Torque3D/Engine/source/afx/ce/afxModel.cpp
2018-03-13 01:05:15 -05:00

771 lines
24 KiB
C++

//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~~//
// Arcane-FX for MIT Licensed Open Source version of Torque 3D from GarageGames
// Copyright (C) 2015 Faust Logic, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~~//
#include "afx/arcaneFX.h"
#include "T3D/objectTypes.h"
#include "T3D/gameBase/gameProcess.h"
#include "core/resourceManager.h"
#include "sim/netConnection.h"
#include "scene/sceneRenderState.h"
#include "scene/sceneManager.h"
#include "ts/tsShapeInstance.h"
#include "ts/tsMaterialList.h"
#include "afx/ce/afxModel.h"
//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~~//
// afxModelData
IMPLEMENT_CO_DATABLOCK_V1(afxModelData);
ConsoleDocClass( afxModelData,
"@brief A datablock that specifies a Model effect.\n\n"
"A Model effect is a lightweight client-only geometry object useful for effect-driven props."
"\n\n"
"@ingroup afxEffects\n"
"@ingroup AFX\n"
"@ingroup Datablocks\n"
);
afxModelData::afxModelData()
{
shapeName = ST_NULLSTRING;
sequence = ST_NULLSTRING;
seq_rate = 1.0f;
seq_offset = 0.0f;
alpha_mult = 1.0f;
use_vertex_alpha = false;
force_on_material_flags = 0;
force_off_material_flags = 0;
texture_filtering = true;
fog_mult = 1.0f;
remap_txr_tags = ST_NULLSTRING;
remap_buffer = 0;
overrideLightingOptions = false;
receiveSunLight = true;
receiveLMLighting = true;
useAdaptiveSelfIllumination = false;
useCustomAmbientLighting = false;
customAmbientForSelfIllumination = false;
customAmbientLighting = LinearColorF(0.0f, 0.0f, 0.0f);
shadowEnable = false;
shadowSize = 128;
shadowMaxVisibleDistance = 80.0f;
shadowProjectionDistance = 10.0f;
shadowSphereAdjust = 1.0;
}
afxModelData::afxModelData(const afxModelData& other, bool temp_clone) : GameBaseData(other, temp_clone)
{
shapeName = other.shapeName;
shape = other.shape; // --
sequence = other.sequence;
seq_rate = other.seq_rate;
seq_offset = other.seq_offset;
alpha_mult = other.alpha_mult;
use_vertex_alpha = other.use_vertex_alpha;
force_on_material_flags = other.force_on_material_flags;
force_off_material_flags = other.force_off_material_flags;
texture_filtering = other.texture_filtering;
fog_mult = other.fog_mult;
remap_txr_tags = other.remap_txr_tags;
remap_buffer = other.remap_buffer;
overrideLightingOptions = other.overrideLightingOptions;
receiveSunLight = other.receiveSunLight;
receiveLMLighting = other.receiveLMLighting;
useAdaptiveSelfIllumination = other.useAdaptiveSelfIllumination;
useCustomAmbientLighting = other.useCustomAmbientLighting;
customAmbientForSelfIllumination = other.customAmbientForSelfIllumination;
customAmbientLighting = other.customAmbientLighting;
shadowEnable = other.shadowEnable;
}
afxModelData::~afxModelData()
{
if (remap_buffer)
dFree(remap_buffer);
}
bool afxModelData::preload(bool server, String &errorStr)
{
if (Parent::preload(server, errorStr) == false)
return false;
// don't need to do this stuff on the server
if (server)
return true;
if (shapeName != ST_NULLSTRING && !shape)
{
shape = ResourceManager::get().load(shapeName);
if (!shape)
{
errorStr = String::ToString("afxModelData::load: Failed to load shape \"%s\"", shapeName);
return false;
}
// just parse up the string and collect the remappings in txr_tag_remappings.
if (remap_txr_tags != ST_NULLSTRING)
{
txr_tag_remappings.clear();
if (remap_buffer)
dFree(remap_buffer);
remap_buffer = dStrdup(remap_txr_tags);
char* remap_token = dStrtok(remap_buffer, " \t");
while (remap_token != NULL)
{
char* colon = dStrchr(remap_token, ':');
if (colon)
{
*colon = '\0';
txr_tag_remappings.increment();
txr_tag_remappings.last().old_tag = remap_token;
txr_tag_remappings.last().new_tag = colon+1;
}
remap_token = dStrtok(NULL, " \t");
}
}
// this little hack messes things up when remapping texture tags
if (txr_tag_remappings.size() == 0)
{
// this little hack forces the textures to preload
TSShapeInstance* pDummy = new TSShapeInstance(shape);
delete pDummy;
}
}
return true;
}
#define myOffset(field) Offset(field, afxModelData)
void afxModelData::initPersistFields()
{
addField("shapeFile", TypeFilename, myOffset(shapeName),
"The name of a .dts format file to use for the model.");
addField("sequence", TypeFilename, myOffset(sequence),
"The name of an animation sequence to play in the model.");
addField("sequenceRate", TypeF32, myOffset(seq_rate),
"The rate of playback for the sequence.");
addField("sequenceOffset", TypeF32, myOffset(seq_offset),
"An offset in seconds indicating a starting point for the animation sequence "
"specified by the sequence field. A rate of 1.0 (rather than sequenceRate) is used "
"to convert from seconds to the thread offset.");
addField("alphaMult", TypeF32, myOffset(alpha_mult),
"An alpha multiplier used to set maximum opacity of the model.");
addField("fogMult", TypeF32, myOffset(fog_mult),
"");
addField("remapTextureTags", TypeString, myOffset(remap_txr_tags),
"Rename one or more texture tags in the model. Texture tags are what link a "
"model's textures to materials.\n"
"Field should be a string containing space-separated remapping tokens. A remapping "
"token is two names separated by a colon, ':'. The first name should be a texture-tag "
"that exists in the model, while the second is a new name to replace it. The string "
"can have any number of remapping tokens as long as the total string length does not "
"exceed 255.");
addField("shadowEnable", TypeBool, myOffset(shadowEnable),
"Sets whether the model casts a shadow.");
addField("useVertexAlpha", TypeBool, myOffset(use_vertex_alpha),
"deprecated");
addField("forceOnMaterialFlags", TypeS32, myOffset(force_on_material_flags),
"deprecated");
addField("forceOffMaterialFlags", TypeS32, myOffset(force_off_material_flags),
"deprecated");
addField("textureFiltering", TypeBool, myOffset(texture_filtering),
"deprecated");
addField("overrideLightingOptions", TypeBool, myOffset(overrideLightingOptions),
"deprecated");
addField("receiveSunLight", TypeBool, myOffset(receiveSunLight),
"");
addField("receiveLMLighting", TypeBool, myOffset(receiveLMLighting),
"deprecated");
addField("useAdaptiveSelfIllumination", TypeBool, myOffset(useAdaptiveSelfIllumination),
"deprecated");
addField("useCustomAmbientLighting", TypeBool, myOffset(useCustomAmbientLighting),
"deprecated");
addField("customAmbientSelfIllumination", TypeBool, myOffset(customAmbientForSelfIllumination),
"deprecated");
addField("customAmbientLighting", TypeColorF, myOffset(customAmbientLighting),
"deprecated");
addField("shadowSize", TypeS32, myOffset(shadowSize),
"deprecated");
addField("shadowMaxVisibleDistance", TypeF32, myOffset(shadowMaxVisibleDistance),
"deprecated");
addField("shadowProjectionDistance", TypeF32, myOffset(shadowProjectionDistance),
"deprecated");
addField("shadowSphereAdjust", TypeF32, myOffset(shadowSphereAdjust),
"deprecated");
Parent::initPersistFields();
// Material Flags
Con::setIntVariable("$MaterialFlags::S_Wrap", TSMaterialList::S_Wrap);
Con::setIntVariable("$MaterialFlags::T_Wrap", TSMaterialList::T_Wrap);
Con::setIntVariable("$MaterialFlags::Translucent", TSMaterialList::Translucent);
Con::setIntVariable("$MaterialFlags::Additive", TSMaterialList::Additive);
Con::setIntVariable("$MaterialFlags::Subtractive", TSMaterialList::Subtractive);
Con::setIntVariable("$MaterialFlags::SelfIlluminating", TSMaterialList::SelfIlluminating);
Con::setIntVariable("$MaterialFlags::NeverEnvMap", TSMaterialList::NeverEnvMap);
Con::setIntVariable("$MaterialFlags::NoMipMap", TSMaterialList::NoMipMap);
Con::setIntVariable("$MaterialFlags::MipMap_ZeroBorder", TSMaterialList::MipMap_ZeroBorder);
Con::setIntVariable("$MaterialFlags::AuxiliaryMap", TSMaterialList::AuxiliaryMap);
#if defined(AFX_CAP_AFXMODEL_TYPE)
Con::setIntVariable("$TypeMasks::afxModelObjectType", afxModelObjectType);
#endif
}
void afxModelData::packData(BitStream* stream)
{
Parent::packData(stream);
stream->writeString(shapeName);
stream->writeString(sequence);
stream->write(seq_rate);
stream->write(seq_offset);
stream->write(alpha_mult);
stream->write(use_vertex_alpha);
stream->write(force_on_material_flags);
stream->write(force_off_material_flags);
stream->writeFlag(texture_filtering);
stream->write(fog_mult);
stream->writeString(remap_txr_tags);
stream->writeFlag(overrideLightingOptions);
stream->writeFlag(receiveSunLight);
stream->writeFlag(useAdaptiveSelfIllumination);
stream->writeFlag(useCustomAmbientLighting);
stream->writeFlag(customAmbientForSelfIllumination);
stream->write(customAmbientLighting);
stream->writeFlag(receiveLMLighting);
stream->writeFlag(shadowEnable);
stream->write(shadowSize);
stream->write(shadowMaxVisibleDistance);
stream->write(shadowProjectionDistance);
stream->write(shadowSphereAdjust);
}
void afxModelData::unpackData(BitStream* stream)
{
Parent::unpackData(stream);
shapeName = stream->readSTString();
sequence = stream->readSTString();
stream->read(&seq_rate);
stream->read(&seq_offset);
stream->read(&alpha_mult);
stream->read(&use_vertex_alpha);
stream->read(&force_on_material_flags);
stream->read(&force_off_material_flags);
texture_filtering = stream->readFlag();
stream->read(&fog_mult);
remap_txr_tags = stream->readSTString();
overrideLightingOptions = stream->readFlag();
receiveSunLight = stream->readFlag();
useAdaptiveSelfIllumination = stream->readFlag();
useCustomAmbientLighting = stream->readFlag();
customAmbientForSelfIllumination = stream->readFlag();
stream->read(&customAmbientLighting);
receiveLMLighting = stream->readFlag();
shadowEnable = stream->readFlag();
stream->read(&shadowSize);
stream->read(&shadowMaxVisibleDistance);
stream->read(&shadowProjectionDistance);
stream->read(&shadowSphereAdjust);
}
void afxModelData::onPerformSubstitutions()
{
if (shapeName != ST_NULLSTRING)
{
shape = ResourceManager::get().load(shapeName);
if (!shape)
{
Con::errorf("afxModelData::onPerformSubstitutions: Failed to load shape \"%s\"", shapeName);
return;
}
// REMAP-TEXTURE-TAGS ISSUES?
}
}
//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~~//
//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~~//
// afxModel
IMPLEMENT_CO_NETOBJECT_V1(afxModel);
ConsoleDocClass( afxModel,
"@brief A Model effect as defined by an afxModelData datablock.\n\n"
"A Model effect is a lightweight client-only geometry object useful for effect-driven "
"props.\n"
"@ingroup afxEffects\n"
"@ingroup AFX\n"
);
afxModel::afxModel()
{
mTypeMask |= DynamicShapeObjectType;
#if defined(AFX_CAP_AFXMODEL_TYPE)
mTypeMask |= afxModelObjectType;
#endif
shape_inst = 0;
main_seq_thread = 0;
main_seq_id = -1;
seq_rate_factor = 1.0f;
last_anim_tag = 0;
seq_animates_vis = false;
fade_amt = 1.0f;
is_visible = true;
sort_priority = 0;
mNetFlags.set( IsGhost );
}
afxModel::~afxModel()
{
delete shape_inst;
}
void afxModel::setSequenceRateFactor(F32 factor)
{
seq_rate_factor = factor;
if (shape_inst != NULL && main_seq_thread != NULL)
shape_inst->setTimeScale(main_seq_thread, seq_rate_factor*mDataBlock->seq_rate);
}
//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//
bool afxModel::onNewDataBlock(GameBaseData* dptr, bool reload)
{
mDataBlock = dynamic_cast<afxModelData*>(dptr);
if (!mDataBlock || !Parent::onNewDataBlock(dptr, reload))
return false;
return true;
}
bool afxModel::onAdd()
{
// first check if we have a server connection, if we don't then this is on the server
// and we should exit, then check if the parent fails to add the object
NetConnection* conn = NetConnection::getConnectionToServer();
if (!conn || !Parent::onAdd())
return false;
// setup our bounding box
if (mDataBlock->shape)
mObjBox = mDataBlock->shape->mBounds;
else
mObjBox = Box3F(Point3F(-1, -1, -1), Point3F(1, 1, 1));
// setup the shape instance and sequence
if (mDataBlock->shape)
{
if (/*isClientObject() && */mDataBlock->txr_tag_remappings.size() > 0)
{
// temporarily substitute material tags with alternates
TSMaterialList* mat_list = mDataBlock->shape->materialList;
if (mat_list)
{
for (S32 i = 0; i < mDataBlock->txr_tag_remappings.size(); i++)
{
afxModelData::TextureTagRemapping* remap = &mDataBlock->txr_tag_remappings[i];
Vector<String> & mat_names = (Vector<String>&) mat_list->getMaterialNameList();
for (S32 j = 0; j < mat_names.size(); j++)
{
if (mat_names[j].compare(remap->old_tag, dStrlen(remap->old_tag), String::NoCase) == 0)
{
//Con::printf("REMAP TEXTURE TAG [%s] TO [%s]", remap->old_tag, remap->new_tag);
mat_names[j] = String(remap->new_tag);
mat_names[j].insert(0,'#');
break;
}
}
}
}
}
shape_inst = new TSShapeInstance(mDataBlock->shape);
if (true) // isClientObject())
{
shape_inst->cloneMaterialList();
// restore the material tags to original form
if (mDataBlock->txr_tag_remappings.size() > 0)
{
TSMaterialList* mat_list = mDataBlock->shape->materialList;
if (mat_list)
{
for (S32 i = 0; i < mDataBlock->txr_tag_remappings.size(); i++)
{
afxModelData::TextureTagRemapping* remap = &mDataBlock->txr_tag_remappings[i];
Vector<String> & mat_names = (Vector<String>&) mat_list->getMaterialNameList();
for (S32 j = 0; j < mat_names.size(); j++)
{
if (mat_names[j].compare(remap->new_tag, dStrlen(remap->new_tag)) == 0)
{
//Con::printf("UNREMAP TEXTURE TAG [%s] TO [%s]", remap->new_tag, remap->old_tag);
mat_names[j] = String(remap->old_tag);
break;
}
}
}
}
}
}
if (mDataBlock->sequence == ST_NULLSTRING)
{
main_seq_thread = 0;
main_seq_id = -1;
}
else
{
// here we start the default animation sequence
TSShape* shape = shape_inst->getShape();
main_seq_id = shape->findSequence(mDataBlock->sequence);
if (main_seq_id != -1)
{
main_seq_thread = shape_inst->addThread();
F32 seq_pos = 0.0f;
if (mDataBlock->seq_offset > 0.0f && mDataBlock->seq_offset < shape_inst->getDuration(main_seq_thread))
seq_pos = mDataBlock->seq_offset / shape_inst->getDuration(main_seq_thread);
shape_inst->setTimeScale(main_seq_thread, seq_rate_factor*mDataBlock->seq_rate);
shape_inst->setSequence(main_seq_thread, main_seq_id, seq_pos);
seq_animates_vis = shape->sequences[main_seq_id].visMatters.testAll();
}
}
// deal with material changes
if (shape_inst && (mDataBlock->force_on_material_flags | mDataBlock->force_off_material_flags))
{
shape_inst->cloneMaterialList();
TSMaterialList* mats = shape_inst->getMaterialList();
if (mDataBlock->force_on_material_flags != 0)
{
for (U32 i = 0; i < mats->size(); i++)
mats->setFlags(i, mats->getFlags(i) | mDataBlock->force_on_material_flags);
}
if (mDataBlock->force_off_material_flags != 0)
{
for (U32 i = 0; i < mats->size(); i++)
mats->setFlags(i, mats->getFlags(i) & ~mDataBlock->force_off_material_flags);
}
}
}
resetWorldBox();
if (mDataBlock->shape)
{
// Scan out the collision hulls...
static const String sCollisionStr( "collision-" );
for (U32 i = 0; i < mDataBlock->shape->details.size(); i++)
{
const String &name = mDataBlock->shape->names[mDataBlock->shape->details[i].nameIndex];
if (name.compare( sCollisionStr, sCollisionStr.length(), String::NoCase ) == 0)
{
mCollisionDetails.push_back(i);
// The way LOS works is that it will check to see if there is a LOS detail that matches
// the the collision detail + 1 + MaxCollisionShapes (this variable name should change in
// the future). If it can't find a matching LOS it will simply use the collision instead.
// We check for any "unmatched" LOS's further down
mLOSDetails.increment();
char buff[128];
dSprintf(buff, sizeof(buff), "LOS-%d", i + 1 + 8/*MaxCollisionShapes*/);
U32 los = mDataBlock->shape->findDetail(buff);
if (los == -1)
mLOSDetails.last() = i;
else
mLOSDetails.last() = los;
}
}
// Snag any "unmatched" LOS details
static const String sLOSStr( "LOS-" );
for (U32 i = 0; i < mDataBlock->shape->details.size(); i++)
{
const String &name = mDataBlock->shape->names[mDataBlock->shape->details[i].nameIndex];
if (name.compare( sLOSStr, sLOSStr.length(), String::NoCase ) == 0)
{
// See if we already have this LOS
bool found = false;
for (U32 j = 0; j < mLOSDetails.size(); j++)
{
if (mLOSDetails[j] == i)
{
found = true;
break;
}
}
if (!found)
mLOSDetails.push_back(i);
}
}
// Compute the hull accelerators (actually, just force the shape to compute them)
for (U32 i = 0; i < mCollisionDetails.size(); i++)
shape_inst->getShape()->getAccelerator(mCollisionDetails[i]);
}
// tell engine the model exists
gClientSceneGraph->addObjectToScene(this);
removeFromProcessList();
ClientProcessList::get()->addObject(this);
conn->addObject(this);
return true;
}
void afxModel::onRemove()
{
mSceneManager->removeObjectFromScene(this);
getContainer()->removeObject(this);
Parent::onRemove();
}
//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//
void afxModel::advanceTime(F32 dt)
{
if (main_seq_thread)
shape_inst->advanceTime(dt, main_seq_thread);
for (S32 i = 0; i < blend_clips.size(); i++)
shape_inst->advanceTime(dt, blend_clips[i].thread);
}
//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//
void afxModel::prepRenderImage(SceneRenderState* state)
{
if (!is_visible || !shape_inst)
return;
// calculate distance to camera
Point3F cameraOffset;
getRenderTransform().getColumn(3, &cameraOffset);
cameraOffset -= state->getCameraPosition();
F32 dist = cameraOffset.len();
if (dist < 0.01f)
dist = 0.01f;
F32 invScale = (1.0f/getMax(getMax(mObjScale.x,mObjScale.y),mObjScale.z));
shape_inst->setDetailFromDistance(state, dist*invScale);
if ( shape_inst->getCurrentDetail() < 0 )
return;
renderObject(state);
}
bool afxModel::castRay(const Point3F &start, const Point3F &end, RayInfo* info)
{
if (shape_inst)
{
RayInfo shortest;
shortest.t = 1e8;
info->object = NULL;
if (mLOSDetails.size() > 0)
{
for (U32 i = 0; i < mLOSDetails.size(); i++)
{
shape_inst->animate(mLOSDetails[i]);
if (shape_inst->castRay(start, end, info, mLOSDetails[i]))
{
info->object = this;
if (info->t < shortest.t)
shortest = *info;
}
}
}
else
{
if (mCollisionDetails.size() > 0)
{
for (U32 i = 0; i < mCollisionDetails.size(); i++)
{
shape_inst->animate(mCollisionDetails[i]);
if (shape_inst->castRay(start, end, info, mCollisionDetails[i]))
{
info->object = this;
if (info->t < shortest.t)
shortest = *info;
}
}
}
}
if (info->object == this)
{
// Copy out the shortest time...
*info = shortest;
return true;
}
}
return false;
}
U32 afxModel::unique_anim_tag_counter = 1;
#define BAD_ANIM_ID 999999999
U32 afxModel::setAnimClip(const char* clip, F32 pos, F32 rate, F32 trans)
{
if (!shape_inst)
return 0;
TSShape* shape = shape_inst->getShape();
S32 seq_id = shape->findSequence(clip);
if (seq_id == -1)
{
Con::errorf("afxModel::setAnimClip() -- failed to find a sequence matching the name, \"%s\".", clip);
return 0;
}
// JTF Note: test if this blend implementation is working
if (shape->sequences[seq_id].isBlend())
{
BlendThread blend_clip;
blend_clip.tag = ((unique_anim_tag_counter++) | 0x80000000);
blend_clip.thread = shape_inst->addThread();
shape_inst->setSequence(blend_clip.thread, seq_id, pos);
shape_inst->setTimeScale(blend_clip.thread, rate);
blend_clips.push_back(blend_clip);
return blend_clip.tag;
}
if (!main_seq_thread)
{
main_seq_thread = shape_inst->addThread();
shape_inst->setTimeScale(main_seq_thread, seq_rate_factor*rate);
shape_inst->setSequence(main_seq_thread, seq_id, pos);
seq_animates_vis = shape->sequences[seq_id].visMatters.testAll();
}
else
{
shape_inst->setTimeScale(main_seq_thread, seq_rate_factor*rate);
F32 transTime = (trans < 0) ? 0.25 : trans;
if (transTime > 0.0f)
shape_inst->transitionToSequence(main_seq_thread, seq_id, pos, transTime, true);
else
shape_inst->setSequence(main_seq_thread, seq_id, pos);
seq_animates_vis = shape->sequences[seq_id].visMatters.testAll();
}
last_anim_tag = unique_anim_tag_counter++;
return last_anim_tag;
}
void afxModel::resetAnimation(U32 tag)
{
// check if this is a blended clip
if ((tag & 0x80000000) != 0)
{
for (S32 i = 0; i < blend_clips.size(); i++)
{
if (blend_clips[i].tag == tag)
{
if (blend_clips[i].thread)
{
//Con::printf("DESTROY THREAD %d of %d tag=%d" , i, blend_clips.size(), tag & 0x7fffffff);
shape_inst->destroyThread(blend_clips[i].thread);
}
blend_clips.erase_fast(i);
break;
}
}
return;
}
if (tag != 0 && tag == last_anim_tag)
{
// restore original non-animated state
if (main_seq_id == -1)
{
shape_inst->destroyThread(main_seq_thread);
main_seq_thread = 0;
}
// restore original sequence
else
{
shape_inst->setTimeScale(main_seq_thread, seq_rate_factor*mDataBlock->seq_rate);
shape_inst->transitionToSequence(main_seq_thread, main_seq_id , 0.0f, 0.25f, true);
}
last_anim_tag = 0;
}
}
F32 afxModel::getAnimClipDuration(const char* clip)
{
if (!shape_inst)
return 0.0f;
TSShape* shape = shape_inst->getShape();
S32 seq_id = shape->findSequence(clip);
return (seq_id != -1) ? shape->sequences[seq_id].duration : 0.0f;
}
//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~//~~~~~~~~~~~~~~~~~~~~~//