Torque3D/Engine/source/console/engineFunctions.h

361 lines
16 KiB
C
Raw Normal View History

2012-09-19 15:15:01 +00:00
//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#ifndef _ENGINEFUNCTIONS_H_
#define _ENGINEFUNCTIONS_H_
#include <tuple>
#ifndef _FIXEDTUPLE_H_
#include "fixedTuple.h"
#endif
2012-09-19 15:15:01 +00:00
#ifndef _ENGINEEXPORTS_H_
#include "console/engineExports.h"
#endif
#ifndef _ENGINETYPEINFO_H_
#include "console/engineTypeInfo.h"
#endif
/// @file
/// Structures for function-type engine export information.
#ifdef TORQUE_COMPILER_VISUALC
#define TORQUE_API extern "C" __declspec( dllexport )
#elif defined( TORQUE_COMPILER_GCC )
#define TORQUE_API extern "C" __attribute__( ( visibility( "default" ) ) )
#else
#error Unsupported compiler.
#endif
// #pragma pack is bugged in GCC in that the packing in place at the template instantiation
// sites rather than their definition sites is used. Enable workarounds.
#ifdef TORQUE_COMPILER_GCC
#define _PACK_BUG_WORKAROUNDS
#endif
/// Structure storing the default argument values for a function invocation
/// frame.
struct EngineFunctionDefaultArguments
{
/// Number of default arguments for the function call frame.
///
/// @warn This is @b NOT the size of the memory block returned by getArgs() and also
/// not the number of elements it contains.
U32 mNumDefaultArgs;
U32* mOffsets;
U8* mFirst;
2012-09-19 15:15:01 +00:00
};
// Need byte-aligned packing for the default argument structures.
2014-12-01 00:14:20 +00:00
#ifdef _WIN64
#pragma pack( push, 8 )
2014-12-01 00:14:20 +00:00
#else
2012-09-19 15:15:01 +00:00
#pragma pack( push, 1 )
2014-12-01 00:14:20 +00:00
#endif
2012-09-19 15:15:01 +00:00
// Structure encapsulating default arguments to an engine API function.
template< typename T >
struct _EngineFunctionDefaultArguments {};
template<typename R, typename ...ArgTs>
struct _EngineFunctionDefaultArguments< R(ArgTs...) > : public EngineFunctionDefaultArguments
{
2017-01-07 04:10:14 +00:00
template<typename T> using DefVST = typename EngineTypeTraits<T>::DefaultArgumentValueStoreType;
using SelfType = _EngineFunctionDefaultArguments< R(ArgTs...) >;
fixed_tuple<DefVST<ArgTs>...> mArgs;
private:
2017-01-07 04:10:14 +00:00
template<size_t ...> struct Seq {};
template<size_t N, size_t ...S> struct Gens : Gens<N-1, N-1, S...> {};
template<size_t ...I> struct Gens<0, I...>{ typedef Seq<I...> type; };
template<typename ...TailTs, size_t ...I>
static void copyHelper(std::tuple<DefVST<ArgTs> ...> &args, std::tuple<DefVST<TailTs> ...> &defaultArgs, Seq<I...>) {
std::tie(std::get<I + (sizeof...(ArgTs) - sizeof...(TailTs))>(args)...) = defaultArgs;
2017-01-07 04:10:14 +00:00
}
#if defined(_MSC_VER) && (_MSC_VER >= 1910) && (_MSC_VER < 1920)
template<typename ...TailTs>
struct DodgyVCHelper
{
using type = typename std::enable_if<sizeof...(TailTs) <= sizeof...(ArgTs), std::tuple<DefVST<ArgTs>...>>::type;
};
template<typename ...TailTs> using MaybeSelfEnabled = typename DodgyVCHelper<TailTs...>::type;
#else
template<typename ...TailTs> using MaybeSelfEnabled = typename std::enable_if<sizeof...(TailTs) <= sizeof...(ArgTs), std::tuple<DefVST<ArgTs>...>>::type;
#endif
2017-01-07 04:10:14 +00:00
template<typename ...TailTs> static MaybeSelfEnabled<TailTs...> tailInit(TailTs ...tail) {
std::tuple<DefVST<ArgTs>...> argsT;
std::tuple<DefVST<TailTs>...> tailT = std::make_tuple(tail...);
SelfType::template copyHelper<TailTs...>(argsT, tailT, typename Gens<sizeof...(TailTs)>::type());
2017-01-07 04:10:14 +00:00
return argsT;
};
template<size_t I = 0>
typename std::enable_if<I == sizeof...(ArgTs)>::type initOffsetsHelper()
{ }
template<size_t I = 0>
typename std::enable_if < I < sizeof...(ArgTs)>::type initOffsetsHelper()
{
mOffsets[I] = fixed_tuple_offset<I>(mArgs);
initOffsetsHelper<I + 1>();
}
2017-01-07 04:10:14 +00:00
public:
2017-01-07 04:10:14 +00:00
template<typename ...TailTs> _EngineFunctionDefaultArguments(TailTs ...tail)
: EngineFunctionDefaultArguments()
{
std::tuple<DefVST<ArgTs>...> tmpTup = SelfType::tailInit(tail...);
fixed_tuple_mutator<void(DefVST<ArgTs>...), void(DefVST<ArgTs>...)>::copy(tmpTup, mArgs);
mNumDefaultArgs = sizeof...(TailTs);
mOffsets = new U32[sizeof...(ArgTs)];
initOffsetsHelper();
mFirst = (U8*)& mArgs;
}
2012-09-19 15:15:01 +00:00
};
#pragma pack( pop )
// Helper to allow flags argument to DEFINE_FUNCTION to be empty.
struct _EngineFunctionFlags
{
U32 val;
_EngineFunctionFlags()
: val( 0 ) {}
_EngineFunctionFlags( U32 val )
: val( val ) {}
operator U32() const { return val; }
};
///
enum EngineFunctionFlags
{
/// Function is a callback into the control layer. If this flag is not set,
/// the function is a call-in.
EngineFunctionCallout = BIT( 0 ),
};
/// A function exported by the engine for interfacing with the control layer.
///
/// A function can either be a call-in, transfering control flow from the control layer to the engine, or a call-out,
/// transfering control flow from the engine to the control layer.
///
/// All engine API functions use the native C (@c cdecl) calling convention.
///
/// Be aware that there a no implicit parameters to functions. This, for example, means that methods will simply
/// list an object type parameter as their first argument but otherwise be indistinguishable from other functions.
///
/// Variadic functions are supported.
///
/// @section engineFunction_strings String Arguments and Return Values
///
/// Strings passed through the API are assumed to be owned by the caller. They must persist for the entire duration
/// of a call.
///
/// Strings returned by a function are assumed to be in transient storage that will be overwritten by subsequent API
/// calls. If the caller wants to preserve a string, it is responsible to copying strings to its own memory. This will
/// happen with most higher-level control layers anyway.
///
/// @section engineFunction_defaultargs Default Arguments
///
/// As the engine API export system is set up to not require hand-written code in generated wrappers per se, the
/// export system seeks to include a maximum possible amount of information in the export structures.
/// To this end, where applicable, information about suggested default values for arguments to the engine API
/// functions is stored in the export structures. It is up to the wrapper generator if and how it makes use of
/// this information.
///
/// Default arguments are represented by capturing raw stack frame vectors of the arguments to functions. These
/// frames could be used as default images for passing arguments in stack frames, though wrapper generators
/// may actually want to read out individual argument values and include them in function prototypes within
/// the generated code.
///
/// @section engineFunction_callin Call-ins
///
/// Call-ins are exposed as native entry points. The control layer must be able to natively
/// marshall arguments and call DLL function exports using C calling conventions.
///
/// @section engineFunction_callout Call-outs
///
/// Call-outs are exposed as pointer-sized memory locations into which the control layer needs
/// to install addresses of functions that receive the call from the engine back into the control
/// layer. The function has to follow C calling conventions and
///
/// A call-out will initially be set to NULL and while being NULL, will simply cause the engine
/// to skip and ignore the call-out. This allows the control layer to only install call-outs
/// it is actually interested in.
///
class EngineFunctionInfo : public EngineExport
{
public:
DECLARE_CLASS( EngineFunctionInfo, EngineExport );
protected:
/// A combination of EngineFunctionFlags.
BitSet32 mFunctionFlags;
/// The type of the function.
const EngineTypeInfo* mFunctionType;
/// Default values for the function arguments.
const EngineFunctionDefaultArguments* mDefaultArgumentValues;
/// Name of the DLL symbol denoting the address of the exported entity.
const char* mBindingName;
/// Full function prototype string. Useful for quick printing and most importantly,
/// this will be the only place containing information about the argument names.
const char* mPrototypeString;
/// Address of either the function implementation or the variable taking the address
/// of a call-out.
void* mAddress;
/// Next function in the global link chain of engine functions.
EngineFunctionInfo* mNextFunction;
/// First function in the global link chain of engine functions.
static EngineFunctionInfo* smFirstFunction;
public:
///
EngineFunctionInfo( const char* name,
EngineExportScope* scope,
const char* docString,
const char* protoypeString,
const char* bindingName,
const EngineTypeInfo* functionType,
const EngineFunctionDefaultArguments* defaultArgs,
void* address,
U32 flags );
/// Return the name of the function.
const char* getFunctionName() const { return getExportName(); }
/// Return the function's full prototype string including the return type, function name,
/// and argument list.
const char* getPrototypeString() const { return mPrototypeString; }
/// Return the DLL export symbol name.
const char* getBindingName() const { return mBindingName; }
/// Test whether this is a callout function.
bool isCallout() const { return mFunctionFlags.test( EngineFunctionCallout ); }
/// Test whether the function is variadic, i.e. takes a variable number of arguments.
bool isVariadic() const { return mFunctionType->isVariadic(); }
/// Return the type of this function.
const EngineTypeInfo* getFunctionType() const { return mFunctionType; }
/// Return the return type of the function.
const EngineTypeInfo* getReturnType() const { return getFunctionType()->getArgumentTypeTable()->getReturnType(); }
/// Return the number of arguments that this function takes. If the function is variadic,
/// this is the number of fixed arguments.
U32 getNumArguments() const { return getFunctionType()->getArgumentTypeTable()->getNumArguments(); }
///
const EngineTypeInfo* getArgumentType( U32 index ) const { return ( *( getFunctionType()->getArgumentTypeTable() ) )[ index ]; }
/// Return the vector storing the default argument values.
const EngineFunctionDefaultArguments* getDefaultArguments() const { return mDefaultArgumentValues; }
/// Reset all callout function pointers back to NULL. This deactivates all callbacks.
static void resetAllCallouts();
};
///
///
/// Due to the given argument types and return type being directly used as is, it is not possible
/// to use this macro with engine types that have more complex value passing semantics (like e.g.
/// String). Use engineAPI in this case.
///
/// @note The method of defining functions exposed by this macro is very low-level. To more
/// conveniently define API functions and methods, use the facilities provided in engineAPI.h.
///
/// @see engineAPI.h
#define DEFINE_CALLIN( bindingName, exportName, scope, returnType, args, defaultArgs, flags, doc ) \
TORQUE_API returnType bindingName args; \
namespace { namespace _ ## bindingName { \
_EngineFunctionDefaultArguments< void args > sDefaultArgs defaultArgs; \
EngineFunctionInfo sFunctionInfo( \
#exportName, \
&_SCOPE< scope >()(), \
doc, \
#returnType " " #exportName #args, \
#bindingName, \
TYPE< returnType args >(), \
&sDefaultArgs, \
( void* ) &bindingName, \
_EngineFunctionFlags( flags ) \
); \
} } \
TORQUE_API returnType bindingName args
///
///
/// Not all control layers may be able to access data variables in a DLL so this macro exposes
/// both the variable and a set_XXX function to set the variable programmatically.
#define DEFINE_CALLOUT( bindingName, exportName, scope, returnType, args, flags, doc ) \
TORQUE_API returnType ( *bindingName ) args; \
TORQUE_API void set_ ## bindingName( returnType ( *fn ) args ) \
{ bindingName = fn; } \
returnType ( *bindingName ) args; \
namespace { \
::EngineFunctionInfo _cb ## bindingName( \
#exportName, \
&::_SCOPE< scope >()(), \
doc, \
#returnType " " #exportName #args, \
#bindingName, \
::TYPE< returnType args >(), \
NULL, \
( void* ) &bindingName, \
EngineFunctionCallout | EngineFunctionFlags( flags ) \
); \
}
#endif // !_ENGINEFUNCTIONS_H_