Torque3D/Engine/source/T3D/cameraSpline.cpp

403 lines
9.9 KiB
C++
Raw Normal View History

2012-09-19 15:15:01 +00:00
//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "T3D/cameraSpline.h"
#include "console/console.h"
#include "gfx/gfxDevice.h"
//-----------------------------------------------------------------------------
CameraSpline::Knot::Knot()
{
mPosition = Point3F::Zero;
mRotation = QuatF::Identity;
mSpeed = 0.0f;
mType = NORMAL;
mPath = SPLINE;
2020-05-11 20:30:21 +00:00
mDistance = 0.0f;
prev = NULL; next = NULL;
};
2012-09-19 15:15:01 +00:00
CameraSpline::Knot::Knot(const Knot &k)
{
mPosition = k.mPosition;
mRotation = k.mRotation;
mSpeed = k.mSpeed;
mType = k.mType;
mPath = k.mPath;
2020-05-11 20:30:21 +00:00
mDistance = k.mDistance;
2012-09-19 15:15:01 +00:00
prev = NULL; next = NULL;
}
CameraSpline::Knot::Knot(const Point3F &p, const QuatF &r, F32 s, Knot::Type type, Knot::Path path, String hitCommand)
2012-09-19 15:15:01 +00:00
{
mPosition = p;
mRotation = r;
mSpeed = s;
mType = type;
mPath = path;
2020-05-11 20:30:21 +00:00
mDistance = 0.0f;
mHitCommand = hitCommand;
2012-09-19 15:15:01 +00:00
prev = NULL; next = NULL;
}
//-----------------------------------------------------------------------------
CameraSpline::CameraSpline()
{
mFront = NULL;
mSize = 0;
mIsMapDirty = true;
VECTOR_SET_ASSOCIATION(mTimeMap);
}
CameraSpline::~CameraSpline()
{
removeAll();
}
void CameraSpline::push_back(Knot *w)
{
if (!mFront)
{
mFront = w;
w->next = w;
w->prev = w;
}
else
{
Knot *before = back();
Knot *after = before->next;
w->next = before->next;
w->prev = before;
after->prev = w;
before->next = w;
}
++mSize;
mIsMapDirty = true;
}
CameraSpline::Knot* CameraSpline::getKnot(S32 i)
{
Knot *k = mFront;
while(i--)
k = k->next;
return k;
}
CameraSpline::Knot* CameraSpline::remove(Knot *w)
{
if (w->next == mFront && w->prev == mFront)
mFront = NULL;
else
{
w->prev->next = w->next;
w->next->prev = w->prev;
if (mFront == w)
mFront = w->next;
}
--mSize;
mIsMapDirty = true;
return w;
}
void CameraSpline::removeAll()
{
while(front())
delete remove(front());
mSize = 0;
}
//-----------------------------------------------------------------------------
static bool gBuilding = false;
void CameraSpline::buildTimeMap()
{
if (!mIsMapDirty)
return;
gBuilding = true;
mTimeMap.clear();
mTimeMap.reserve(size()*3); // preallocate
// Initial node and knot value..
TimeMap map;
map.mTime = 0;
map.mDistance = 0;
mTimeMap.push_back(map);
Knot ka,kj,ki;
value(0, &kj, true);
F32 length = 0.0f;
ka = kj;
// Loop through the knots and add nodes. Nodes are added for every knot and
// whenever the spline length and segment length deviate by epsilon.
F32 epsilon = Con::getFloatVariable("CameraSpline::epsilon", 0.90f);
const F32 Step = 0.05f;
F32 lt = 0,time = 0;
do
{
if ((time += Step) > F32(mSize - 1))
time = (F32)mSize - 1.0f;
value(time, &ki, true);
length += (ki.mPosition - kj.mPosition).len();
F32 segment = (ki.mPosition - ka.mPosition).len();
if ((segment / length) < epsilon || time == (mSize - 1) || mFloor(lt) != mFloor(time))
{
map.mTime = time;
map.mDistance = length;
mTimeMap.push_back(map);
ka = ki;
}
kj = ki;
lt = time;
}
while (time < mSize - 1);
mIsMapDirty = false;
gBuilding = false;
}
//-----------------------------------------------------------------------------
void CameraSpline::renderTimeMap()
{
buildTimeMap();
gBuilding = true;
// Build vertex buffer
2016-03-20 11:52:11 +00:00
GFXVertexBufferHandle<GFXVertexPCT> vb;
2012-09-19 15:15:01 +00:00
vb.set(GFX, mTimeMap.size(), GFXBufferTypeVolatile);
void *ptr = vb.lock();
if(!ptr) return;
2012-09-19 15:15:01 +00:00
MRandomLCG random(1376312589 * (uintptr_t)this);
S32 index = 0;
2012-09-19 15:15:01 +00:00
for(Vector<TimeMap>::iterator itr=mTimeMap.begin(); itr != mTimeMap.end(); itr++)
{
Knot a;
value(itr->mTime, &a, true);
S32 cr = random.randI(0,255);
S32 cg = random.randI(0,255);
S32 cb = random.randI(0,255);
vb[index].color.set(cr, cg, cb);
vb[index].point.set(a.mPosition.x, a.mPosition.y, a.mPosition.z);
index++;
}
gBuilding = false;
vb.unlock();
// Render the buffer
GFX->pushWorldMatrix();
GFX->setupGenericShaders();
2012-09-19 15:15:01 +00:00
GFX->setVertexBuffer(vb);
GFX->drawPrimitive(GFXLineStrip,0,index);
GFX->popWorldMatrix();
}
//-----------------------------------------------------------------------------
F32 CameraSpline::advanceTime(F32 t, S32 delta_ms)
{
buildTimeMap();
Knot k;
value(t, &k, false);
F32 dist = getDistance(t) + k.mSpeed * (F32(delta_ms) / 1000.0f);
return getTime(dist);
}
F32 CameraSpline::advanceDist(F32 t, F32 meters)
{
buildTimeMap();
F32 dist = getDistance(t) + meters;
return getTime(dist);
}
F32 CameraSpline::getDistance(F32 t)
{
if (mSize <= 1)
return 0;
// Find the nodes spanning the time
Vector<TimeMap>::iterator end = mTimeMap.begin() + 1, start;
for (; end < (mTimeMap.end() - 1) && end->mTime < t; end++) { }
start = end - 1;
// Interpolate between the two nodes
F32 i = (t - start->mTime) / (end->mTime - start->mTime);
return start->mDistance + (end->mDistance - start->mDistance) * i;
}
F32 CameraSpline::getTime(F32 d)
{
if (mSize <= 1)
return 0;
// Find nodes spanning the distance
Vector<TimeMap>::iterator end = mTimeMap.begin() + 1, start;
for (; end < (mTimeMap.end() - 1) && end->mDistance < d; end++) { }
start = end - 1;
// Check for duplicate points..
F32 seg = end->mDistance - start->mDistance;
if (!seg)
return end->mTime;
// Interpolate between the two nodes
F32 i = (d - start->mDistance) / (end->mDistance - start->mDistance);
return start->mTime + (end->mTime - start->mTime) * i;
}
//-----------------------------------------------------------------------------
void CameraSpline::value(F32 t, CameraSpline::Knot *result, bool skip_rotation)
{
// Do some easing in and out for t.
if(!gBuilding)
{
F32 oldT = t;
if(oldT < 0.5f)
{
t = 0.5f - (mSin( (0.5 - oldT) * M_PI ) / 2.f);
}
if((F32(size()) - 1.5f) > 0.f && oldT - (F32(size()) - 1.5f) > 0.f)
{
oldT -= (F32(size()) - 1.5f);
t = (F32(size()) - 1.5f) + (mCos( (0.5f - oldT) * F32(M_PI) ) / 2.f);
}
}
// Verify that t is in range [0 >= t > size]
// AssertFatal(t >= 0.0f && t < (F32)size(), "t out of range");
Knot *p1 = getKnot((S32)mFloor(t));
Knot *p2 = next(p1);
F32 i = t - mFloor(t); // adjust t to 0 to 1 on p1-p2 interval
if (p1->mPath == Knot::SPLINE)
{
Knot *p0 = (p1->mType == Knot::KINK) ? p1 : prev(p1);
Knot *p3 = (p2->mType == Knot::KINK) ? p2 : next(p2);
result->mPosition.x = mCatmullrom(i, p0->mPosition.x, p1->mPosition.x, p2->mPosition.x, p3->mPosition.x);
result->mPosition.y = mCatmullrom(i, p0->mPosition.y, p1->mPosition.y, p2->mPosition.y, p3->mPosition.y);
result->mPosition.z = mCatmullrom(i, p0->mPosition.z, p1->mPosition.z, p2->mPosition.z, p3->mPosition.z);
}
else
{ // Linear
result->mPosition.interpolate(p1->mPosition, p2->mPosition, i);
}
if (skip_rotation)
return;
buildTimeMap();
// find the two knots to interpolate rotation and velocity through since some
// knots are only positional
S32 start = (S32)mFloor(t);
S32 end = (p2 == p1) ? start : (start + 1);
while (p1->mType == Knot::POSITION_ONLY && p1 != front())
{
p1 = prev(p1);
start--;
}
while (p2->mType == Knot::POSITION_ONLY && p2 != back())
{
p2 = next(p2);
end++;
}
if (start == end)
{
result->mRotation = p1->mRotation;
result->mSpeed = p1->mSpeed;
}
else
{
F32 c = getDistance(t);
F32 d1 = getDistance((F32)start);
F32 d2 = getDistance((F32)end);
if (d1 == d2)
{
result->mRotation = p2->mRotation;
result->mSpeed = p2->mSpeed;
}
else
{
i = (c-d1)/(d2-d1);
if(p1->mPath == Knot::SPLINE)
{
Knot *p0 = (p1->mType == Knot::KINK) ? p1 : prev(p1);
Knot *p3 = (p2->mType == Knot::KINK) ? p2 : next(p2);
F32 q,w,e;
q = mCatmullrom(i, 0, 1, 1, 1);
w = mCatmullrom(i, 0, 0, 0, 1);
e = mCatmullrom(i, 0, 0, 1, 1);
QuatF a; a.interpolate(p0->mRotation, p1->mRotation, q);
QuatF b; b.interpolate(p2->mRotation, p3->mRotation, w);
result->mRotation.interpolate(a, b, e);
result->mSpeed = mCatmullrom(i, p0->mSpeed, p1->mSpeed, p2->mSpeed, p3->mSpeed);
}
else
{
result->mRotation.interpolate(p1->mRotation, p2->mRotation, i);
result->mSpeed = (p1->mSpeed * (1.0f-i)) + (p2->mSpeed * i);
}
}
}
}