cramer for inverse

added #if block around inverse methods to track down shadow bug

uses old inverse method as default for now.
This commit is contained in:
marauder2k7 2024-07-31 17:32:00 +01:00
parent 4078f3ad4e
commit ab4b4cbf96
2 changed files with 349 additions and 69 deletions

View file

@ -127,6 +127,10 @@ public:
EulerF toEuler() const;
F32 determinant() const {
return m_matF_determinant(*this);
}
/// Compute the inverse of the matrix.
///
/// Computes inverse of full 4x4 matrix. Returns false and performs no inverse if
@ -702,11 +706,9 @@ public:
AssertFatal(rows == cols, "Determinant is only defined for square matrices.");
// For simplicity, only implement for 3x3 matrices
AssertFatal(rows >= 3 && cols >= 3, "Determinant only for 3x3 or more"); // Ensure the matrix is 3x3
DATA_TYPE det =
data[0] * (data[4] * data[8] - data[5] * data[7]) -
data[1] * (data[3] * data[8] - data[5] * data[6]) +
data[2] * (data[3] * data[7] - data[4] * data[6]);
return det;
return (*this)(0, 0) * ((*this)(1, 1) * (*this)(2, 2) - (*this)(1, 2) * (*this)(2, 1)) +
(*this)(1, 0) * ((*this)(0, 2) * (*this)(2, 1) - (*this)(0, 1) * (*this)(2, 2)) +
(*this)(2, 0) * ((*this)(0, 1) * (*this)(1, 2) - (*this)(0, 2) * (*this)(1, 1));
}
///< M * a -> M
@ -823,6 +825,12 @@ public:
}
}
void swap(DATA_TYPE& a, DATA_TYPE& b) {
DATA_TYPE temp = a;
a = b;
b = temp;
}
void invertTo(Matrix<DATA_TYPE, cols, rows>* matrix) const;
void invertTo(Matrix<DATA_TYPE, cols, rows>* matrix);
@ -834,17 +842,25 @@ public:
friend Matrix<DATA_TYPE, rows, cols> operator*(const Matrix<DATA_TYPE, rows, cols>& m1, const Matrix<DATA_TYPE, rows, cols>& m2) {
Matrix<DATA_TYPE, rows, cols> result;
for (U32 i = 0; i < rows; ++i)
{
for (U32 j = 0; j < cols; ++j)
{
result(i, j) = 0; // Initialize result element to 0
for (U32 k = 0; k < cols; ++k)
{
result(i, j) += m1(i, k) * m2(k, j);
}
}
}
result(0, 0) = m1(0, 0) * m2(0, 0) + m1(0, 1) * m2(1, 0) + m1(0, 2) * m2(2, 0) + m1(0, 3) * m2(3, 0);
result(0, 1) = m1(0, 0) * m2(0, 1) + m1(0, 1) * m2(1, 1) + m1(0, 2) * m2(2, 1) + m1(0, 3) * m2(3, 1);
result(0, 2) = m1(0, 0) * m2(0, 2) + m1(0, 1) * m2(1, 2) + m1(0, 2) * m2(2, 2) + m1(0, 3) * m2(3, 2);
result(0, 3) = m1(0, 0) * m2(0, 3) + m1(0, 1) * m2(1, 3) + m1(0, 2) * m2(2, 3) + m1(0, 3) * m2(3, 3);
result(1, 0) = m1(1, 0) * m2(0, 0) + m1(1, 1) * m2(1, 0) + m1(1, 2) * m2(2, 0) + m1(1, 3) * m2(3, 0);
result(1, 1) = m1(1, 0) * m2(0, 1) + m1(1, 1) * m2(1, 1) + m1(1, 2) * m2(2, 1) + m1(1, 3) * m2(3, 1);
result(1, 2) = m1(1, 0) * m2(0, 2) + m1(1, 1) * m2(1, 2) + m1(1, 2) * m2(2, 2) + m1(1, 3) * m2(3, 2);
result(1, 3) = m1(1, 0) * m2(0, 3) + m1(1, 1) * m2(1, 3) + m1(1, 2) * m2(2, 3) + m1(1, 3) * m2(3, 3);
result(2, 0) = m1(2, 0) * m2(0, 0) + m1(2, 1) * m2(1, 0) + m1(2, 2) * m2(2, 0) + m1(2, 3) * m2(3, 0);
result(2, 1) = m1(2, 0) * m2(0, 1) + m1(2, 1) * m2(1, 1) + m1(2, 2) * m2(2, 1) + m1(2, 3) * m2(3, 1);
result(2, 2) = m1(2, 0) * m2(0, 2) + m1(2, 1) * m2(1, 2) + m1(2, 2) * m2(2, 2) + m1(2, 3) * m2(3, 2);
result(2, 3) = m1(2, 0) * m2(0, 3) + m1(2, 1) * m2(1, 3) + m1(2, 2) * m2(2, 3) + m1(2, 3) * m2(3, 3);
result(3, 0) = m1(3, 0) * m2(0, 0) + m1(3, 1) * m2(1, 0) + m1(3, 2) * m2(2, 0) + m1(3, 3) * m2(3, 0);
result(3, 1) = m1(3, 0) * m2(0, 1) + m1(3, 1) * m2(1, 1) + m1(3, 2) * m2(2, 1) + m1(3, 3) * m2(3, 1);
result(3, 2) = m1(3, 0) * m2(0, 2) + m1(3, 1) * m2(1, 2) + m1(3, 2) * m2(2, 2) + m1(3, 3) * m2(3, 2);
result(3, 3) = m1(3, 0) * m2(0, 3) + m1(3, 1) * m2(1, 3) + m1(3, 2) * m2(2, 3) + m1(3, 3) * m2(3, 3);
return result;
}
@ -907,13 +923,14 @@ public:
Point3F operator*(const Point3F& point) const {
AssertFatal(rows == 4 && cols == 4, "Multiplying point3 with matrix requires 4x4");
return Point3F(
(*this)(0, 0) * point.x + (*this)(0, 1) * point.y + (*this)(0, 2) * point.z + (*this)(0, 3),
(*this)(1, 0) * point.x + (*this)(1, 1) * point.y + (*this)(1, 2) * point.z + (*this)(1, 3),
(*this)(2, 0) * point.x + (*this)(2, 1) * point.y + (*this)(2, 2) * point.z + (*this)(2, 3)
);
}
Point3F result;
result.x = (*this)(0, 0) * point.x + (*this)(0, 1) * point.y + (*this)(0, 2) * point.z + (*this)(0, 3);
result.y = (*this)(1, 0) * point.x + (*this)(1, 1) * point.y + (*this)(1, 2) * point.z + (*this)(1, 3);
result.z = (*this)(2, 0) * point.x + (*this)(2, 1) * point.y + (*this)(2, 2) * point.z + (*this)(2, 3);
return result;
}
Point4F operator*(const Point4F& point) const {
AssertFatal(rows == 4 && cols == 4, "Multiplying point4 with matrix requires 4x4");
return Point4F(
@ -964,7 +981,6 @@ public:
return data[idx(col, row)];
}
};
//--------------------------------------------
@ -975,11 +991,13 @@ inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::transpose()
{
AssertFatal(rows == cols, "Transpose can only be performed on square matrices.");
for (U32 i = 0; i < rows; ++i) {
for (U32 j = i + 1; j < cols; ++j) {
std::swap((*this)(i, j), (*this)(j, i));
}
}
swap((*this)(0, 1), (*this)(1, 0));
swap((*this)(0, 2), (*this)(2, 0));
swap((*this)(0, 3), (*this)(3, 0));
swap((*this)(1, 2), (*this)(2, 1));
swap((*this)(1, 3), (*this)(3, 1));
swap((*this)(2, 3), (*this)(3, 2));
return (*this);
}
@ -1331,9 +1349,9 @@ inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const E
(*this) = Matrix<DATA_TYPE, rows, cols>(true);
break;
case AXIS_X:
(*this)(0, 0) = 1.0f; (*this)(1, 0) = 0.0f; (*this)(2, 0) = 0.0f;
(*this)(0, 1) = 0.0f; (*this)(1, 1) = cosPitch; (*this)(2, 1) = -sinPitch;
(*this)(0, 2) = 0.0f; (*this)(1, 2) = sinPitch; (*this)(2, 2) = cosPitch;
(*this)(0, 0) = 1.0f; (*this)(0, 1) = 0.0f; (*this)(0, 2) = 0.0f;
(*this)(1, 0) = 0.0f; (*this)(1, 1) = cosPitch; (*this)(1, 2) = sinPitch;
(*this)(2, 0) = 0.0f; (*this)(2, 1) = -sinPitch; (*this)(2, 2) = cosPitch;
break;
case AXIS_Y:
(*this)(0, 0) = cosYaw; (*this)(1, 0) = 0.0f; (*this)(2, 0) = sinYaw;
@ -1341,9 +1359,9 @@ inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const E
(*this)(0, 2) = -sinYaw; (*this)(1, 2) = 0.0f; (*this)(2, 2) = cosYaw;
break;
case AXIS_Z:
(*this)(0, 0) = cosRoll; (*this)(1, 0) = -sinRoll; (*this)(2, 0) = 0.0f;
(*this)(0, 1) = sinRoll; (*this)(1, 1) = cosRoll; (*this)(2, 1) = 0.0f;
(*this)(0, 2) = 0.0f; (*this)(1, 2) = 0.0f; (*this)(2, 2) = 1.0f;
(*this)(0, 0) = cosRoll; (*this)(0, 1) = sinRoll; (*this)(0, 2) = 0.0f;
(*this)(1, 0) = -sinRoll; (*this)(1, 1) = cosRoll; (*this)(1, 2) = 0.0f;
(*this)(2, 0) = 0.0f; (*this)(2, 1) = 0.0f; (*this)(2, 2) = 1.0f;
break;
default:
F32 r1 = cosYaw * cosRoll;
@ -1363,9 +1381,9 @@ inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const E
// r4 = sin(y) * sin(z)
// init the euler 3x3 rotation matrix.
(*this)(0, 0) = r1 - (r4 * sinPitch); (*this)(1, 0) = -cosPitch * sinRoll; (*this)(2, 0) = r3 + (r2 * sinPitch);
(*this)(0, 1) = r2 + (r3 * sinPitch); (*this)(1, 1) = cosPitch * cosRoll; (*this)(2, 1) = r4 - (r1 * sinPitch);
(*this)(0, 2) = -cosPitch * sinYaw; (*this)(1, 2) = sinPitch; (*this)(2, 2) = cosPitch * cosYaw;
(*this)(0, 0) = r1 - (r4 * sinPitch); (*this)(0, 1) = r2 + (r3 * sinPitch); (*this)(0, 2) = -cosPitch * sinYaw;
(*this)(1, 0) = -cosPitch * sinRoll; (*this)(1, 1) = cosPitch * cosRoll; (*this)(1, 2) = sinPitch;
(*this)(2, 0) = r3 + (r2 * sinPitch); (*this)(2, 1) = r4 - (r1 * sinPitch); (*this)(2, 2) = cosPitch * cosYaw;
break;
}
@ -1415,9 +1433,13 @@ inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const E
template<typename DATA_TYPE, U32 rows, U32 cols>
inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::inverse()
{
// TODO: insert return statement here
#if 0
// NOTE: Gauss-Jordan elimination is yielding unpredictable results due to precission handling and
// numbers near 0.0
//
AssertFatal(rows == cols, "Can only perform inverse on square matrices.");
const U32 size = rows - 1;
const DATA_TYPE pivot_eps = static_cast<DATA_TYPE>(1e-20); // Smaller epsilon to handle numerical precision
// Create augmented matrix [this | I]
Matrix<DATA_TYPE, size, rows + size> augmentedMatrix;
@ -1436,11 +1458,14 @@ inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::inverse()
{
U32 pivotRow = i;
DATA_TYPE pivotValue = std::abs(augmentedMatrix(i, i));
for (U32 k = i + 1; k < size; k++)
{
// use std::abs until the templated math functions are in place.
if (std::abs(augmentedMatrix(k, i)) > std::abs(augmentedMatrix(pivotRow, i))) {
DATA_TYPE curValue = std::abs(augmentedMatrix(k, i));
if (curValue > pivotValue) {
pivotRow = k;
pivotValue = curValue;
}
}
@ -1449,18 +1474,20 @@ inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::inverse()
{
for (U32 j = 0; j < 2 * size; j++)
{
std::swap(augmentedMatrix(i, j), augmentedMatrix(pivotRow, j));
DATA_TYPE temp = augmentedMatrix(i, j);
augmentedMatrix(i, j) = augmentedMatrix(pivotRow, j);
augmentedMatrix(pivotRow, j) = temp;
}
}
// Early out if pivot is 0, return identity matrix.
if (augmentedMatrix(i, i) == static_cast<DATA_TYPE>(0))
if (std::abs(augmentedMatrix(i, i)) < pivot_eps)
{
this->identity();
return *this;
}
DATA_TYPE pivotVal = 1.0f / augmentedMatrix(i, i);
DATA_TYPE pivotVal = static_cast<DATA_TYPE>(1.0) / augmentedMatrix(i, i);
// scale the pivot
for (U32 j = 0; j < 2 * size; j++)
@ -1489,6 +1516,44 @@ inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::inverse()
(*this)(i, j) = augmentedMatrix(i, j + size);
}
}
#else
AssertFatal(rows == cols, "Can only perform inverse on square matrices.");
AssertFatal(rows >= 3 && cols >= 3, "Must be at least a 3x3 matrix");
DATA_TYPE det = determinant();
// Check if the determinant is non-zero
if (std::abs(det) < static_cast<DATA_TYPE>(1e-10)) {
this->identity(); // Return the identity matrix if the determinant is zero
return *this;
}
DATA_TYPE invDet = DATA_TYPE(1) / det;
Matrix<DATA_TYPE, rows, cols> temp;
// Calculate the inverse of the 3x3 upper-left submatrix using Cramer's rule
temp(0, 0) = ((*this)(1, 1) * (*this)(2, 2) - (*this)(1, 2) * (*this)(2, 1)) * invDet;
temp(0, 1) = ((*this)(2, 1) * (*this)(0, 2) - (*this)(2, 2) * (*this)(0, 1)) * invDet;
temp(0, 2) = ((*this)(0, 1) * (*this)(1, 2) - (*this)(0, 2) * (*this)(1, 1)) * invDet;
temp(1, 0) = ((*this)(1, 2) * (*this)(2, 0) - (*this)(1, 0) * (*this)(2, 2)) * invDet;
temp(1, 1) = ((*this)(2, 2) * (*this)(0, 0) - (*this)(2, 0) * (*this)(0, 2)) * invDet;
temp(1, 2) = ((*this)(0, 2) * (*this)(1, 0) - (*this)(0, 0) * (*this)(1, 2)) * invDet;
temp(2, 0) = ((*this)(1, 0) * (*this)(2, 1) - (*this)(1, 1) * (*this)(2, 0)) * invDet;
temp(2, 1) = ((*this)(2, 0) * (*this)(0, 1) - (*this)(2, 1) * (*this)(0, 0)) * invDet;
temp(2, 2) = ((*this)(0, 0) * (*this)(1, 1) - (*this)(0, 1) * (*this)(1, 0)) * invDet;
// Copy the 3x3 inverse back into this matrix
for (U32 i = 0; i < 3; ++i)
{
for (U32 j = 0; j < 3; ++j)
{
(*this)(i, j) = temp(i, j);
}
}
#endif
Point3F pos = -this->getPosition();
mulV(pos);
@ -1500,13 +1565,136 @@ inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::inverse()
template<typename DATA_TYPE, U32 rows, U32 cols>
inline bool Matrix<DATA_TYPE, rows, cols>::fullInverse()
{
Matrix<DATA_TYPE, rows, cols> inv = this->inverse();
#if 0
// NOTE: Gauss-Jordan elimination is yielding unpredictable results due to precission handling and
// numbers near 0.0
AssertFatal(rows == cols, "Can only perform inverse on square matrices.");
const U32 size = rows;
const DATA_TYPE pivot_eps = static_cast<DATA_TYPE>(1e-20); // Smaller epsilon to handle numerical precision
if (inv.isIdentity())
// Create augmented matrix [this | I]
Matrix<DATA_TYPE, size, rows + size> augmentedMatrix;
for (U32 i = 0; i < size; i++)
{
for (U32 j = 0; j < size; j++)
{
augmentedMatrix(i, j) = (*this)(i, j);
augmentedMatrix(i, j + size) = (i == j) ? static_cast<DATA_TYPE>(1) : static_cast<DATA_TYPE>(0);
}
}
// Apply gauss-joran elimination
for (U32 i = 0; i < size; i++)
{
U32 pivotRow = i;
DATA_TYPE pivotValue = std::abs(augmentedMatrix(i, i));
for (U32 k = i + 1; k < size; k++)
{
DATA_TYPE curValue = std::abs(augmentedMatrix(k, i));
if (curValue > pivotValue) {
pivotRow = k;
pivotValue = curValue;
}
}
// Swap if needed.
if (i != pivotRow)
{
for (U32 j = 0; j < 2 * size; j++)
{
DATA_TYPE temp = augmentedMatrix(i, j);
augmentedMatrix(i, j) = augmentedMatrix(pivotRow, j);
augmentedMatrix(pivotRow, j) = temp;
}
}
// Early out if pivot is 0, return identity matrix.
if (std::abs(augmentedMatrix(i, i)) < pivot_eps)
{
return false;
}
DATA_TYPE pivotVal = static_cast<DATA_TYPE>(1.0) / augmentedMatrix(i, i);
// scale the pivot
for (U32 j = 0; j < 2 * size; j++)
{
augmentedMatrix(i, j) *= pivotVal;
}
// Eliminate the current column in all other rows
for (U32 k = 0; k < size; k++)
{
if (k != i)
{
DATA_TYPE factor = augmentedMatrix(k, i);
for (U32 j = 0; j < 2 * size; j++)
{
augmentedMatrix(k, j) -= factor * augmentedMatrix(i, j);
}
}
}
}
for (U32 i = 0; i < size; i++)
{
for (U32 j = 0; j < size; j++)
{
(*this)(i, j) = augmentedMatrix(i, j + size);
}
}
#else
AssertFatal(rows == cols, "Can only perform inverse on square matrices.");
AssertFatal(rows >= 4 && cols >= 4, "Can only perform fullInverse on minimum 4x4 matrix");
Point4F a, b, c, d;
getRow(0, &a);
getRow(1, &b);
getRow(2, &c);
getRow(3, &d);
F32 det = a.x * b.y * c.z * d.w - a.x * b.y * c.w * d.z - a.x * c.y * b.z * d.w + a.x * c.y * b.w * d.z + a.x * d.y * b.z * c.w - a.x * d.y * b.w * c.z
- b.x * a.y * c.z * d.w + b.x * a.y * c.w * d.z + b.x * c.y * a.z * d.w - b.x * c.y * a.w * d.z - b.x * d.y * a.z * c.w + b.x * d.y * a.w * c.z
+ c.x * a.y * b.z * d.w - c.x * a.y * b.w * d.z - c.x * b.y * a.z * d.w + c.x * b.y * a.w * d.z + c.x * d.y * a.z * b.w - c.x * d.y * a.w * b.z
- d.x * a.y * b.z * c.w + d.x * a.y * b.w * c.z + d.x * b.y * a.z * c.w - d.x * b.y * a.w * c.z - d.x * c.y * a.z * b.w + d.x * c.y * a.w * b.z;
if (mFabs(det) < 0.00001f)
return false;
*this = inv;
Point4F aa, bb, cc, dd;
aa.x = b.y * c.z * d.w - b.y * c.w * d.z - c.y * b.z * d.w + c.y * b.w * d.z + d.y * b.z * c.w - d.y * b.w * c.z;
aa.y = -a.y * c.z * d.w + a.y * c.w * d.z + c.y * a.z * d.w - c.y * a.w * d.z - d.y * a.z * c.w + d.y * a.w * c.z;
aa.z = a.y * b.z * d.w - a.y * b.w * d.z - b.y * a.z * d.w + b.y * a.w * d.z + d.y * a.z * b.w - d.y * a.w * b.z;
aa.w = -a.y * b.z * c.w + a.y * b.w * c.z + b.y * a.z * c.w - b.y * a.w * c.z - c.y * a.z * b.w + c.y * a.w * b.z;
bb.x = -b.x * c.z * d.w + b.x * c.w * d.z + c.x * b.z * d.w - c.x * b.w * d.z - d.x * b.z * c.w + d.x * b.w * c.z;
bb.y = a.x * c.z * d.w - a.x * c.w * d.z - c.x * a.z * d.w + c.x * a.w * d.z + d.x * a.z * c.w - d.x * a.w * c.z;
bb.z = -a.x * b.z * d.w + a.x * b.w * d.z + b.x * a.z * d.w - b.x * a.w * d.z - d.x * a.z * b.w + d.x * a.w * b.z;
bb.w = a.x * b.z * c.w - a.x * b.w * c.z - b.x * a.z * c.w + b.x * a.w * c.z + c.x * a.z * b.w - c.x * a.w * b.z;
cc.x = b.x * c.y * d.w - b.x * c.w * d.y - c.x * b.y * d.w + c.x * b.w * d.y + d.x * b.y * c.w - d.x * b.w * c.y;
cc.y = -a.x * c.y * d.w + a.x * c.w * d.y + c.x * a.y * d.w - c.x * a.w * d.y - d.x * a.y * c.w + d.x * a.w * c.y;
cc.z = a.x * b.y * d.w - a.x * b.w * d.y - b.x * a.y * d.w + b.x * a.w * d.y + d.x * a.y * b.w - d.x * a.w * b.y;
cc.w = -a.x * b.y * c.w + a.x * b.w * c.y + b.x * a.y * c.w - b.x * a.w * c.y - c.x * a.y * b.w + c.x * a.w * b.y;
dd.x = -b.x * c.y * d.z + b.x * c.z * d.y + c.x * b.y * d.z - c.x * b.z * d.y - d.x * b.y * c.z + d.x * b.z * c.y;
dd.y = a.x * c.y * d.z - a.x * c.z * d.y - c.x * a.y * d.z + c.x * a.z * d.y + d.x * a.y * c.z - d.x * a.z * c.y;
dd.z = -a.x * b.y * d.z + a.x * b.z * d.y + b.x * a.y * d.z - b.x * a.z * d.y - d.x * a.y * b.z + d.x * a.z * b.y;
dd.w = a.x * b.y * c.z - a.x * b.z * c.y - b.x * a.y * c.z + b.x * a.z * c.y + c.x * a.y * b.z - c.x * a.z * b.y;
setRow(0, aa);
setRow(1, bb);
setRow(2, cc);
setRow(3, dd);
mul(1.0f / det);
#endif
return true;
}
template<typename DATA_TYPE, U32 rows, U32 cols>
@ -1576,39 +1764,67 @@ inline void Matrix<DATA_TYPE, rows, cols>::mul(Box3F& box) const
{
AssertFatal(rows == 4 && cols == 4, "Multiplying Box3F with matrix requires 4x4");
// Save original min and max
Point3F originalMin = box.minExtents;
Point3F originalMax = box.maxExtents;
// Extract the min and max extents
const Point3F& originalMin = box.minExtents;
const Point3F& originalMax = box.maxExtents;
// Initialize min and max with the translation part of the matrix
box.minExtents.x = box.maxExtents.x = (*this)(0, 3);
box.minExtents.y = box.maxExtents.y = (*this)(1, 3);
box.minExtents.z = box.maxExtents.z = (*this)(2, 3);
// Array to store transformed corners
Point3F transformedCorners[8];
for (U32 i = 0; i < 3; ++i) {
#define Do_One_Row(j) { \
DATA_TYPE a = ((*this)(i, j) * originalMin[j]); \
DATA_TYPE b = ((*this)(i, j) * originalMax[j]); \
if (a < b) { box.minExtents[i] += a; box.maxExtents[i] += b; } \
else { box.minExtents[i] += b; box.maxExtents[i] += a; } }
// Compute all 8 corners of the box
Point3F corners[8] = {
{originalMin.x, originalMin.y, originalMin.z},
{originalMax.x, originalMin.y, originalMin.z},
{originalMin.x, originalMax.y, originalMin.z},
{originalMax.x, originalMax.y, originalMin.z},
{originalMin.x, originalMin.y, originalMax.z},
{originalMax.x, originalMin.y, originalMax.z},
{originalMin.x, originalMax.y, originalMax.z},
{originalMax.x, originalMax.y, originalMax.z}
};
Do_One_Row(0);
Do_One_Row(1);
Do_One_Row(2);
// Transform each corner
for (U32 i = 0; i < 8; ++i)
{
const Point3F& corner = corners[i];
transformedCorners[i].x = (*this)(0, 0) * corner.x + (*this)(0, 1) * corner.y + (*this)(0, 2) * corner.z + (*this)(0, 3);
transformedCorners[i].y = (*this)(1, 0) * corner.x + (*this)(1, 1) * corner.y + (*this)(1, 2) * corner.z + (*this)(1, 3);
transformedCorners[i].z = (*this)(2, 0) * corner.x + (*this)(2, 1) * corner.y + (*this)(2, 2) * corner.z + (*this)(2, 3);
}
// Initialize min and max extents to the transformed values
Point3F newMin = transformedCorners[0];
Point3F newMax = transformedCorners[0];
// Compute the new min and max extents from the transformed corners
for (U32 i = 1; i < 8; ++i)
{
const Point3F& corner = transformedCorners[i];
if (corner.x < newMin.x) newMin.x = corner.x;
if (corner.y < newMin.y) newMin.y = corner.y;
if (corner.z < newMin.z) newMin.z = corner.z;
if (corner.x > newMax.x) newMax.x = corner.x;
if (corner.y > newMax.y) newMax.y = corner.y;
if (corner.z > newMax.z) newMax.z = corner.z;
}
// Update the box with the new min and max extents
box.minExtents = newMin;
box.maxExtents = newMax;
}
template<typename DATA_TYPE, U32 rows, U32 cols>
inline bool Matrix<DATA_TYPE, rows, cols>::isAffine() const
{
if ((*this)(rows - 1, cols - 1) != 1.0f)
if ((*this)(3, 3) != 1.0f)
{
return false;
}
for (U32 col = 0; col < cols - 1; ++col)
{
if ((*this)(rows - 1, col) != 0.0f)
if ((*this)(3, col) != 0.0f)
{
return false;
}
@ -1744,11 +1960,8 @@ inline void mTransformPlane(
const PlaneF& plane,
PlaneF* result
) {
// Create a non-const copy of the matrix
MatrixF matCopy = mat;
// Create the inverse scale matrix
MatrixF invScale = MatrixF::Identity;
MatrixF invScale(true);
invScale(0, 0) = 1.0f / scale.x;
invScale(1, 1) = 1.0f / scale.y;
invScale(2, 2) = 1.0f / scale.z;
@ -1764,7 +1977,7 @@ inline void mTransformPlane(
const F32 C = -mDot(row2, shear);
// Compute the inverse transpose of the matrix
MatrixF invTrMatrix = MatrixF::Identity;
MatrixF invTrMatrix(true);
invTrMatrix(0, 0) = mat(0, 0);
invTrMatrix(0, 1) = mat(0, 1);
invTrMatrix(0, 2) = mat(0, 2);

View file

@ -801,6 +801,73 @@ TEST(MatrixTest, TestMatrixAdd)
}
TEST(MatrixTest, TestCalcPlaneCulls)
{
Point3F lightDir(-0.346188605f, -0.742403805f, -0.573576510f);
const F32 shadowDistance = 100.0f;
// frustum transform
MatrixF test(true);
test(0, 0) = -0.8930f; test(0, 1) = 0.3043f; test(0, 2) = 0.3314f; test(0, 3) = -8.3111f;
test(1, 0) = -0.4499f; test(1, 1) = -0.6039f; test(1, 2) = -0.6578f; test(1, 3) = 8.4487f;
test(2, 0) = -0.0f; test(2, 1) = -0.7366f; test(2, 2) = 0.6763f; test(2, 3) = 12.5414f;
test(0, 0) = 0.00f; test(0, 1) = 0.0f; test(0, 2) = 0.0f; test(0, 3) = 1.0f;
Box3F viewBB(-shadowDistance, -shadowDistance, -shadowDistance,
shadowDistance, shadowDistance, shadowDistance);
Frustum testFrustum(false, -0.119894862f, 0.119894862f, 0.0767327100f, -0.0767327100f, 0.1f, 1000.0f, test);
testFrustum.getTransform().mul(viewBB);
testFrustum.cropNearFar(0.1f, shadowDistance);
PlaneF lightFarPlane, lightNearPlane;
Point3F viewDir = testFrustum.getTransform().getForwardVector();
EXPECT_NEAR(viewDir.x, 0.0f, 0.001f); EXPECT_NEAR(viewDir.y, -0.6039f, 0.001f); EXPECT_NEAR(viewDir.z, -0.7365f, 0.001f);
viewDir.normalize();
const Point3F viewPosition = testFrustum.getPosition();
EXPECT_NEAR(viewPosition.x, 1.0f, 0.001f); EXPECT_NEAR(viewPosition.y, 8.4486f, 0.001f); EXPECT_NEAR(viewPosition.z, 12.5414f, 0.001f);
const F32 viewDistance = testFrustum.getBounds().len();
EXPECT_NEAR(viewDistance, 243.6571f, 0.001f);
lightNearPlane = PlaneF(viewPosition + (viewDistance * -lightDir), lightDir);
const Point3F lightFarPlanePos = viewPosition + (viewDistance * lightDir);
lightFarPlane = PlaneF(lightFarPlanePos, -lightDir);
MatrixF invLightFarPlaneMat(true);
MatrixF lightFarPlaneMat = MathUtils::createOrientFromDir(-lightDir);
lightFarPlaneMat.setPosition(lightFarPlanePos);
lightFarPlaneMat.invertTo(&invLightFarPlaneMat);
Vector<Point2F> projVertices;
//project all frustum vertices into plane
// all vertices are 2d and local to far plane
projVertices.setSize(8);
for (int i = 0; i < 8; ++i) //
{
const Point3F& point = testFrustum.getPoints()[i];
Point3F localPoint(lightFarPlane.project(point));
invLightFarPlaneMat.mulP(localPoint);
projVertices[i] = Point2F(localPoint.x, localPoint.z);
}
EXPECT_NEAR(projVertices[0].x, 0.0240f, 0.001f); EXPECT_NEAR(projVertices[0].y, 0.0117f, 0.001f);
EXPECT_NEAR(projVertices[1].x, 0.0696f, 0.001f); EXPECT_NEAR(projVertices[1].y, 0.0678f, 0.001f);
EXPECT_NEAR(projVertices[2].x, -0.0186f, 0.001f); EXPECT_NEAR(projVertices[2].y, -0.1257f, 0.001f);
EXPECT_NEAR(projVertices[3].x, 0.0269f, 0.001f); EXPECT_NEAR(projVertices[3].y, -0.0696f, 0.001f);
EXPECT_NEAR(projVertices[4].x, 24.0571f, 0.001f); EXPECT_NEAR(projVertices[4].y, 11.7618f, 0.001f);
EXPECT_NEAR(projVertices[5].x, 69.6498f, 0.001f); EXPECT_NEAR(projVertices[5].y, 67.8426f, 0.001f);
EXPECT_NEAR(projVertices[6].x, -18.6059f, 0.001f); EXPECT_NEAR(projVertices[6].y, -125.7341f, 0.001f);
EXPECT_NEAR(projVertices[7].x, 26.9866f, 0.001f); EXPECT_NEAR(projVertices[7].y, -69.6534f, 0.001f);
}
TEST(MatrixTest, TestFrustumProjectionMatrix)
{
MatrixF test(true);