Torque3D/Engine/source/terrain/glsl/terrFeatureGLSL.cpp
Areloch 1ed8b05169 Initial implementation of the new Base Game Template and some starting modules.
This makes some tweaks to the engine to support this, specifically, it tweaks the hardcoded shaderpaths to defer to a pref variable, so none of the shader paths are hardcoded.

Also tweaks how post effects read in texture files, removing a bizzare filepath interpretation choice, where if the file path didn't start with "/" it forcefully appended the script's file path. This made it impossible to have images not in the same dir as the script file defining the post effect.

This was changed and the existing template's post effects tweaked for now to just add "./" to those few paths impacted, as well as the perf vars to support the non-hardcoded shader paths in the engine.
2017-02-24 02:40:56 -06:00

1129 lines
39 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "terrain/glsl/terrFeatureGLSL.h"
#include "terrain/terrFeatureTypes.h"
#include "materials/materialFeatureTypes.h"
#include "materials/materialFeatureData.h"
#include "materials/processedMaterial.h"
#include "gfx/gfxDevice.h"
#include "shaderGen/langElement.h"
#include "shaderGen/shaderOp.h"
#include "shaderGen/featureMgr.h"
#include "shaderGen/shaderGen.h"
#include "core/module.h"
namespace
{
void register_glsl_shader_features_for_terrain(GFXAdapterType type)
{
if(type != OpenGL)
return;
FEATUREMGR->registerFeature( MFT_TerrainBaseMap, new TerrainBaseMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_TerrainParallaxMap, new NamedFeatureGLSL( "Terrain Parallax Texture" ) );
FEATUREMGR->registerFeature( MFT_TerrainDetailMap, new TerrainDetailMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_TerrainNormalMap, new TerrainNormalMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_TerrainMacroMap, new TerrainMacroMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_TerrainLightMap, new TerrainLightMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_TerrainSideProject, new NamedFeatureGLSL( "Terrain Side Projection" ) );
FEATUREMGR->registerFeature( MFT_TerrainAdditive, new TerrainAdditiveFeatGLSL );
FEATUREMGR->registerFeature( MFT_DeferredTerrainBaseMap, new TerrainBaseMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_DeferredTerrainMacroMap, new TerrainMacroMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_DeferredTerrainDetailMap, new TerrainDetailMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_DeferredTerrainBlankInfoMap, new TerrainBlankInfoMapFeatGLSL );
}
};
MODULE_BEGIN( TerrainFeatGLSL )
MODULE_INIT_AFTER( ShaderGen )
MODULE_INIT
{
SHADERGEN->getFeatureInitSignal().notify(&register_glsl_shader_features_for_terrain);
}
MODULE_END;
TerrainFeatGLSL::TerrainFeatGLSL()
: mTorqueDep(String(Con::getVariable("$Core::CommonShaderPath")) + String("/gl/torque.glsl" ))
{
addDependency( &mTorqueDep );
}
Var* TerrainFeatGLSL::_getUniformVar( const char *name, const char *type, ConstantSortPosition csp )
{
Var *theVar = (Var*)LangElement::find( name );
if ( !theVar )
{
theVar = new Var;
theVar->setType( type );
theVar->setName( name );
theVar->uniform = true;
theVar->constSortPos = csp;
}
return theVar;
}
Var* TerrainFeatGLSL::_getInDetailCoord( Vector<ShaderComponent*> &componentList )
{
String name( String::ToString( "detCoord%d", getProcessIndex() ) );
Var *inDet = (Var*)LangElement::find( name );
if ( !inDet )
{
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
inDet = connectComp->getElement( RT_TEXCOORD );
inDet->setName( name );
inDet->setStructName( "IN" );
inDet->setType( "vec4" );
inDet->mapsToSampler = true;
}
return inDet;
}
Var* TerrainFeatGLSL::_getInMacroCoord( Vector<ShaderComponent*> &componentList )
{
String name( String::ToString( "macroCoord%d", getProcessIndex() ) );
Var *inDet = (Var*)LangElement::find( name );
if ( !inDet )
{
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
inDet = connectComp->getElement( RT_TEXCOORD );
inDet->setName( name );
inDet->setStructName( "IN" );
inDet->setType( "vec4" );
inDet->mapsToSampler = true;
}
return inDet;
}
Var* TerrainFeatGLSL::_getNormalMapTex()
{
String name( String::ToString( "normalMap%d", getProcessIndex() ) );
Var *normalMap = (Var*)LangElement::find( name );
if ( !normalMap )
{
normalMap = new Var;
normalMap->setType( "sampler2D" );
normalMap->setName( name );
normalMap->uniform = true;
normalMap->sampler = true;
normalMap->constNum = Var::getTexUnitNum();
}
return normalMap;
}
Var* TerrainFeatGLSL::_getDetailIdStrengthParallax()
{
String name( String::ToString( "detailIdStrengthParallax%d", getProcessIndex() ) );
Var *detailInfo = (Var*)LangElement::find( name );
if ( !detailInfo )
{
detailInfo = new Var;
detailInfo->setType( "vec3" );
detailInfo->setName( name );
detailInfo->uniform = true;
detailInfo->constSortPos = cspPotentialPrimitive;
}
return detailInfo;
}
Var* TerrainFeatGLSL::_getMacroIdStrengthParallax()
{
String name( String::ToString( "macroIdStrengthParallax%d", getProcessIndex() ) );
Var *detailInfo = (Var*)LangElement::find( name );
if ( !detailInfo )
{
detailInfo = new Var;
detailInfo->setType( "vec3" );
detailInfo->setName( name );
detailInfo->uniform = true;
detailInfo->constSortPos = cspPotentialPrimitive;
}
return detailInfo;
}
void TerrainBaseMapFeatGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
MultiLine *meta = new MultiLine;
output = meta;
// Generate the incoming texture var.
Var *inTex;
{
Var *inPos = (Var*)LangElement::find( "inPosition" );
if ( !inPos )
inPos = (Var*)LangElement::find( "position" );
inTex = new Var( "texCoord", "vec3" );
Var *oneOverTerrainSize = _getUniformVar( "oneOverTerrainSize", "float", cspPass );
// NOTE: The y coord here should be negative to have
// the texture maps not end up flipped which also caused
// normal and parallax mapping to be incorrect.
//
// This mistake early in development means that the layer
// id bilinear blend depends on it being that way.
//
// So instead i fixed this by flipping the base and detail
// coord y scale to compensate when rendering.
//
meta->addStatement( new GenOp( " @ = @.xyz * float3( @, @, -@ );\r\n",
new DecOp( inTex ), inPos, oneOverTerrainSize, oneOverTerrainSize, oneOverTerrainSize ) );
}
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
// Pass the texture coord to the pixel shader.
Var *outTex = connectComp->getElement( RT_TEXCOORD );
outTex->setName( "outTexCoord" );
outTex->setStructName( "OUT" );
outTex->setType( "vec3" );
outTex->mapsToSampler = true;
meta->addStatement( new GenOp( " @.xy = @.xy;\r\n", outTex, inTex ) );
// If this shader has a side projected layer then we
// pass the dot product between the +Y and the normal
// thru outTexCoord.z for use in blending the textures.
if ( fd.features.hasFeature( MFT_TerrainSideProject ) )
{
Var *inNormal = (Var*)LangElement::find( "normal" );
meta->addStatement(
new GenOp( " @.z = pow( abs( dot( normalize( float3( @.x, @.y, 0 ) ), float3( 0, 1, 0 ) ) ), 10.0 );\r\n",
outTex, inNormal, inNormal ) );
}
else
meta->addStatement( new GenOp( " @.z = 0;\r\n", outTex ) );
// HACK: This is sort of lazy... we generate the tanget
// vector here so that we're sure it exists in the parallax
// and normal features which will expect "T" to exist.
//
// If this shader doesn't use it the shader compiler will
// optimize away this code.
//
Var *inTangentZ = getVertTexCoord( "tcTangentZ" );
Var *inTanget = new Var( "T", "vec3" );
Var *squareSize = _getUniformVar( "squareSize", "float", cspPass );
meta->addStatement( new GenOp( " @ = normalize( float3( @, 0, @ ) );\r\n",
new DecOp( inTanget ), squareSize, inTangentZ ) );
}
void TerrainBaseMapFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// grab connector texcoord register
Var *texCoord = getInTexCoord( "texCoord", "vec3", true, componentList );
// create texture var
Var *diffuseMap = new Var;
diffuseMap->setType( "sampler2D" );
diffuseMap->setName( "baseTexMap" );
diffuseMap->uniform = true;
diffuseMap->sampler = true;
diffuseMap->constNum = Var::getTexUnitNum(); // used as texture unit num here
MultiLine *meta = new MultiLine;
Var *baseColor = new Var;
baseColor->setType( "vec4" );
baseColor->setName( "baseColor" );
meta->addStatement( new GenOp( " @ = tex2D( @, @.xy );\r\n", new DecOp( baseColor ), diffuseMap, texCoord ) );
meta->addStatement(new GenOp(" @ = toLinear(@);\r\n", baseColor, baseColor));
ShaderFeature::OutputTarget target = ShaderFeature::DefaultTarget;
if(fd.features.hasFeature(MFT_isDeferred))
{
target= ShaderFeature::RenderTarget1;
}
meta->addStatement( new GenOp( " @;\r\n", assignColor( baseColor, Material::Mul,NULL,target ) ) );
output = meta;
}
ShaderFeature::Resources TerrainBaseMapFeatGLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
res.numTexReg = 1;
res.numTex = 1;
return res;
}
U32 TerrainBaseMapFeatGLSL::getOutputTargets( const MaterialFeatureData &fd ) const
{
return fd.features[MFT_isDeferred] ? ShaderFeature::RenderTarget1 : ShaderFeature::DefaultTarget;
}
TerrainDetailMapFeatGLSL::TerrainDetailMapFeatGLSL()
: mTorqueDep(String(Con::getVariable("$Core::CommonShaderPath")) + String("/gl/torque.glsl" )),
mTerrainDep(String(Con::getVariable("$Core::CommonShaderPath")) + String("/terrain/terrain.glsl" ))
{
addDependency( &mTorqueDep );
addDependency( &mTerrainDep );
}
void TerrainDetailMapFeatGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
const S32 detailIndex = getProcessIndex();
// Grab incoming texture coords... the base map feature
// made sure this was created.
Var *inTex = (Var*)LangElement::find( "texCoord" );
AssertFatal( inTex, "The texture coord is missing!" );
// Grab the input position.
Var *inPos = (Var*)LangElement::find( "inPosition" );
if ( !inPos )
inPos = (Var*)LangElement::find( "position" );
// Get the object space eye position.
Var *eyePos = _getUniformVar( "eyePos", "vec3", cspPotentialPrimitive );
MultiLine *meta = new MultiLine;
// If we have parallax mapping then make sure we've sent
// the negative view vector to the pixel shader.
if ( fd.features.hasFeature( MFT_TerrainParallaxMap ) &&
!LangElement::find( "outNegViewTS" ) )
{
// Get the object to tangent transform which
// will consume 3 output registers.
Var *objToTangentSpace = getOutObjToTangentSpace( componentList, meta, fd );
// Now use a single output register to send the negative
// view vector in tangent space to the pixel shader.
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *outNegViewTS = connectComp->getElement( RT_TEXCOORD );
outNegViewTS->setName( "outNegViewTS" );
outNegViewTS->setStructName( "OUT" );
outNegViewTS->setType( "vec3" );
meta->addStatement( new GenOp( " @ = tMul( @, float3( @ - @.xyz ) );\r\n",
outNegViewTS, objToTangentSpace, eyePos, inPos ) );
}
// Get the distance from the eye to this vertex.
Var *dist = (Var*)LangElement::find( "dist" );
if ( !dist )
{
dist = new Var;
dist->setType( "float" );
dist->setName( "dist" );
meta->addStatement( new GenOp( " @ = distance( @.xyz, @ );\r\n",
new DecOp( dist ), inPos, eyePos ) );
}
// grab connector texcoord register
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *outTex = connectComp->getElement( RT_TEXCOORD );
outTex->setName( String::ToString( "detCoord%d", detailIndex ) );
outTex->setStructName( "OUT" );
outTex->setType( "vec4" );
outTex->mapsToSampler = true;
// Get the detail scale and fade info.
Var *detScaleAndFade = new Var;
detScaleAndFade->setType( "vec4" );
detScaleAndFade->setName( String::ToString( "detailScaleAndFade%d", detailIndex ) );
detScaleAndFade->uniform = true;
detScaleAndFade->constSortPos = cspPotentialPrimitive;
// Setup the detail coord.
//
// NOTE: You see here we scale the texture coord by 'xyx'
// to generate the detail coord. This y is here because
// its scale is flipped to correct for the non negative y
// in texCoord.
//
// See TerrainBaseMapFeatGLSL::processVert().
//
meta->addStatement( new GenOp( " @.xyz = @ * @.xyx;\r\n", outTex, inTex, detScaleAndFade ) );
// And sneak the detail fade thru the w detailCoord.
meta->addStatement( new GenOp( " @.w = clamp( ( @.z - @ ) * @.w, 0.0, 1.0 );\r\n",
outTex, detScaleAndFade, dist, detScaleAndFade ) );
output = meta;
}
void TerrainDetailMapFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
const S32 detailIndex = getProcessIndex();
Var *inTex = getVertTexCoord( "texCoord" );
MultiLine *meta = new MultiLine;
// We need the negative tangent space view vector
// as in parallax mapping we step towards the camera.
Var *negViewTS = (Var*)LangElement::find( "negViewTS" );
if ( !negViewTS &&
fd.features.hasFeature( MFT_TerrainParallaxMap ) )
{
Var *inNegViewTS = (Var*)LangElement::find( "outNegViewTS" );
if ( !inNegViewTS )
{
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
inNegViewTS = connectComp->getElement( RT_TEXCOORD );
inNegViewTS->setName( "outNegViewTS" );
inNegViewTS->setStructName( "IN" );
inNegViewTS->setType( "vec3" );
}
negViewTS = new Var( "negViewTS", "vec3" );
meta->addStatement( new GenOp( " @ = normalize( @ );\r\n", new DecOp( negViewTS ), inNegViewTS ) );
}
// Get the layer samples.
Var *layerSample = (Var*)LangElement::find( "layerSample" );
if ( !layerSample )
{
layerSample = new Var;
layerSample->setType( "vec4" );
layerSample->setName( "layerSample" );
// Get the layer texture var
Var *layerTex = new Var;
layerTex->setType( "sampler2D" );
layerTex->setName( "layerTex" );
layerTex->uniform = true;
layerTex->sampler = true;
layerTex->constNum = Var::getTexUnitNum();
// Read the layer texture to get the samples.
meta->addStatement( new GenOp( " @ = round( tex2D( @, @.xy ) * 255.0f );\r\n",
new DecOp( layerSample ), layerTex, inTex ) );
}
Var *layerSize = (Var*)LangElement::find( "layerSize" );
if ( !layerSize )
{
layerSize = new Var;
layerSize->setType( "float" );
layerSize->setName( "layerSize" );
layerSize->uniform = true;
layerSize->constSortPos = cspPass;
}
// Grab the incoming detail coord.
Var *inDet = _getInDetailCoord( componentList );
// Get the detail id.
Var *detailInfo = _getDetailIdStrengthParallax();
// Create the detail blend var.
Var *detailBlend = new Var;
detailBlend->setType( "float" );
detailBlend->setName( String::ToString( "detailBlend%d", detailIndex ) );
// Calculate the blend for this detail texture.
meta->addStatement( new GenOp( " @ = calcBlend( @.x, @.xy, @, @ );\r\n",
new DecOp( detailBlend ), detailInfo, inTex, layerSize, layerSample ) );
// New terrain
Var *lerpBlend = (Var*)LangElement::find("lerpBlend");
if (!lerpBlend)
{
lerpBlend = new Var;
lerpBlend->setType("float");
lerpBlend->setName("lerpBlend");
lerpBlend->uniform = true;
lerpBlend->constSortPos = cspPrimitive;
}
Var *blendDepth = (Var*)LangElement::find(String::ToString("blendDepth%d", detailIndex));
if (!blendDepth)
{
blendDepth = new Var;
blendDepth->setType("float");
blendDepth->setName(String::ToString("blendDepth%d", detailIndex));
blendDepth->uniform = true;
blendDepth->constSortPos = cspPrimitive;
}
ShaderFeature::OutputTarget target = ShaderFeature::DefaultTarget;
if(fd.features.hasFeature( MFT_DeferredTerrainDetailMap ))
target= ShaderFeature::RenderTarget1;
Var *outColor = (Var*)LangElement::find( getOutputTargetVarName(target) );
if (!outColor)
{
// create color var
outColor = new Var;
outColor->setType("float4");
outColor->setName("col");
outColor->setStructName("OUT");
meta->addStatement(new GenOp(" @;\r\n", outColor));
}
Var *detailColor = (Var*)LangElement::find("detailColor");
if (!detailColor)
{
detailColor = new Var;
detailColor->setType("float4");
detailColor->setName("detailColor");
meta->addStatement(new GenOp(" @;\r\n", new DecOp(detailColor)));
}
// Get the detail texture.
Var *detailMap = new Var;
detailMap->setType("sampler2D");
detailMap->setName(String::ToString("detailMap%d", detailIndex));
detailMap->uniform = true;
detailMap->sampler = true;
detailMap->constNum = Var::getTexUnitNum(); // used as texture unit num here
// Get the normal map texture.
Var *normalMap = _getNormalMapTex();
// Issue happens somewhere here -----
// Sample the normal map.
//
// We take two normal samples and lerp between them for
// side projection layers... else a single sample.
LangElement *texOp;
// Note that we're doing the standard greyscale detail
// map technique here which can darken and lighten the
// diffuse texture.
//
// We take two color samples and lerp between them for
// side projection layers... else a single sample.
//
if (fd.features.hasFeature(MFT_TerrainSideProject, detailIndex))
{
meta->addStatement(new GenOp(" @ = ( lerp( tex2D( @, @.yz ), tex2D( @, @.xz ), @.z ) * 2.0 ) - 1.0;\r\n",
detailColor, detailMap, inDet, detailMap, inDet, inTex));
texOp = new GenOp("lerp( tex2D( @, @.yz ), tex2D( @, @.xz ), @.z )",
normalMap, inDet, normalMap, inDet, inTex);
}
else
{
meta->addStatement(new GenOp(" @ = ( tex2D( @, @.xy ) * 2.0 ) - 1.0;\r\n",
detailColor, detailMap, inDet));
texOp = new GenOp("tex2D(@, @.xy)", normalMap, inDet);
}
// New terrain
// Get a var and accumulate the blend amount.
Var *blendTotal = (Var*)LangElement::find( "blendTotal" );
if ( !blendTotal )
{
blendTotal = new Var;
blendTotal->setName( "blendTotal" );
blendTotal->setType( "float" );
meta->addStatement( new GenOp( " @ = 0;\r\n", new DecOp( blendTotal ) ) );
}
// Add to the blend total.
meta->addStatement(new GenOp(" @ = max( @, @ );\r\n", blendTotal, blendTotal, detailBlend));
// If we had a parallax feature... then factor in the parallax
// amount so that it fades out with the layer blending.
if ( fd.features.hasFeature( MFT_TerrainParallaxMap, detailIndex ) )
{
// Get the rest of our inputs.
Var *normalMap = _getNormalMapTex();
// Call the library function to do the rest.
if (fd.features.hasFeature(MFT_IsDXTnm, detailIndex))
{
meta->addStatement(new GenOp(" @.xy += parallaxOffsetDxtnm( @, @.xy, @, @.z * @ );\r\n",
inDet, normalMap, inDet, negViewTS, detailInfo, detailBlend));
}
else
{
meta->addStatement(new GenOp(" @.xy += parallaxOffset( @, @.xy, @, @.z * @ );\r\n",
inDet, normalMap, inDet, negViewTS, detailInfo, detailBlend));
}
}
// If we're using SM 3.0 then take advantage of
// dynamic branching to skip layers per-pixel.
if ( GFX->getPixelShaderVersion() >= 3.0f )
meta->addStatement( new GenOp( " if ( @ > 0.0f )\r\n", detailBlend ) );
meta->addStatement( new GenOp( " {\r\n" ) );
// Note that we're doing the standard greyscale detail
// map technique here which can darken and lighten the
// diffuse texture.
//
// We take two color samples and lerp between them for
// side projection layers... else a single sample.
//
if ( fd.features.hasFeature( MFT_TerrainSideProject, detailIndex ) )
{
meta->addStatement( new GenOp( " @ = ( lerp( tex2D( @, @.yz ), tex2D( @, @.xz ), @.z ) * 2.0 ) - 1.0;\r\n",
detailColor, detailMap, inDet, detailMap, inDet, inTex ) );
}
else
{
meta->addStatement( new GenOp( " @ = ( tex2D( @, @.xy ) * 2.0 ) - 1.0;\r\n",
detailColor, detailMap, inDet ) );
}
meta->addStatement( new GenOp( " @ *= @.y * @.w;\r\n",
detailColor, detailInfo, inDet ) );
meta->addStatement( new GenOp( " @ += @ * @;\r\n",
outColor, detailColor, detailBlend));
meta->addStatement( new GenOp( " }\r\n" ) );
output = meta;
}
ShaderFeature::Resources TerrainDetailMapFeatGLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
if ( getProcessIndex() == 0 )
{
// If this is the first detail pass then we
// samples from the layer tex.
res.numTex += 1;
// If this material also does parallax then it
// will generate the negative view vector and the
// worldToTanget transform.
if ( fd.features.hasFeature( MFT_TerrainParallaxMap ) )
res.numTexReg += 4;
}
// sample from the detail texture for diffuse coloring.
res.numTex += 1;
// If we have parallax for this layer then we'll also
// be sampling the normal map for the parallax heightmap.
if ( fd.features.hasFeature( MFT_TerrainParallaxMap, getProcessIndex() ) )
res.numTex += 1;
// Finally we always send the detail texture
// coord to the pixel shader.
res.numTexReg += 1;
return res;
}
U32 TerrainDetailMapFeatGLSL::getOutputTargets( const MaterialFeatureData &fd ) const
{
return fd.features[MFT_DeferredTerrainDetailMap] ? ShaderFeature::RenderTarget1 : ShaderFeature::DefaultTarget;
}
TerrainMacroMapFeatGLSL::TerrainMacroMapFeatGLSL()
: mTorqueDep(String(Con::getVariable("$Core::CommonShaderPath")) + String("/gl/torque.glsl" )),
mTerrainDep(String(Con::getVariable("$Core::CommonShaderPath")) + String("/terrain/terrain.glsl" ))
{
addDependency( &mTorqueDep );
addDependency( &mTerrainDep );
}
void TerrainMacroMapFeatGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
const S32 detailIndex = getProcessIndex();
// Grab incoming texture coords... the base map feature
// made sure this was created.
Var *inTex = (Var*)LangElement::find( "texCoord" );
AssertFatal( inTex, "The texture coord is missing!" );
// Grab the input position.
Var *inPos = (Var*)LangElement::find( "inPosition" );
if ( !inPos )
inPos = (Var*)LangElement::find( "position" );
// Get the object space eye position.
Var *eyePos = _getUniformVar( "eyePos", "vec3", cspPotentialPrimitive );
MultiLine *meta = new MultiLine;
// Get the distance from the eye to this vertex.
Var *dist = (Var*)LangElement::find( "macroDist" );
if ( !dist )
{
dist = new Var;
dist->setType( "float" );
dist->setName( "macroDist" );
meta->addStatement( new GenOp( " @ = distance( @.xyz, @ );\r\n",
new DecOp( dist ), inPos, eyePos ) );
}
// grab connector texcoord register
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *outTex = connectComp->getElement( RT_TEXCOORD );
outTex->setName( String::ToString( "macroCoord%d", detailIndex ) );
outTex->setStructName( "OUT" );
outTex->setType( "vec4" );
outTex->mapsToSampler = true;
// Get the detail scale and fade info.
Var *detScaleAndFade = new Var;
detScaleAndFade->setType( "vec4" );
detScaleAndFade->setName( String::ToString( "macroScaleAndFade%d", detailIndex ) );
detScaleAndFade->uniform = true;
detScaleAndFade->constSortPos = cspPotentialPrimitive;
// Setup the detail coord.
meta->addStatement( new GenOp( " @.xyz = @ * @.xyx;\r\n", outTex, inTex, detScaleAndFade ) );
// And sneak the detail fade thru the w detailCoord.
meta->addStatement( new GenOp( " @.w = clamp( ( @.z - @ ) * @.w, 0.0, 1.0 );\r\n",
outTex, detScaleAndFade, dist, detScaleAndFade ) );
output = meta;
}
void TerrainMacroMapFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
const S32 detailIndex = getProcessIndex();
Var *inTex = getVertTexCoord( "texCoord" );
MultiLine *meta = new MultiLine;
// We need the negative tangent space view vector
// as in parallax mapping we step towards the camera.
Var *negViewTS = (Var*)LangElement::find( "negViewTS" );
if ( !negViewTS &&
fd.features.hasFeature( MFT_TerrainParallaxMap ) )
{
Var *inNegViewTS = (Var*)LangElement::find( "outNegViewTS" );
if ( !inNegViewTS )
{
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
inNegViewTS = connectComp->getElement( RT_TEXCOORD );
inNegViewTS->setName( "outNegViewTS" );
inNegViewTS->setStructName( "IN" );
inNegViewTS->setType( "vec3" );
}
negViewTS = new Var( "negViewTS", "vec3" );
meta->addStatement( new GenOp( " @ = normalize( @ );\r\n", new DecOp( negViewTS ), inNegViewTS ) );
}
// Get the layer samples.
Var *layerSample = (Var*)LangElement::find( "layerSample" );
if ( !layerSample )
{
layerSample = new Var;
layerSample->setType( "vec4" );
layerSample->setName( "layerSample" );
// Get the layer texture var
Var *layerTex = new Var;
layerTex->setType( "sampler2D" );
layerTex->setName( "macrolayerTex" );
layerTex->uniform = true;
layerTex->sampler = true;
layerTex->constNum = Var::getTexUnitNum();
// Read the layer texture to get the samples.
meta->addStatement( new GenOp( " @ = round( tex2D( @, @.xy ) * 255.0f );\r\n",
new DecOp( layerSample ), layerTex, inTex ) );
}
Var *layerSize = (Var*)LangElement::find( "layerSize" );
if ( !layerSize )
{
layerSize = new Var;
layerSize->setType( "float" );
layerSize->setName( "layerSize" );
layerSize->uniform = true;
layerSize->constSortPos = cspPass;
}
// Grab the incoming detail coord.
Var *inDet = _getInMacroCoord( componentList );
// Get the detail id.
Var *detailInfo = _getMacroIdStrengthParallax();
// Create the detail blend var.
Var *detailBlend = new Var;
detailBlend->setType( "float" );
detailBlend->setName( String::ToString( "macroBlend%d", detailIndex ) );
// Calculate the blend for this detail texture.
meta->addStatement( new GenOp( " @ = calcBlend( @.x, @.xy, @, @ );\r\n",
new DecOp( detailBlend ), detailInfo, inTex, layerSize, layerSample ) );
// Get a var and accumulate the blend amount.
Var *blendTotal = (Var*)LangElement::find( "blendTotal" );
if ( !blendTotal )
{
blendTotal = new Var;
//blendTotal->setName( "blendTotal" );
blendTotal->setName( "blendTotal" );
blendTotal->setType( "float" );
meta->addStatement( new GenOp( " @ = 0;\r\n", new DecOp( blendTotal ) ) );
}
// Add to the blend total.
meta->addStatement(new GenOp(" @ = max( @, @ );\r\n", blendTotal, blendTotal, detailBlend));
Var *detailColor = (Var*)LangElement::find( "macroColor" );
if ( !detailColor )
{
detailColor = new Var;
detailColor->setType( "vec4" );
detailColor->setName( "macroColor" );
meta->addStatement( new GenOp( " @;\r\n", new DecOp( detailColor ) ) );
}
// Get the detail texture.
Var *detailMap = new Var;
detailMap->setType( "sampler2D" );
detailMap->setName( String::ToString( "macroMap%d", detailIndex ) );
detailMap->uniform = true;
detailMap->sampler = true;
detailMap->constNum = Var::getTexUnitNum(); // used as texture unit num here
// If we're using SM 3.0 then take advantage of
// dynamic branching to skip layers per-pixel.
if ( GFX->getPixelShaderVersion() >= 3.0f )
meta->addStatement( new GenOp( " if ( @ > 0.0f )\r\n", detailBlend ) );
meta->addStatement( new GenOp( " {\r\n" ) );
// Note that we're doing the standard greyscale detail
// map technique here which can darken and lighten the
// diffuse texture.
//
// We take two color samples and lerp between them for
// side projection layers... else a single sample.
//
if ( fd.features.hasFeature( MFT_TerrainSideProject, detailIndex ) )
{
meta->addStatement( new GenOp( " @ = ( lerp( tex2D( @, @.yz ), tex2D( @, @.xz ), @.z ) * 2.0 ) - 1.0;\r\n",
detailColor, detailMap, inDet, detailMap, inDet, inTex ) );
}
else
{
meta->addStatement( new GenOp( " @ = ( tex2D( @, @.xy ) * 2.0 ) - 1.0;\r\n",
detailColor, detailMap, inDet ) );
}
meta->addStatement( new GenOp( " @ *= @.y * @.w;\r\n",
detailColor, detailInfo, inDet ) );
ShaderFeature::OutputTarget target = ShaderFeature::DefaultTarget;
if(fd.features.hasFeature(MFT_DeferredTerrainMacroMap))
target= ShaderFeature::RenderTarget1;
Var *outColor = (Var*)LangElement::find( getOutputTargetVarName(target) );
meta->addStatement(new GenOp(" @ += @ * @;\r\n",
outColor, detailColor, detailBlend));
meta->addStatement( new GenOp( " }\r\n" ) );
output = meta;
}
ShaderFeature::Resources TerrainMacroMapFeatGLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
if ( getProcessIndex() == 0 )
{
// If this is the first detail pass then we
// samples from the layer tex.
res.numTex += 1;
}
res.numTex += 1;
// Finally we always send the detail texture
// coord to the pixel shader.
res.numTexReg += 1;
return res;
}
U32 TerrainMacroMapFeatGLSL::getOutputTargets( const MaterialFeatureData &fd ) const
{
return fd.features[MFT_DeferredTerrainMacroMap] ? ShaderFeature::RenderTarget1 : ShaderFeature::DefaultTarget;
}
void TerrainNormalMapFeatGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// We only need to process normals during the prepass.
if ( !fd.features.hasFeature( MFT_PrePassConditioner ) )
return;
MultiLine *meta = new MultiLine;
// Make sure the world to tangent transform
// is created and available for the pixel shader.
getOutViewToTangent( componentList, meta, fd );
output = meta;
}
void TerrainNormalMapFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
MultiLine *meta = new MultiLine;
Var *viewToTangent = getInViewToTangent( componentList );
// This var is read from GBufferConditionerGLSL and
// used in the prepass output.
Var *gbNormal = (Var*)LangElement::find( "gbNormal" );
if ( !gbNormal )
{
gbNormal = new Var;
gbNormal->setName( "gbNormal" );
gbNormal->setType( "vec3" );
meta->addStatement( new GenOp( " @ = tGetMatrix3Row(@, 2);\r\n", new DecOp( gbNormal ), viewToTangent ) );
}
const S32 normalIndex = getProcessIndex();
Var *detailBlend = (Var*)LangElement::find( String::ToString( "detailBlend%d", normalIndex ) );
AssertFatal( detailBlend, "The detail blend is missing!" );
// If we're using SM 3.0 then take advantage of
// dynamic branching to skip layers per-pixel.
if ( GFX->getPixelShaderVersion() >= 3.0f )
meta->addStatement( new GenOp( " if ( @ > 0.0f )\r\n", detailBlend ) );
meta->addStatement( new GenOp( " {\r\n" ) );
// Get the normal map texture.
Var *normalMap = _getNormalMapTex();
/// Get the texture coord.
Var *inDet = _getInDetailCoord( componentList );
Var *inTex = getVertTexCoord( "texCoord" );
// Sample the normal map.
//
// We take two normal samples and lerp between them for
// side projection layers... else a single sample.
LangElement *texOp;
if ( fd.features.hasFeature( MFT_TerrainSideProject, normalIndex ) )
{
texOp = new GenOp( "lerp( tex2D( @, @.yz ), tex2D( @, @.xz ), @.z )",
normalMap, inDet, normalMap, inDet, inTex );
}
else
texOp = new GenOp( "tex2D(@, @.xy)", normalMap, inDet );
// create bump normal
Var *bumpNorm = new Var;
bumpNorm->setName( "bumpNormal" );
bumpNorm->setType( "vec4" );
LangElement *bumpNormDecl = new DecOp( bumpNorm );
meta->addStatement( expandNormalMap( texOp, bumpNormDecl, bumpNorm, fd ) );
// Normalize is done later...
// Note: The reverse mul order is intentional. Affine matrix.
meta->addStatement( new GenOp( " @ = lerp( @, tMul( @.xyz, @ ), min( @, @.w ) );\r\n",
gbNormal, gbNormal, bumpNorm, viewToTangent, detailBlend, inDet ) );
// End the conditional block.
meta->addStatement( new GenOp( " }\r\n" ) );
// If this is the last normal map then we
// can test to see the total blend value
// to see if we should clip the result.
//if ( fd.features.getNextFeatureIndex( MFT_TerrainNormalMap, normalIndex ) == -1 )
//meta->addStatement( new GenOp( " clip( @ - 0.0001f );\r\n", blendTotal ) );
output = meta;
}
ShaderFeature::Resources TerrainNormalMapFeatGLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
// We only need to process normals during the prepass.
if ( fd.features.hasFeature( MFT_PrePassConditioner ) )
{
// If this is the first normal map and there
// are no parallax features then we will
// generate the worldToTanget transform.
if ( !fd.features.hasFeature( MFT_TerrainParallaxMap ) &&
( getProcessIndex() == 0 || !fd.features.hasFeature( MFT_TerrainNormalMap, getProcessIndex() - 1 ) ) )
res.numTexReg = 3;
res.numTex = 1;
}
return res;
}
void TerrainLightMapFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// grab connector texcoord register
Var *inTex = (Var*)LangElement::find( "texCoord" );
if ( !inTex )
return;
// Get the lightmap texture.
Var *lightMap = new Var;
lightMap->setType( "sampler2D" );
lightMap->setName( "lightMapTex" );
lightMap->uniform = true;
lightMap->sampler = true;
lightMap->constNum = Var::getTexUnitNum();
MultiLine *meta = new MultiLine;
// Find or create the lightMask value which is read by
// RTLighting to mask out the lights.
//
// The first light is always the sunlight so we apply
// the shadow mask to only the first channel.
//
Var *lightMask = (Var*)LangElement::find( "lightMask" );
if ( !lightMask )
{
lightMask = new Var( "lightMask", "vec4" );
meta->addStatement( new GenOp( " @ = vec4(1);\r\n", new DecOp( lightMask ) ) );
}
meta->addStatement( new GenOp( " @[0] = tex2D( @, @.xy ).r;\r\n", lightMask, lightMap, inTex ) );
output = meta;
}
ShaderFeature::Resources TerrainLightMapFeatGLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
res.numTex = 1;
return res;
}
void TerrainAdditiveFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
Var *color = NULL;
Var *normal = NULL;
if (fd.features[MFT_DeferredTerrainDetailMap])
{
color = (Var*) LangElement::find( getOutputTargetVarName(ShaderFeature::RenderTarget1) );
normal = (Var*) LangElement::find( getOutputTargetVarName(ShaderFeature::DefaultTarget) );
}
else
color = (Var*) LangElement::find( getOutputTargetVarName(ShaderFeature::DefaultTarget) );
Var *blendTotal = (Var*)LangElement::find( "blendTotal" );
if ( !color || !blendTotal )
return;
MultiLine *meta = new MultiLine;
meta->addStatement( new GenOp( " clip( @ - 0.0001 );\r\n", blendTotal ) );
meta->addStatement( new GenOp( " @.a = @;\r\n", color, blendTotal ) );
if (normal)
meta->addStatement(new GenOp(" @.a = @;\r\n", normal, blendTotal));
output = meta;
}
//standard matInfo map contains data of the form .r = bitflags, .g = (will contain AO),
//.b = specular strength, a= spec power.
//here, it's merely a cutout for now, so that lightmapping (target3) doesn't get mangled.
//we'll most likely revisit that later. possibly several ways...
U32 TerrainBlankInfoMapFeatGLSL::getOutputTargets(const MaterialFeatureData &fd) const
{
return fd.features[MFT_isDeferred] ? ShaderFeature::RenderTarget2 : ShaderFeature::RenderTarget1;
}
void TerrainBlankInfoMapFeatGLSL::processPix(Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd)
{
// search for material var
Var *material;
OutputTarget targ = RenderTarget1;
if (fd.features[MFT_isDeferred])
{
targ = RenderTarget2;
}
material = (Var*)LangElement::find(getOutputTargetVarName(targ));
MultiLine * meta = new MultiLine;
if (!material)
{
// create color var
material = new Var;
material->setType("vec4");
material->setName(getOutputTargetVarName(targ));
material->setStructName("OUT");
}
meta->addStatement(new GenOp(" @ = float4(0.0,0.0,0.0,0.0001);\r\n", material));
output = meta;
}