errorf("NavMesh::buildTileData: Out of memory 'm_triareas' (%d).", chunkyMesh->maxTrisPerChunk);
return NULL;
}
F32 tbmin[2], tbmax[2];
tbmin[0] = m_cfg.bmin[0];
tbmin[1] = m_cfg.bmin[2];
tbmax[0] = m_cfg.bmax[0];
tbmax[1] = m_cfg.bmax[2];
int cid[512];
const int ncid = rcGetChunksOverlappingRect(chunkyMesh, tbmin, tbmax, cid, 512);
if (!ncid)
return 0;
for (int i = 0; i < ncid; ++i)
{
const rcChunkyTriMeshNode& node = chunkyMesh->nodes[cid[i]];
const int* ctris = &chunkyMesh->tris[node.i * 3];
const int nctris = node.n;
memset(m_triareas, 0, nctris * sizeof(unsigned char));
rcMarkWalkableTriangles(ctx, m_cfg.walkableSlopeAngle,
m_geo->getVerts(), m_geo->getVertCount(), ctris, nctris, m_triareas);
if (!rcRasterizeTriangles(ctx, m_geo->getVerts(), m_geo->getVertCount(), ctris, m_triareas, nctris, *m_solid, m_cfg.walkableClimb))
return NULL;
}
if (!mSaveIntermediates)
{
delete[] m_triareas;
m_triareas = 0;
}
// these should be optional.
//if (m_filterLowHangingObstacles)
rcFilterLowHangingWalkableObstacles(ctx, m_cfg.walkableClimb, *m_solid);
//if (m_filterLedgeSpans)
rcFilterLedgeSpans(ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid);
//if (m_filterWalkableLowHeightSpans)
rcFilterWalkableLowHeightSpans(ctx, m_cfg.walkableHeight, *m_solid);
// Compact the heightfield so that it is faster to handle from now on.
// This will result more cache coherent data as well as the neighbours
// between walkable cells will be calculated.
m_chf = rcAllocCompactHeightfield();
if (!m_chf)
{
Con::errorf("NavMesh::buildTileData: Out of memory 'chf'.");
return NULL;
}
if (!rcBuildCompactHeightfield(ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf))
{
Con::errorf("NavMesh::buildTileData: Could not build compact data.");
return NULL;
}
if (!mSaveIntermediates)
{
rcFreeHeightField(m_solid);
m_solid = NULL;
}
// Erode the walkable area by agent radius.
if (!rcErodeWalkableArea(ctx, m_cfg.walkableRadius, *m_chf))
{
Con::errorf("NavMesh::buildTileData: Could not erode.");
return NULL;
}
//--------------------------
// Todo: mark areas here.
//const ConvexVolume* vols = m_geom->getConvexVolumes();
//for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i)
//rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf);
//--------------------------
// Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas.
// There are 3 martitioning methods, each with some pros and cons:
// These should be implemented.
// 1) Watershed partitioning
// - the classic Recast partitioning
// - creates the nicest tessellation
// - usually slowest
// - partitions the heightfield into nice regions without holes or overlaps
// - the are some corner cases where this method creates produces holes and overlaps
// - holes may appear when a small obstacles is close to large open area (triangulation can handle this)
// - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail
// * generally the best choice if you precompute the nacmesh, use this if you have large open areas
// 2) Monotone partioning
// - fastest
// - partitions the heightfield into regions without holes and overlaps (guaranteed)
// - creates long thin polygons, which sometimes causes paths with detours
// * use this if you want fast navmesh generation
// 3) Layer partitoining
// - quite fast
// - partitions the heighfield into non-overlapping regions
// - relies on the triangulation code to cope with holes (thus slower than monotone partitioning)
// - produces better triangles than monotone partitioning
// - does not have the corner cases of watershed partitioning
// - can be slow and create a bit ugly tessellation (still better than monotone)
// if you have large open areas with small obstacles (not a problem if you use tiles)
// * good choice to use for tiled navmesh with medium and small sized tiles
if (/*m_partitionType == SAMPLE_PARTITION_WATERSHED*/ true)
{
// Prepare for region partitioning, by calculating distance field along the walkable surface.
if (!rcBuildDistanceField(ctx, *m_chf))
{
Con::errorf("NavMesh::buildTileData: Could not build distance field.");
return 0;
}
// Partition the walkable surface into simple regions without holes.
if (!rcBuildRegions(ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
{
Con::errorf("NavMesh::buildTileData: Could not build watershed regions.");
return NULL;
}
}
else if (/*m_partitionType == SAMPLE_PARTITION_MONOTONE*/ false)
{
// Partition the walkable surface into simple regions without holes.
// Monotone partitioning does not need distancefield.
if (!rcBuildRegionsMonotone(ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea))
{
Con::errorf("NavMesh::buildTileData: Could not build monotone regions.");
return NULL;
}
}
else // SAMPLE_PARTITION_LAYERS
{
// Partition the walkable surface into simple regions without holes.
if (!rcBuildLayerRegions(ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea))
{
Con::errorf("NavMesh::buildTileData: Could not build layer regions.");
return NULL;
}
}
m_cset = rcAllocContourSet();
if (!m_cset)
{
Con::errorf("NavMesh::buildTileData: Out of memory 'cset'");
return NULL;
}
if (!rcBuildContours(ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset))
{
Con::errorf("NavMesh::buildTileData: Could not create contours");
return NULL;
}
if (m_cset->nconts == 0)
return NULL;
// Build polygon navmesh from the contours.
m_pmesh = rcAllocPolyMesh();
if (!m_pmesh)
{
Con::errorf("NavMesh::buildTileData: Out of memory 'pmesh'.");
return NULL;
}
if (!rcBuildPolyMesh(ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh))
{
Con::errorf("NavMesh::buildTileData: Could not triangulate contours.");
return NULL;
}
// Build detail mesh.
m_dmesh = rcAllocPolyMeshDetail();
if (!m_dmesh)
{
Con::errorf("NavMesh::buildTileData: Out of memory 'dmesh'.");
return NULL;
}
if (!rcBuildPolyMeshDetail(ctx, *m_pmesh, *m_chf, m_cfg.detailSampleDist, m_cfg.detailSampleMaxError, *m_dmesh))
{
Con::errorf("NavMesh::buildTileData: Could build polymesh detail.");
return NULL;
}
if (!mSaveIntermediates)
{
rcFreeCompactHeightfield(m_chf);
m_chf = 0;
rcFreeContourSet(m_cset);
m_cset = 0;
}
unsigned char* navData = 0;
int navDataSize = 0;
if (m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
{
if (m_pmesh->nverts >= 0xffff)
{
// The vertex indices are ushorts, and cannot point to more than 0xffff vertices.
Con::errorf("NavMesh::buildTileData: Too many vertices per tile %d (max: %d).", m_pmesh->nverts, 0xffff);
return NULL;
}
for (U32 i = 0; i < m_pmesh->npolys; i++)
{
if (m_pmesh->areas[i] == RC_WALKABLE_AREA)
m_pmesh->areas[i] = GroundArea;
if (m_pmesh->areas[i] == GroundArea)
m_pmesh->flags[i] |= WalkFlag;
if (m_pmesh->areas[i] == WaterArea)
m_pmesh->flags[i] |= SwimFlag;
}
dtNavMeshCreateParams params;
dMemset(&params, 0, sizeof(params));
params.verts = m_pmesh->verts;
params.vertCount = m_pmesh->nverts;
params.polys = m_pmesh->polys;
params.polyAreas = m_pmesh->areas;
params.polyFlags = m_pmesh->flags;
params.polyCount = m_pmesh->npolys;
params.nvp = m_pmesh->nvp;
params.detailMeshes = m_dmesh->meshes;
params.detailVerts = m_dmesh->verts;
params.detailVertsCount = m_dmesh->nverts;
params.detailTris = m_dmesh->tris;
params.detailTriCount = m_dmesh->ntris;
params.offMeshConVerts = mLinkVerts.address();
params.offMeshConRad = mLinkRads.address();
params.offMeshConDir = mLinkDirs.address();
params.offMeshConAreas = mLinkAreas.address();
params.offMeshConFlags = mLinkFlags.address();
params.offMeshConUserID = mLinkIDs.address();
params.offMeshConCount = mLinkIDs.size();
params.walkableHeight = mWalkableHeight;
params.walkableRadius = mWalkableRadius;
params.walkableClimb = mWalkableClimb;
params.tileX = tile.x;
params.tileY = tile.y;
params.tileLayer = 0;
rcVcopy(params.bmin, m_pmesh->bmin);
rcVcopy(params.bmax, m_pmesh->bmax);
params.cs = m_cfg.cs;
params.ch = m_cfg.ch;
params.buildBvTree = true;
if (!dtCreateNavMeshData(&params, &navData, &navDataSize))
{
Con::errorf("NavMesh::buildTileData: Could not build Detour navmesh.");
return NULL;
}
}
dataSize = navDataSize;
return navData;
}
/// This method should never be called in a separate thread to the rendering
/// or pathfinding logic. It directly replaces data in the dtNavMesh for
/// this NavMesh object.
void NavMesh::buildTiles(const Box3F &box)
{
PROFILE_SCOPE(NavMesh_buildTiles);
// Make sure we've already built or loaded.
if(!nm)
return;
// Iterate over tiles.
for(U32 i = 0; i < mTiles.size(); i++)
{
const Tile &tile = mTiles[i];
// Check tile box.
if(!tile.box.isOverlapped(box))
continue;
// Mark as dirty.
mDirtyTiles.push_back_unique(i);
}
if(mDirtyTiles.size())
ctx->startTimer(RC_TIMER_TOTAL);
}
DefineEngineMethod(NavMesh, buildTiles, void, (Box3F box),,
"@brief Rebuild the tiles overlapped by the input box.")
{
return object->buildTiles(box);
}
void NavMesh::buildTile(const U32 &tile)
{
PROFILE_SCOPE(NavMesh_buildTile);
if(tile < mTiles.size())
{
mDirtyTiles.push_back_unique(tile);
ctx->startTimer(RC_TIMER_TOTAL);
m_geo = NULL;
}
}
void NavMesh::buildLinks()
{
// Make sure we've already built or loaded.
if(!nm)
return;
// Iterate over tiles.
for(U32 i = 0; i < mTiles.size(); i++)
{
const Tile &tile = mTiles[i];
// Iterate over links
for(U32 j = 0; j < mLinkIDs.size(); j++)
{
if (mLinksUnsynced[j])
{
if(tile.box.isContained(getLinkStart(j)) ||
tile.box.isContained(getLinkEnd(j)))
{
// Mark tile for build.
mDirtyTiles.push_back_unique(i);
// Delete link if necessary
if(mDeleteLinks[j])
{
eraseLink(j);
j--;
}
else
mLinksUnsynced[j] = false;
}
}
}
}
if(mDirtyTiles.size())
ctx->startTimer(RC_TIMER_TOTAL);
}
DefineEngineMethod(NavMesh, buildLinks, void, (),,
"@brief Build tiles of this mesh where there are unsynchronised links.")
{
object->buildLinks();
}
void NavMesh::deleteCoverPoints()
{
SimSet *set = NULL;
if(Sim::findObject(mCoverSet, set))
set->deleteAllObjects();
}
DefineEngineMethod(NavMesh, deleteCoverPoints, void, (),,
"@brief Remove all cover points for this NavMesh.")
{
object->deleteCoverPoints();
}
bool NavMesh::createCoverPoints()
{
if(!nm || !isServerObject())
return false;
SimSet *set = NULL;
if(Sim::findObject(mCoverSet, set))
{
set->deleteAllObjects();
}
else
{
set = new SimGroup();
if(set->registerObject(mCoverSet))
{
getGroup()->addObject(set);
}
else
{
delete set;
set = getGroup();
}
}
dtNavMeshQuery *query = dtAllocNavMeshQuery();
if(!query || dtStatusFailed(query->init(nm, 1)))
return false;
dtQueryFilter f;
// Iterate over all polys in our navmesh.
const int MAX_SEGS = 6;
for(U32 i = 0; i < nm->getMaxTiles(); ++i)
{
const dtMeshTile* tile = ((const dtNavMesh*)nm)->getTile(i);
if(!tile->header) continue;
const dtPolyRef base = nm->getPolyRefBase(tile);
for(U32 j = 0; j < tile->header->polyCount; ++j)
{
const dtPolyRef ref = base | j;
float segs[MAX_SEGS*6];
int nsegs = 0;
query->getPolyWallSegments(ref, &f, segs, NULL, &nsegs, MAX_SEGS);
for(int segIDx = 0; segIDx < nsegs; ++segIDx)
{
const float* sa = &segs[segIDx *6];
const float* sb = &segs[segIDx *6+3];
Point3F a = RCtoDTS(sa), b = RCtoDTS(sb);
F32 len = (b - a).len();
if(len < mWalkableRadius * 2)
continue;
Point3F edge = b - a;
edge.normalize();
// Number of points to try placing - for now, one at each end.
U32 pointCount = (len > mWalkableRadius * 4) ? 2 : 1;
for(U32 pointIDx = 0; pointIDx < pointCount; pointIDx++)
{
MatrixF mat;
Point3F pos;
// If we're only placing one point, put it in the middle.
if(pointCount == 1)
pos = a + edge * len / 2;
// Otherwise, stand off from edge ends.
else
{
if(pointIDx % 2)
pos = a + edge * (pointIDx /2+1) * mWalkableRadius;
else
pos = b - edge * (pointIDx /2+1) * mWalkableRadius;
}
CoverPointData data;
if(testEdgeCover(pos, edge, data))
{
CoverPoint *m = new CoverPoint();
if(!m->registerObject())
delete m;
else
{
m->setTransform(data.trans);
m->setSize(data.size);
m->setPeek(data.peek[0], data.peek[1], data.peek[2]);
if(set)
set->addObject(m);
}
}
}
}
}
}
return true;
}
DefineEngineMethod(NavMesh, createCoverPoints, bool, (),,
"@brief Create cover points for this NavMesh.")
{
return object->createCoverPoints();
}
bool NavMesh::testEdgeCover(const Point3F &pos, const VectorF &dir, CoverPointData &data)
{
data.peek[0] = data.peek[1] = data.peek[2] = false;
// Get the edge normal.
Point3F norm;
mCross(dir, Point3F(0, 0, 1), &norm);
RayInfo ray;
U32 hits = 0;
for(U32 j = 0; j < CoverPoint::NumSizes; j++)
{
Point3F test = pos + Point3F(0.0f, 0.0f, mWalkableHeight * j / (F32)CoverPoint::NumSizes);
if(getContainer()->castRay(test, test + norm * mCoverDist, StaticObjectType, &ray))
{
// Test peeking.
Point3F left = test + dir * mPeekDist;
data.peek[0] = !getContainer()->castRay(test, left, StaticObjectType, &ray)
&& !getContainer()->castRay(left, left + norm * mCoverDist, StaticObjectType, &ray);
Point3F right = test - dir * mPeekDist;
data.peek[1] = !getContainer()->castRay(test, right, StaticObjectType, &ray)
&& !getContainer()->castRay(right, right + norm * mCoverDist, StaticObjectType, &ray);
Point3F over = test + Point3F(0, 0, 1) * 0.2f;
data.peek[2] = !getContainer()->castRay(test, over, StaticObjectType, &ray)
&& !getContainer()->castRay(over, over + norm * mCoverDist, StaticObjectType, &ray);
if(mInnerCover || data.peek[0] || data.peek[1] || data.peek[2])
hits++;
// If we couldn't peek here, we may be able to peek further up.
}
else
// No cover at this height - break off.
break;
}
if(hits > 0)
{
data.size = (CoverPoint::Size)(hits - 1);
data.trans = MathUtils::createOrientFromDir(norm);
data.trans.setPosition(pos);
}
return hits > 0;
}
void NavMesh::renderToDrawer()
{
}
void NavMesh::cleanup()
{
delete[] m_triareas;
m_triareas = 0;
rcFreeHeightField(m_solid);
m_solid = 0;
rcFreeCompactHeightfield(m_chf);
m_chf = 0;
rcFreeContourSet(m_cset);
m_cset = 0;
rcFreePolyMesh(m_pmesh);
m_pmesh = 0;
rcFreePolyMeshDetail(m_dmesh);
m_dmesh = 0;
}
void NavMesh::prepRenderImage(SceneRenderState *state)
{
ObjectRenderInst *ri = state->getRenderPass()->allocInst<ObjectRenderInst>();
ri->renderDelegate.bind(this, &NavMesh::render);
ri->type = RenderPassManager::RIT_Object;
ri->translucentSort = true;
ri->defaultKey = 1;
state->getRenderPass()->addInst(ri);
}
void NavMesh::render(ObjectRenderInst *ri, SceneRenderState *state, BaseMatInstance *overrideMat)
{
if(overrideMat)
return;
if(state->isReflectPass())
return;
PROFILE_SCOPE(NavMesh_Render);
// Recast debug draw
NetObject *no = getServerObject();
if(no)
{
NavMesh *n = static_cast<NavMesh*>(no);
if ((!gEditingMission && n->mAlwaysRender) || (gEditingMission && Con::getBoolVariable("$Nav::Editor::renderMesh", 1)))
{
if (n->nm)
{
duDebugDrawNavMesh(&mDbgDraw, *n->nm, 0);
if (Con::getBoolVariable("$Nav::Editor::renderPortals"))
duDebugDrawNavMeshPortals(&mDbgDraw, *n->nm);
if (Con::getBoolVariable("$Nav::Editor::renderBVTree"))
duDebugDrawNavMeshBVTree(&mDbgDraw, *n->nm);
}
}
}
}
void NavMesh::renderLinks(duDebugDraw &dd)
{
if(mBuilding)
return;
dd.depthMask(true);
dd.begin(DU_DRAW_LINES);
for(U32 i = 0; i < mLinkIDs.size(); i++)
{
U32 col = 0;
switch(mLinkSelectStates[i])
{
case Unselected: col = mLinksUnsynced[i] ? duRGBA(255, 0, 0, 200) : duRGBA(0, 0, 255, 255); break;
case Hovered: col = duRGBA(255, 255, 255, 255); break;
case Selected: col = duRGBA(0, 255, 0, 255); break;
}
F32 *s = &mLinkVerts[i*6];
F32 *e = &mLinkVerts[i*6 + 3];
if(!mDeleteLinks[i])
duAppendCircle(&dd, s[0], s[1], s[2], mLinkRads[i], col);
duAppendArc(&dd,
s[0], s[1], s[2],
e[0], e[1], e[2],
0.3f,
0.0f, mLinkFlags[i] == DropFlag ? 0.0f : 0.4f,
col);
if(!mDeleteLinks[i])
duAppendCircle(&dd, e[0], e[1], e[2], mLinkRads[i], col);
}
dd.end();
}
void NavMesh::renderTileData(duDebugDrawTorque &dd, U32 tile)
{
if(nm)
{
duDebugDrawNavMesh(&dd, *nm, 0);
if(m_chf)
duDebugDrawCompactHeightfieldSolid(&dd, *m_chf);
duDebugDrawNavMeshPortals(&dd, *nm);
if (!m_geo)
return;
int col = duRGBA(255, 0, 255, 255);
dd.begin(DU_DRAW_LINES);
const F32 *verts = m_geo->getVerts();
const S32 *tris = m_geo->getTris();
for(U32 t = 0; t < m_geo->getTriCount(); t++)
{
dd.vertex(&verts[tris[t*3]*3], col);
dd.vertex(&verts[tris[t*3+1]*3], col);
dd.vertex(&verts[tris[t*3+1]*3], col);
dd.vertex(&verts[tris[t*3+2]*3], col);
dd.vertex(&verts[tris[t*3+2]*3], col);
dd.vertex(&verts[tris[t*3]*3], col);
}
dd.end();
}
}
void NavMesh::onEditorEnable()
{
mNetFlags.set(Ghostable);
if(isClientObject() && !mAlwaysRender)
addToScene();
}
void NavMesh::onEditorDisable()
{
if(!mAlwaysRender)
{
mNetFlags.clear(Ghostable);
if(isClientObject())
removeFromScene();
}
}
U32 NavMesh::packUpdate(NetConnection *conn, U32 mask, BitStream *stream)
{
U32 retMask = Parent::packUpdate(conn, mask, stream);
mathWrite(*stream, getTransform());
mathWrite(*stream, getScale());
stream->writeFlag(mAlwaysRender);
return retMask;
}
void NavMesh::unpackUpdate(NetConnection *conn, BitStream *stream)
{
Parent::unpackUpdate(conn, stream);
mathRead(*stream, &mObjToWorld);
mathRead(*stream, &mObjScale);
mAlwaysRender = stream->readFlag();
setTransform(mObjToWorld);
renderToDrawer();
}
static const int NAVMESHSET_MAGIC = 'M'<<24 | 'S'<<16 | 'E'<<8 | 'T'; //'MSET';
static const int NAVMESHSET_VERSION = 1;
struct NavMeshSetHeader
{
int magic;
int version;
int numTiles;
dtNavMeshParams params;
};
struct NavMeshTileHeader
{
dtTileRef tileRef;
int dataSize;
};
bool NavMesh::load()
{
if(!dStrlen(mFileName))
return false;
FileStream stream;
if(!stream.open(mFileName, Torque::FS::File::Read))
{
Con::errorf("Could not open file %s when loading navmesh %s.",
mFileName, getName() ? getName() : getIdString());
return false;
}
// Read header.
NavMeshSetHeader header;
stream.read(sizeof(NavMeshSetHeader), (char*)&header);
if(header.magic != NAVMESHSET_MAGIC)
{
stream.close();
Con::errorf("Navmesh magic incorrect when loading navmesh %s; possible corrupt navmesh file %s.",
getName() ? getName() : getIdString(), mFileName);
return false;
}
if(header.version != NAVMESHSET_VERSION)
{
stream.close();
Con::errorf("Navmesh version incorrect when loading navmesh %s; possible corrupt navmesh file %s.",
getName() ? getName() : getIdString(), mFileName);
return false;
}
if(nm)
dtFreeNavMesh(nm);
nm = dtAllocNavMesh();
if(!nm)
{
stream.close();
Con::errorf("Out of memory when loading navmesh %s.",
getName() ? getName() : getIdString());
return false;
}
dtStatus status = nm->init(&header.params);
if(dtStatusFailed(status))
{
stream.close();
Con::errorf("Failed to initialise navmesh params when loading navmesh %s.",
getName() ? getName() : getIdString());
return false;
}
// Read tiles.
for(U32 i = 0; i < header.numTiles; ++i)
{
NavMeshTileHeader tileHeader;
stream.read(sizeof(NavMeshTileHeader), (char*)&tileHeader);
if(!tileHeader.tileRef || !tileHeader.dataSize)
break;
unsigned char* data = (unsigned char*)dtAlloc(tileHeader.dataSize, DT_ALLOC_PERM);
if(!data) break;
memset(data, 0, tileHeader.dataSize);
stream.read(tileHeader.dataSize, (char*)data);
nm->addTile(data, tileHeader.dataSize, DT_TILE_FREE_DATA, tileHeader.tileRef, 0);
}
S32 s;
stream.read(sizeof(S32), (char*)&s);
setLinkCount(s);
if (s > 0)
{
stream.read(sizeof(F32) * s * 6, (char*)const_cast<F32*>(mLinkVerts.address()));
stream.read(sizeof(F32) * s, (char*)const_cast<F32*>(mLinkRads.address()));
stream.read(sizeof(U8) * s, (char*)const_cast<U8*>(mLinkDirs.address()));
stream.read(sizeof(U8) * s, (char*)const_cast<U8*>(mLinkAreas.address()));
stream.read(sizeof(U16) * s, (char*)const_cast<U16*>(mLinkFlags.address()));
stream.read(sizeof(F32) * s, (char*)const_cast<U32*>(mLinkIDs.address()));
}
mLinksUnsynced.fill(false);
mLinkSelectStates.fill(Unselected);
mDeleteLinks.fill(false);
stream.close();
updateTiles();
if(isServerObject())
{
setMaskBits(LoadFlag);
if(getEventManager())
getEventManager()->postEvent("NavMeshUpdate", getIdString());
}
return true;
}
DefineEngineMethod(NavMesh, load, bool, (),,
"@brief Load this NavMesh from its file.")
{
return object->load();
}
bool NavMesh::save()
{
if (!nm)
return false;
if (!dStrlen(mFileName) || !nm)
{
createNewFile();
}
FileStream stream;
if(!stream.open(mFileName, Torque::FS::File::Write))
{
Con::errorf("Could not open file %s when saving navmesh %s.",
mFileName, getName() ? getName() : getIdString());
return false;
}
// Store header.
NavMeshSetHeader header;
header.magic = NAVMESHSET_MAGIC;
header.version = NAVMESHSET_VERSION;
header.numTiles = 0;
for(U32 i = 0; i < nm->getMaxTiles(); ++i)
{
const dtMeshTile* tile = ((const dtNavMesh*)nm)->getTile(i);
if (!tile || !tile->header || !tile->dataSize) continue;
header.numTiles++;
}
memcpy(&header.params, nm->getParams(), sizeof(dtNavMeshParams));
stream.write(sizeof(NavMeshSetHeader), (const char*)&header);
// Store tiles.
for(U32 i = 0; i < nm->getMaxTiles(); ++i)
{
const dtMeshTile* tile = ((const dtNavMesh*)nm)->getTile(i);
if(!tile || !tile->header || !tile->dataSize) continue;
NavMeshTileHeader tileHeader;
tileHeader.tileRef = nm->getTileRef(tile);
tileHeader.dataSize = tile->dataSize;
stream.write(sizeof(tileHeader), (const char*)&tileHeader);
stream.write(tile->dataSize, (const char*)tile->data);
}
S32 s = mLinkIDs.size();
stream.write(sizeof(S32), (const char*)&s);
if (s > 0)
{
stream.write(sizeof(F32) * s * 6, (const char*)mLinkVerts.address());
stream.write(sizeof(F32) * s, (const char*)mLinkRads.address());
stream.write(sizeof(U8) * s, (const char*)mLinkDirs.address());
stream.write(sizeof(U8) * s, (const char*)mLinkAreas.address());
stream.write(sizeof(U16) * s, (const char*)mLinkFlags.address());
stream.write(sizeof(U32) * s, (const char*)mLinkIDs.address());
}
stream.close();
return true;
}
DefineEngineMethod(NavMesh, save, void, (),,
"@brief Save this NavMesh to its file.")
{
object->save();
}
void NavMesh::write(Stream &stream, U32 tabStop, U32 flags)
{
save();
Parent::write(stream, tabStop, flags);
}