Torque3D/Engine/source/math/mMatrix.h
Daniel Buckmaster e10b421641 C4458 declaration hides class member.
There are plenty more of these, but they should be fixed by revising the
names of members to start with m, instead of fixing the local violations.
There was a previous PR for that but it went badly. Will retry again one
day.
2015-07-23 20:13:04 +10:00

592 lines
14 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#ifndef _MMATRIX_H_
#define _MMATRIX_H_
#ifndef _MPLANE_H_
#include "math/mPlane.h"
#endif
#ifndef _MBOX_H_
#include "math/mBox.h"
#endif
#ifndef _MPOINT4_H_
#include "math/mPoint4.h"
#endif
/// 4x4 Matrix Class
///
/// This runs at F32 precision.
class MatrixF
{
private:
F32 m[16]; ///< Note: Torque uses row-major matrices
public:
/// Create an uninitialized matrix.
///
/// @param identity If true, initialize to the identity matrix.
explicit MatrixF(bool identity=false);
/// Create a matrix to rotate about origin by e.
/// @see set
explicit MatrixF( const EulerF &e);
/// Create a matrix to rotate about p by e.
/// @see set
MatrixF( const EulerF &e, const Point3F& p);
/// Get the index in m to element in column i, row j
///
/// This is necessary as we have m as a one dimensional array.
///
/// @param i Column desired.
/// @param j Row desired.
static U32 idx(U32 i, U32 j) { return (i + j*4); }
/// Initialize matrix to rotate about origin by e.
MatrixF& set( const EulerF &e);
/// Initialize matrix to rotate about p by e.
MatrixF& set( const EulerF &e, const Point3F& p);
/// Initialize matrix with a cross product of p.
MatrixF& setCrossProduct( const Point3F &p);
/// Initialize matrix with a tensor product of p.
MatrixF& setTensorProduct( const Point3F &p, const Point3F& q);
operator F32*() { return (m); } ///< Allow people to get at m.
operator const F32*() const { return (F32*)(m); } ///< Allow people to get at m.
bool isAffine() const; ///< Check to see if this is an affine matrix.
bool isIdentity() const; ///< Checks for identity matrix.
/// Make this an identity matrix.
MatrixF& identity();
/// Invert m.
MatrixF& inverse();
/// Copy the inversion of this into out matrix.
void invertTo( MatrixF *out );
/// Take inverse of matrix assuming it is affine (rotation,
/// scale, sheer, translation only).
MatrixF& affineInverse();
/// Swap rows and columns.
MatrixF& transpose();
/// M * Matrix(p) -> M
MatrixF& scale( const Point3F &s );
MatrixF& scale( F32 s ) { return scale( Point3F( s, s, s ) ); }
/// Return scale assuming scale was applied via mat.scale(s).
Point3F getScale() const;
EulerF toEuler() const;
/// Compute the inverse of the matrix.
///
/// Computes inverse of full 4x4 matrix. Returns false and performs no inverse if
/// the determinant is 0.
///
/// Note: In most cases you want to use the normal inverse function. This method should
/// be used if the matrix has something other than (0,0,0,1) in the bottom row.
bool fullInverse();
/// Swaps rows and columns into matrix.
void transposeTo(F32 *matrix) const;
/// Normalize the matrix.
void normalize();
/// Copy the requested column into a Point4F.
void getColumn(S32 col, Point4F *cptr) const;
Point4F getColumn4F(S32 col) const { Point4F ret; getColumn(col,&ret); return ret; }
/// Copy the requested column into a Point3F.
///
/// This drops the bottom-most row.
void getColumn(S32 col, Point3F *cptr) const;
Point3F getColumn3F(S32 col) const { Point3F ret; getColumn(col,&ret); return ret; }
/// Set the specified column from a Point4F.
void setColumn(S32 col, const Point4F& cptr);
/// Set the specified column from a Point3F.
///
/// The bottom-most row is not set.
void setColumn(S32 col, const Point3F& cptr);
/// Copy the specified row into a Point4F.
void getRow(S32 row, Point4F *cptr) const;
Point4F getRow4F(S32 row) const { Point4F ret; getRow(row,&ret); return ret; }
/// Copy the specified row into a Point3F.
///
/// Right-most item is dropped.
void getRow(S32 row, Point3F *cptr) const;
Point3F getRow3F(S32 row) const { Point3F ret; getRow(row,&ret); return ret; }
/// Set the specified row from a Point4F.
void setRow(S32 row, const Point4F& cptr);
/// Set the specified row from a Point3F.
///
/// The right-most item is not set.
void setRow(S32 row, const Point3F& cptr);
/// Get the position of the matrix.
///
/// This is the 4th column of the matrix.
Point3F getPosition() const;
/// Set the position of the matrix.
///
/// This is the 4th column of the matrix.
void setPosition( const Point3F &pos ) { setColumn( 3, pos ); }
/// Add the passed delta to the matrix position.
void displace( const Point3F &delta );
/// Get the x axis of the matrix.
///
/// This is the 1st column of the matrix and is
/// normally considered the right vector.
VectorF getRightVector() const;
/// Get the y axis of the matrix.
///
/// This is the 2nd column of the matrix and is
/// normally considered the forward vector.
VectorF getForwardVector() const;
/// Get the z axis of the matrix.
///
/// This is the 3rd column of the matrix and is
/// normally considered the up vector.
VectorF getUpVector() const;
MatrixF& mul(const MatrixF &a); ///< M * a -> M
MatrixF& mulL(const MatrixF &a); ///< a * M -> M
MatrixF& mul(const MatrixF &a, const MatrixF &b); ///< a * b -> M
// Scalar multiplies
MatrixF& mul(const F32 a); ///< M * a -> M
MatrixF& mul(const MatrixF &a, const F32 b); ///< a * b -> M
void mul( Point4F& p ) const; ///< M * p -> p (full [4x4] * [1x4])
void mulP( Point3F& p ) const; ///< M * p -> p (assume w = 1.0f)
void mulP( const Point3F &p, Point3F *d) const; ///< M * p -> d (assume w = 1.0f)
void mulV( VectorF& p ) const; ///< M * v -> v (assume w = 0.0f)
void mulV( const VectorF &p, Point3F *d) const; ///< M * v -> d (assume w = 0.0f)
void mul(Box3F& b) const; ///< Axial box -> Axial Box
MatrixF& add( const MatrixF& m );
/// Convenience function to allow people to treat this like an array.
F32& operator ()(S32 row, S32 col) { return m[idx(col,row)]; }
F32 operator ()(S32 row, S32 col) const { return m[idx(col,row)]; }
void dumpMatrix(const char *caption=NULL) const;
// Math operator overloads
//------------------------------------
friend MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 );
MatrixF& operator *= ( const MatrixF &m );
// Static identity matrix
const static MatrixF Identity;
};
//--------------------------------------
// Inline Functions
inline MatrixF::MatrixF(bool _identity)
{
if (_identity)
identity();
}
inline MatrixF::MatrixF( const EulerF &e )
{
set(e);
}
inline MatrixF::MatrixF( const EulerF &e, const Point3F& p )
{
set(e,p);
}
inline MatrixF& MatrixF::set( const EulerF &e)
{
m_matF_set_euler( e, *this );
return (*this);
}
inline MatrixF& MatrixF::set( const EulerF &e, const Point3F& p)
{
m_matF_set_euler_point( e, p, *this );
return (*this);
}
inline MatrixF& MatrixF::setCrossProduct( const Point3F &p)
{
m[1] = -(m[4] = p.z);
m[8] = -(m[2] = p.y);
m[6] = -(m[9] = p.x);
m[0] = m[3] = m[5] = m[7] = m[10] = m[11] =
m[12] = m[13] = m[14] = 0.0f;
m[15] = 1;
return (*this);
}
inline MatrixF& MatrixF::setTensorProduct( const Point3F &p, const Point3F &q)
{
m[0] = p.x * q.x;
m[1] = p.x * q.y;
m[2] = p.x * q.z;
m[4] = p.y * q.x;
m[5] = p.y * q.y;
m[6] = p.y * q.z;
m[8] = p.z * q.x;
m[9] = p.z * q.y;
m[10] = p.z * q.z;
m[3] = m[7] = m[11] = m[12] = m[13] = m[14] = 0.0f;
m[15] = 1.0f;
return (*this);
}
inline bool MatrixF::isIdentity() const
{
return
m[0] == 1.0f &&
m[1] == 0.0f &&
m[2] == 0.0f &&
m[3] == 0.0f &&
m[4] == 0.0f &&
m[5] == 1.0f &&
m[6] == 0.0f &&
m[7] == 0.0f &&
m[8] == 0.0f &&
m[9] == 0.0f &&
m[10] == 1.0f &&
m[11] == 0.0f &&
m[12] == 0.0f &&
m[13] == 0.0f &&
m[14] == 0.0f &&
m[15] == 1.0f;
}
inline MatrixF& MatrixF::identity()
{
m[0] = 1.0f;
m[1] = 0.0f;
m[2] = 0.0f;
m[3] = 0.0f;
m[4] = 0.0f;
m[5] = 1.0f;
m[6] = 0.0f;
m[7] = 0.0f;
m[8] = 0.0f;
m[9] = 0.0f;
m[10] = 1.0f;
m[11] = 0.0f;
m[12] = 0.0f;
m[13] = 0.0f;
m[14] = 0.0f;
m[15] = 1.0f;
return (*this);
}
inline MatrixF& MatrixF::inverse()
{
m_matF_inverse(m);
return (*this);
}
inline void MatrixF::invertTo( MatrixF *out )
{
m_matF_invert_to(m,*out);
}
inline MatrixF& MatrixF::affineInverse()
{
// AssertFatal(isAffine() == true, "Error, this matrix is not an affine transform");
m_matF_affineInverse(m);
return (*this);
}
inline MatrixF& MatrixF::transpose()
{
m_matF_transpose(m);
return (*this);
}
inline MatrixF& MatrixF::scale(const Point3F& p)
{
m_matF_scale(m,p);
return *this;
}
inline Point3F MatrixF::getScale() const
{
Point3F scale;
scale.x = mSqrt(m[0]*m[0] + m[4] * m[4] + m[8] * m[8]);
scale.y = mSqrt(m[1]*m[1] + m[5] * m[5] + m[9] * m[9]);
scale.z = mSqrt(m[2]*m[2] + m[6] * m[6] + m[10] * m[10]);
return scale;
}
inline void MatrixF::normalize()
{
m_matF_normalize(m);
}
inline MatrixF& MatrixF::mul( const MatrixF &a )
{ // M * a -> M
AssertFatal(&a != this, "MatrixF::mul - a.mul(a) is invalid!");
MatrixF tempThis(*this);
m_matF_x_matF(tempThis, a, *this);
return (*this);
}
inline MatrixF& MatrixF::mulL( const MatrixF &a )
{ // a * M -> M
AssertFatal(&a != this, "MatrixF::mulL - a.mul(a) is invalid!");
MatrixF tempThis(*this);
m_matF_x_matF(a, tempThis, *this);
return (*this);
}
inline MatrixF& MatrixF::mul( const MatrixF &a, const MatrixF &b )
{ // a * b -> M
AssertFatal((&a != this) && (&b != this), "MatrixF::mul - a.mul(a, b) a.mul(b, a) a.mul(a, a) is invalid!");
m_matF_x_matF(a, b, *this);
return (*this);
}
inline MatrixF& MatrixF::mul(const F32 a)
{
for (U32 i = 0; i < 16; i++)
m[i] *= a;
return *this;
}
inline MatrixF& MatrixF::mul(const MatrixF &a, const F32 b)
{
*this = a;
mul(b);
return *this;
}
inline void MatrixF::mul( Point4F& p ) const
{
Point4F temp;
m_matF_x_point4F(*this, &p.x, &temp.x);
p = temp;
}
inline void MatrixF::mulP( Point3F& p) const
{
// M * p -> d
Point3F d;
m_matF_x_point3F(*this, &p.x, &d.x);
p = d;
}
inline void MatrixF::mulP( const Point3F &p, Point3F *d) const
{
// M * p -> d
m_matF_x_point3F(*this, &p.x, &d->x);
}
inline void MatrixF::mulV( VectorF& v) const
{
// M * v -> v
VectorF temp;
m_matF_x_vectorF(*this, &v.x, &temp.x);
v = temp;
}
inline void MatrixF::mulV( const VectorF &v, Point3F *d) const
{
// M * v -> d
m_matF_x_vectorF(*this, &v.x, &d->x);
}
inline void MatrixF::mul(Box3F& b) const
{
m_matF_x_box3F(*this, &b.minExtents.x, &b.maxExtents.x);
}
inline MatrixF& MatrixF::add( const MatrixF& a )
{
for( U32 i = 0; i < 16; ++ i )
m[ i ] += a.m[ i ];
return *this;
}
inline void MatrixF::getColumn(S32 col, Point4F *cptr) const
{
cptr->x = m[col];
cptr->y = m[col+4];
cptr->z = m[col+8];
cptr->w = m[col+12];
}
inline void MatrixF::getColumn(S32 col, Point3F *cptr) const
{
cptr->x = m[col];
cptr->y = m[col+4];
cptr->z = m[col+8];
}
inline void MatrixF::setColumn(S32 col, const Point4F &cptr)
{
m[col] = cptr.x;
m[col+4] = cptr.y;
m[col+8] = cptr.z;
m[col+12]= cptr.w;
}
inline void MatrixF::setColumn(S32 col, const Point3F &cptr)
{
m[col] = cptr.x;
m[col+4] = cptr.y;
m[col+8] = cptr.z;
}
inline void MatrixF::getRow(S32 col, Point4F *cptr) const
{
col *= 4;
cptr->x = m[col++];
cptr->y = m[col++];
cptr->z = m[col++];
cptr->w = m[col];
}
inline void MatrixF::getRow(S32 col, Point3F *cptr) const
{
col *= 4;
cptr->x = m[col++];
cptr->y = m[col++];
cptr->z = m[col];
}
inline void MatrixF::setRow(S32 col, const Point4F &cptr)
{
col *= 4;
m[col++] = cptr.x;
m[col++] = cptr.y;
m[col++] = cptr.z;
m[col] = cptr.w;
}
inline void MatrixF::setRow(S32 col, const Point3F &cptr)
{
col *= 4;
m[col++] = cptr.x;
m[col++] = cptr.y;
m[col] = cptr.z;
}
inline Point3F MatrixF::getPosition() const
{
return Point3F( m[3], m[3+4], m[3+8] );
}
inline void MatrixF::displace( const Point3F &delta )
{
m[3] += delta.x;
m[3+4] += delta.y;
m[3+8] += delta.z;
}
inline VectorF MatrixF::getForwardVector() const
{
VectorF vec;
getColumn( 1, &vec );
return vec;
}
inline VectorF MatrixF::getRightVector() const
{
VectorF vec;
getColumn( 0, &vec );
return vec;
}
inline VectorF MatrixF::getUpVector() const
{
VectorF vec;
getColumn( 2, &vec );
return vec;
}
//------------------------------------
// Math operator overloads
//------------------------------------
inline MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 )
{
// temp = m1 * m2
MatrixF temp;
m_matF_x_matF(m1, m2, temp);
return temp;
}
inline MatrixF& MatrixF::operator *= ( const MatrixF &m1 )
{
MatrixF tempThis(*this);
m_matF_x_matF(tempThis, m1, *this);
return (*this);
}
//------------------------------------
// Non-member methods
//------------------------------------
inline void mTransformPlane(const MatrixF& mat, const Point3F& scale, const PlaneF& plane, PlaneF * result)
{
m_matF_x_scale_x_planeF(mat, &scale.x, &plane.x, &result->x);
}
#endif //_MMATRIX_H_