Torque3D/Engine/source/T3D/item.cpp

1386 lines
43 KiB
C++
Raw Normal View History

2012-09-19 15:15:01 +00:00
//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "T3D/item.h"
#include "core/stream/bitStream.h"
#include "math/mMath.h"
#include "console/console.h"
#include "console/consoleTypes.h"
#include "sim/netConnection.h"
#include "collision/boxConvex.h"
#include "collision/earlyOutPolyList.h"
#include "collision/extrudedPolyList.h"
#include "math/mPolyhedron.h"
#include "math/mathIO.h"
#include "lighting/lightInfo.h"
#include "lighting/lightManager.h"
#include "T3D/physics/physicsPlugin.h"
#include "T3D/physics/physicsBody.h"
#include "T3D/physics/physicsCollision.h"
#include "ts/tsShapeInstance.h"
#include "console/engineAPI.h"
const F32 sRotationSpeed = 6.0f; // Secs/Rotation
const F32 sAtRestVelocity = 0.15f; // Min speed after collision
const S32 sCollisionTimeout = 15; // Timout value in ticks
// Client prediction
static F32 sMinWarpTicks = 0.5 ; // Fraction of tick at which instant warp occures
static S32 sMaxWarpTicks = 3; // Max warp duration in ticks
F32 Item::mGravity = -20.0f;
const U32 sClientCollisionMask = (TerrainObjectType |
InteriorObjectType | StaticShapeObjectType |
VehicleObjectType | PlayerObjectType);
const U32 sServerCollisionMask = (sClientCollisionMask);
const S32 Item::csmAtRestTimer = 64;
//----------------------------------------------------------------------------
IMPLEMENT_CO_DATABLOCK_V1(ItemData);
ConsoleDocClass( ItemData,
"@brief Stores properties for an individual Item type.\n\n"
"Items represent an object in the world, usually one that the player will interact with. "
"One example is a health kit on the group that is automatically picked up when the player "
"comes into contact with it.\n\n"
"ItemData provides the common properties for a set of Items. These properties include a "
"DTS or DAE model used to render the Item in the world, its physical properties for when the "
"Item interacts with the world (such as being tossed by the player), and any lights that emit "
"from the Item.\n\n"
"@tsexample\n"
"datablock ItemData(HealthKitSmall)\n"
"{\n"
" category =\"Health\";\n"
" className = \"HealthPatch\";\n"
" shapeFile = \"art/shapes/items/kit/healthkit.dts\";\n"
" gravityMod = \"1.0\";\n"
" mass = 2;\n"
" friction = 1;\n"
" elasticity = 0.3;\n"
" density = 2;\n"
" drag = 0.5;\n"
" maxVelocity = \"10.0\";\n"
" emap = true;\n"
" sticky = false;\n"
" dynamicType = \"0\"\n;"
" lightOnlyStatic = false;\n"
" lightType = \"NoLight\";\n"
" lightColor = \"1.0 1.0 1.0 1.0\";\n"
" lightTime = 1000;\n"
" lightRadius = 10.0;\n"
" simpleServerCollision = true;"
" // Dynamic properties used by the scripts\n\n"
" pickupName = \"a small health kit\";\n"
" repairAmount = 50;\n"
"};\n"
"@endtsexample\n"
"@ingroup gameObjects\n"
);
ItemData::ItemData()
{
shadowEnable = true;
friction = 0;
elasticity = 0;
sticky = false;
gravityMod = 1.0;
maxVelocity = 25.0f;
density = 2;
drag = 0.5;
lightOnlyStatic = false;
lightType = Item::NoLight;
lightColor.set(1.f,1.f,1.f,1.f);
lightTime = 1000;
lightRadius = 10.f;
simpleServerCollision = true;
}
ImplementEnumType( ItemLightType,
"@brief The type of light the Item has\n\n"
"@ingroup gameObjects\n\n")
{ Item::NoLight, "NoLight", "The item has no light attached.\n" },
{ Item::ConstantLight, "ConstantLight", "The item has a constantly emitting light attached.\n" },
{ Item::PulsingLight, "PulsingLight", "The item has a pulsing light attached.\n" }
EndImplementEnumType;
void ItemData::initPersistFields()
{
addField("friction", TypeF32, Offset(friction, ItemData), "A floating-point value specifying how much velocity is lost to impact and sliding friction.");
addField("elasticity", TypeF32, Offset(elasticity, ItemData), "A floating-point value specifying how 'bouncy' this ItemData is.");
addField("sticky", TypeBool, Offset(sticky, ItemData),
"@brief If true, ItemData will 'stick' to any surface it collides with.\n\n"
"When an item does stick to a surface, the Item::onStickyCollision() callback is called. The Item has methods to retrieve "
"the world position and normal the Item is stuck to.\n"
"@note Valid objects to stick to must be of StaticShapeObjectType.\n");
addField("gravityMod", TypeF32, Offset(gravityMod, ItemData), "Floating point value to multiply the existing gravity with, just for this ItemData.");
addField("maxVelocity", TypeF32, Offset(maxVelocity, ItemData), "Maximum velocity that this ItemData is able to move.");
addField("lightType", TYPEID< Item::LightType >(), Offset(lightType, ItemData), "Type of light to apply to this ItemData. Options are NoLight, ConstantLight, PulsingLight. Default is NoLight." );
addField("lightColor", TypeColorF, Offset(lightColor, ItemData),
"@brief Color value to make this light. Example: \"1.0,1.0,1.0\"\n\n"
"@see lightType\n");
addField("lightTime", TypeS32, Offset(lightTime, ItemData),
"@brief Time value for the light of this ItemData, used to control the pulse speed of the PulsingLight LightType.\n\n"
"@see lightType\n");
addField("lightRadius", TypeF32, Offset(lightRadius, ItemData),
"@brief Distance from the center point of this ItemData for the light to affect\n\n"
"@see lightType\n");
addField("lightOnlyStatic", TypeBool, Offset(lightOnlyStatic, ItemData),
"@brief If true, this ItemData will only cast a light if the Item for this ItemData has a static value of true.\n\n"
"@see lightType\n");
addField("simpleServerCollision", TypeBool, Offset(simpleServerCollision, ItemData),
"@brief Determines if only simple server-side collision will be used (for pick ups).\n\n"
"If set to true then only simple, server-side collision detection will be used. This is often the case "
"if the item is used for a pick up object, such as ammo. If set to false then a full collision volume "
"will be used as defined by the shape. The default is true.\n"
"@note Only applies when using a physics library.\n"
"@see TurretShape and ProximityMine for examples that should set this to false to allow them to be "
"shot by projectiles.\n");
Parent::initPersistFields();
}
void ItemData::packData(BitStream* stream)
{
Parent::packData(stream);
stream->writeFloat(friction, 10);
stream->writeFloat(elasticity, 10);
stream->writeFlag(sticky);
if(stream->writeFlag(gravityMod != 1.0))
stream->writeFloat(gravityMod, 10);
if(stream->writeFlag(maxVelocity != -1))
stream->write(maxVelocity);
if(stream->writeFlag(lightType != Item::NoLight))
{
AssertFatal(Item::NumLightTypes < (1 << 2), "ItemData: light type needs more bits");
stream->writeInt(lightType, 2);
stream->writeFloat(lightColor.red, 7);
stream->writeFloat(lightColor.green, 7);
stream->writeFloat(lightColor.blue, 7);
stream->writeFloat(lightColor.alpha, 7);
stream->write(lightTime);
stream->write(lightRadius);
stream->writeFlag(lightOnlyStatic);
}
stream->writeFlag(simpleServerCollision);
}
void ItemData::unpackData(BitStream* stream)
{
Parent::unpackData(stream);
friction = stream->readFloat(10);
elasticity = stream->readFloat(10);
sticky = stream->readFlag();
if(stream->readFlag())
gravityMod = stream->readFloat(10);
else
gravityMod = 1.0;
if(stream->readFlag())
stream->read(&maxVelocity);
else
maxVelocity = -1;
if(stream->readFlag())
{
lightType = stream->readInt(2);
lightColor.red = stream->readFloat(7);
lightColor.green = stream->readFloat(7);
lightColor.blue = stream->readFloat(7);
lightColor.alpha = stream->readFloat(7);
stream->read(&lightTime);
stream->read(&lightRadius);
lightOnlyStatic = stream->readFlag();
}
else
lightType = Item::NoLight;
simpleServerCollision = stream->readFlag();
}
//----------------------------------------------------------------------------
IMPLEMENT_CO_NETOBJECT_V1(Item);
ConsoleDocClass( Item,
"@brief Base Item class. Uses the ItemData datablock for common properties.\n\n"
"Items represent an object in the world, usually one that the player will interact with. "
"One example is a health kit on the group that is automatically picked up when the player "
"comes into contact with it.\n\n"
"@tsexample\n"
"// This is the \"health patch\" dropped by a dying player.\n"
"datablock ItemData(HealthKitPatch)\n"
"{\n"
" // Mission editor category, this datablock will show up in the\n"
" // specified category under the \"shapes\" root category.\n"
" category = \"Health\";\n\n"
" className = \"HealthPatch\";\n\n"
" // Basic Item properties\n"
" shapeFile = \"art/shapes/items/patch/healthpatch.dts\";\n"
" mass = 2;\n"
" friction = 1;\n"
" elasticity = 0.3;\n"
" emap = true;\n\n"
" // Dynamic properties used by the scripts\n"
" pickupName = \"a health patch\";\n"
" repairAmount = 50;\n"
"};\n\n"
"%obj = new Item()\n"
"{\n"
" dataBlock = HealthKitSmall;\n"
" parentGroup = EWCreatorWindow.objectGroup;\n"
" static = true;\n"
" rotate = true;\n"
"};\n"
"@endtsexample\n\n"
"@see ItemData\n"
"@ingroup gameObjects\n"
);
IMPLEMENT_CALLBACK( Item, onStickyCollision, void, ( const char* objID ),( objID ),
"@brief Informs the Item object that it is now sticking to another object.\n\n"
"This callback is only called if the ItemData::sticky property for this Item is true.\n"
"@param objID Object ID this Item object.\n"
"@note Server side only.\n"
"@see Item, ItemData\n"
);
IMPLEMENT_CALLBACK( Item, onEnterLiquid, void, ( const char* objID, const char* waterCoverage, const char* liquidType ),( objID, waterCoverage, liquidType ),
"Informs an Item object that it has entered liquid, along with information about the liquid type.\n"
"@param objID Object ID for this Item object.\n"
"@param waterCoverage How much coverage of water this Item object has.\n"
"@param liquidType The type of liquid that this Item object has entered.\n"
"@note Server side only.\n"
"@see Item, ItemData, WaterObject\n"
);
IMPLEMENT_CALLBACK( Item, onLeaveLiquid, void, ( const char* objID, const char* liquidType ),( objID, liquidType ),
"Informs an Item object that it has left a liquid, along with information about the liquid type.\n"
"@param objID Object ID for this Item object.\n"
"@param liquidType The type of liquid that this Item object has left.\n"
"@note Server side only.\n"
"@see Item, ItemData, WaterObject\n"
);
Item::Item()
{
mTypeMask |= ItemObjectType | DynamicShapeObjectType;
mDataBlock = 0;
mStatic = false;
mRotate = false;
mVelocity = VectorF(0,0,0);
mAtRest = true;
mAtRestCounter = 0;
mInLiquid = false;
delta.warpTicks = 0;
delta.dt = 1;
mCollisionObject = 0;
mCollisionTimeout = 0;
mPhysicsRep = NULL;
mConvex.init(this);
mWorkingQueryBox.minExtents.set(-1e9, -1e9, -1e9);
mWorkingQueryBox.maxExtents.set(-1e9, -1e9, -1e9);
mLight = NULL;
mSubclassItemHandlesScene = false;
}
Item::~Item()
{
SAFE_DELETE(mLight);
}
//----------------------------------------------------------------------------
bool Item::onAdd()
{
if (!Parent::onAdd() || !mDataBlock)
return false;
if (mStatic)
mAtRest = true;
mObjToWorld.getColumn(3,&delta.pos);
// Setup the box for our convex object...
mObjBox.getCenter(&mConvex.mCenter);
mConvex.mSize.x = mObjBox.len_x() / 2.0;
mConvex.mSize.y = mObjBox.len_y() / 2.0;
mConvex.mSize.z = mObjBox.len_z() / 2.0;
mWorkingQueryBox.minExtents.set(-1e9, -1e9, -1e9);
mWorkingQueryBox.maxExtents.set(-1e9, -1e9, -1e9);
if( !isHidden() && !mSubclassItemHandlesScene )
addToScene();
if (isServerObject())
{
if (!mSubclassItemHandlesScene)
scriptOnAdd();
}
else if (mDataBlock->lightType != NoLight)
{
mDropTime = Sim::getCurrentTime();
}
_updatePhysics();
return true;
}
void Item::_updatePhysics()
{
SAFE_DELETE( mPhysicsRep );
if ( !PHYSICSMGR )
return;
if (mDataBlock->simpleServerCollision)
{
// We only need the trigger on the server.
if ( isServerObject() )
{
PhysicsCollision *colShape = PHYSICSMGR->createCollision();
colShape->addBox( mObjBox.getExtents() * 0.5f, MatrixF::Identity );
PhysicsWorld *world = PHYSICSMGR->getWorld( isServerObject() ? "server" : "client" );
mPhysicsRep = PHYSICSMGR->createBody();
mPhysicsRep->init( colShape, 0, PhysicsBody::BF_TRIGGER | PhysicsBody::BF_KINEMATIC, this, world );
mPhysicsRep->setTransform( getTransform() );
}
}
else
{
if ( !mShapeInstance )
return;
PhysicsCollision* colShape = mShapeInstance->getShape()->buildColShape( false, getScale() );
if ( colShape )
{
PhysicsWorld *world = PHYSICSMGR->getWorld( isServerObject() ? "server" : "client" );
mPhysicsRep = PHYSICSMGR->createBody();
mPhysicsRep->init( colShape, 0, PhysicsBody::BF_KINEMATIC, this, world );
mPhysicsRep->setTransform( getTransform() );
}
}
}
bool Item::onNewDataBlock( GameBaseData *dptr, bool reload )
{
mDataBlock = dynamic_cast<ItemData*>(dptr);
if (!mDataBlock || !Parent::onNewDataBlock(dptr,reload))
return false;
if (!mSubclassItemHandlesScene)
scriptOnNewDataBlock();
if ( isProperlyAdded() )
_updatePhysics();
return true;
}
void Item::onRemove()
{
mWorkingQueryBox.minExtents.set(-1e9, -1e9, -1e9);
mWorkingQueryBox.maxExtents.set(-1e9, -1e9, -1e9);
SAFE_DELETE( mPhysicsRep );
if (!mSubclassItemHandlesScene)
{
scriptOnRemove();
removeFromScene();
}
Parent::onRemove();
}
void Item::onDeleteNotify( SimObject *obj )
{
if ( obj == mCollisionObject )
{
mCollisionObject = NULL;
mCollisionTimeout = 0;
}
Parent::onDeleteNotify( obj );
}
// Lighting: -----------------------------------------------------------------
void Item::registerLights(LightManager * lightManager, bool lightingScene)
{
if(lightingScene)
return;
if(mDataBlock->lightOnlyStatic && !mStatic)
return;
F32 intensity;
switch(mDataBlock->lightType)
{
case ConstantLight:
intensity = mFadeVal;
break;
case PulsingLight:
{
S32 delta = Sim::getCurrentTime() - mDropTime;
intensity = 0.5f + 0.5f * mSin(M_PI_F * F32(delta) / F32(mDataBlock->lightTime));
intensity = 0.15f + intensity * 0.85f;
intensity *= mFadeVal; // fade out light on flags
break;
}
default:
return;
}
// Create a light if needed
if (!mLight)
{
mLight = lightManager->createLightInfo();
}
mLight->setColor( mDataBlock->lightColor * intensity );
mLight->setType( LightInfo::Point );
mLight->setRange( mDataBlock->lightRadius );
mLight->setPosition( getBoxCenter() );
lightManager->registerGlobalLight( mLight, this );
}
//----------------------------------------------------------------------------
Point3F Item::getVelocity() const
{
return mVelocity;
}
void Item::setVelocity(const VectorF& vel)
{
mVelocity = vel;
// Clamp against the maximum velocity.
if ( mDataBlock->maxVelocity > 0 )
{
F32 len = mVelocity.magnitudeSafe();
if ( len > mDataBlock->maxVelocity )
{
Point3F excess = mVelocity * ( 1.0f - (mDataBlock->maxVelocity / len ) );
mVelocity -= excess;
}
}
setMaskBits(PositionMask);
mAtRest = false;
mAtRestCounter = 0;
}
void Item::applyImpulse(const Point3F&,const VectorF& vec)
{
// Items ignore angular velocity
VectorF vel;
vel.x = vec.x / mDataBlock->mass;
vel.y = vec.y / mDataBlock->mass;
vel.z = vec.z / mDataBlock->mass;
setVelocity(vel);
}
void Item::setCollisionTimeout(ShapeBase* obj)
{
if (mCollisionObject)
clearNotify(mCollisionObject);
deleteNotify(obj);
mCollisionObject = obj;
mCollisionTimeout = sCollisionTimeout;
setMaskBits(ThrowSrcMask);
}
//----------------------------------------------------------------------------
void Item::processTick(const Move* move)
{
Parent::processTick(move);
//
if (mCollisionObject && !--mCollisionTimeout)
mCollisionObject = 0;
// Warp to catch up to server
if (delta.warpTicks > 0)
{
delta.warpTicks--;
// Set new pos.
MatrixF mat = mObjToWorld;
mat.getColumn(3,&delta.pos);
delta.pos += delta.warpOffset;
mat.setColumn(3,delta.pos);
Parent::setTransform(mat);
// Backstepping
delta.posVec.x = -delta.warpOffset.x;
delta.posVec.y = -delta.warpOffset.y;
delta.posVec.z = -delta.warpOffset.z;
}
else
{
if (isServerObject() && mAtRest && (mStatic == false && mDataBlock->sticky == false))
{
if (++mAtRestCounter > csmAtRestTimer)
{
mAtRest = false;
mAtRestCounter = 0;
setMaskBits(PositionMask);
}
}
if (!mStatic && !mAtRest && isHidden() == false)
{
updateVelocity(TickSec);
updateWorkingCollisionSet(isGhost() ? sClientCollisionMask : sServerCollisionMask, TickSec);
updatePos(isGhost() ? sClientCollisionMask : sServerCollisionMask, TickSec);
}
else
{
// Need to clear out last updatePos or warp interpolation
delta.posVec.set(0,0,0);
}
}
}
void Item::interpolateTick(F32 dt)
{
Parent::interpolateTick(dt);
// Client side interpolation
Point3F pos = delta.pos + delta.posVec * dt;
MatrixF mat = mRenderObjToWorld;
mat.setColumn(3,pos);
setRenderTransform(mat);
delta.dt = dt;
}
//----------------------------------------------------------------------------
void Item::setTransform(const MatrixF& mat)
{
Point3F pos;
mat.getColumn(3,&pos);
MatrixF tmat;
if (!mRotate) {
// Forces all rotation to be around the z axis
VectorF vec;
mat.getColumn(1,&vec);
tmat.set(EulerF(0,0,-mAtan2(-vec.x,vec.y)));
}
else
tmat.identity();
tmat.setColumn(3,pos);
Parent::setTransform(tmat);
if (!mStatic)
{
mAtRest = false;
mAtRestCounter = 0;
}
if ( mPhysicsRep )
mPhysicsRep->setTransform( getTransform() );
setMaskBits(RotationMask | PositionMask | NoWarpMask);
}
//----------------------------------------------------------------------------
void Item::updateWorkingCollisionSet(const U32 mask, const F32 dt)
{
// It is assumed that we will never accelerate more than 10 m/s for gravity...
//
Point3F scaledVelocity = mVelocity * dt;
F32 len = scaledVelocity.len();
F32 newLen = len + (10 * dt);
// Check to see if it is actually necessary to construct the new working list,
// or if we can use the cached version from the last query. We use the x
// component of the min member of the mWorkingQueryBox, which is lame, but
// it works ok.
bool updateSet = false;
Box3F convexBox = mConvex.getBoundingBox(getTransform(), getScale());
F32 l = (newLen * 1.1) + 0.1; // from Convex::updateWorkingList
convexBox.minExtents -= Point3F(l, l, l);
convexBox.maxExtents += Point3F(l, l, l);
// Check containment
{
if (mWorkingQueryBox.minExtents.x != -1e9)
{
if (mWorkingQueryBox.isContained(convexBox) == false)
{
// Needed region is outside the cached region. Update it.
updateSet = true;
}
else
{
// We can leave it alone, we're still inside the cached region
}
}
else
{
// Must update
updateSet = true;
}
}
// Actually perform the query, if necessary
if (updateSet == true)
{
mWorkingQueryBox = convexBox;
mWorkingQueryBox.minExtents -= Point3F(2 * l, 2 * l, 2 * l);
mWorkingQueryBox.maxExtents += Point3F(2 * l, 2 * l, 2 * l);
disableCollision();
if (mCollisionObject)
mCollisionObject->disableCollision();
mConvex.updateWorkingList(mWorkingQueryBox, mask);
if (mCollisionObject)
mCollisionObject->enableCollision();
enableCollision();
}
}
void Item::updateVelocity(const F32 dt)
{
// Acceleration due to gravity
mVelocity.z += (mGravity * mDataBlock->gravityMod) * dt;
F32 len;
if (mDataBlock->maxVelocity > 0 && (len = mVelocity.len()) > (mDataBlock->maxVelocity * 1.05)) {
Point3F excess = mVelocity * (1.0 - (mDataBlock->maxVelocity / len ));
excess *= 0.1f;
mVelocity -= excess;
}
// Container buoyancy & drag
mVelocity.z -= mBuoyancy * (mGravity * mDataBlock->gravityMod * mGravityMod) * dt;
mVelocity -= mVelocity * mDrag * dt;
}
void Item::updatePos(const U32 /*mask*/, const F32 dt)
{
// Try and move
Point3F pos;
mObjToWorld.getColumn(3,&pos);
delta.posVec = pos;
bool contact = false;
bool nonStatic = false;
bool stickyNotify = false;
CollisionList collisionList;
F32 time = dt;
static Polyhedron sBoxPolyhedron;
static ExtrudedPolyList sExtrudedPolyList;
static EarlyOutPolyList sEarlyOutPolyList;
MatrixF collisionMatrix(true);
Point3F end = pos + mVelocity * time;
U32 mask = isServerObject() ? sServerCollisionMask : sClientCollisionMask;
// Part of our speed problem here is that we don't track contact surfaces, like we do
// with the player. In order to handle the most common and performance impacting
// instance of this problem, we'll use a ray cast to detect any contact surfaces below
// us. This won't be perfect, but it only needs to catch a few of these to make a
// big difference. We'll cast from the top center of the bounding box at the tick's
// beginning to the bottom center of the box at the end.
Point3F startCast((mObjBox.minExtents.x + mObjBox.maxExtents.x) * 0.5,
(mObjBox.minExtents.y + mObjBox.maxExtents.y) * 0.5,
mObjBox.maxExtents.z);
Point3F endCast((mObjBox.minExtents.x + mObjBox.maxExtents.x) * 0.5,
(mObjBox.minExtents.y + mObjBox.maxExtents.y) * 0.5,
mObjBox.minExtents.z);
collisionMatrix.setColumn(3, pos);
collisionMatrix.mulP(startCast);
collisionMatrix.setColumn(3, end);
collisionMatrix.mulP(endCast);
RayInfo rinfo;
bool doToughCollision = true;
disableCollision();
if (mCollisionObject)
mCollisionObject->disableCollision();
if (getContainer()->castRay(startCast, endCast, mask, &rinfo))
{
F32 bd = -mDot(mVelocity, rinfo.normal);
if (bd >= 0.0)
{
// Contact!
if (mDataBlock->sticky && rinfo.object->getTypeMask() & (STATIC_COLLISION_TYPEMASK)) {
mVelocity.set(0, 0, 0);
mAtRest = true;
mAtRestCounter = 0;
stickyNotify = true;
mStickyCollisionPos = rinfo.point;
mStickyCollisionNormal = rinfo.normal;
doToughCollision = false;;
} else {
// Subtract out velocity into surface and friction
VectorF fv = mVelocity + rinfo.normal * bd;
F32 fvl = fv.len();
if (fvl) {
F32 ff = bd * mDataBlock->friction;
if (ff < fvl) {
fv *= ff / fvl;
fvl = ff;
}
}
bd *= 1 + mDataBlock->elasticity;
VectorF dv = rinfo.normal * (bd + 0.002);
mVelocity += dv;
mVelocity -= fv;
// Keep track of what we hit
contact = true;
U32 typeMask = rinfo.object->getTypeMask();
if (!(typeMask & StaticObjectType))
nonStatic = true;
if (isServerObject() && (typeMask & ShapeBaseObjectType)) {
ShapeBase* col = static_cast<ShapeBase*>(rinfo.object);
queueCollision(col,mVelocity - col->getVelocity());
}
}
}
}
enableCollision();
if (mCollisionObject)
mCollisionObject->enableCollision();
if (doToughCollision)
{
U32 count;
for (count = 0; count < 3; count++)
{
// Build list from convex states here...
end = pos + mVelocity * time;
collisionMatrix.setColumn(3, end);
Box3F wBox = getObjBox();
collisionMatrix.mul(wBox);
Box3F testBox = wBox;
Point3F oldMin = testBox.minExtents;
Point3F oldMax = testBox.maxExtents;
testBox.minExtents.setMin(oldMin + (mVelocity * time));
testBox.maxExtents.setMin(oldMax + (mVelocity * time));
sEarlyOutPolyList.clear();
sEarlyOutPolyList.mNormal.set(0,0,0);
sEarlyOutPolyList.mPlaneList.setSize(6);
sEarlyOutPolyList.mPlaneList[0].set(wBox.minExtents,VectorF(-1,0,0));
sEarlyOutPolyList.mPlaneList[1].set(wBox.maxExtents,VectorF(0,1,0));
sEarlyOutPolyList.mPlaneList[2].set(wBox.maxExtents,VectorF(1,0,0));
sEarlyOutPolyList.mPlaneList[3].set(wBox.minExtents,VectorF(0,-1,0));
sEarlyOutPolyList.mPlaneList[4].set(wBox.minExtents,VectorF(0,0,-1));
sEarlyOutPolyList.mPlaneList[5].set(wBox.maxExtents,VectorF(0,0,1));
CollisionWorkingList& eorList = mConvex.getWorkingList();
CollisionWorkingList* eopList = eorList.wLink.mNext;
while (eopList != &eorList) {
if ((eopList->mConvex->getObject()->getTypeMask() & mask) != 0)
{
Box3F convexBox = eopList->mConvex->getBoundingBox();
if (testBox.isOverlapped(convexBox))
{
eopList->mConvex->getPolyList(&sEarlyOutPolyList);
if (sEarlyOutPolyList.isEmpty() == false)
break;
}
}
eopList = eopList->wLink.mNext;
}
if (sEarlyOutPolyList.isEmpty())
{
pos = end;
break;
}
collisionMatrix.setColumn(3, pos);
sBoxPolyhedron.buildBox(collisionMatrix, mObjBox, true);
// Build extruded polyList...
VectorF vector = end - pos;
sExtrudedPolyList.extrude(sBoxPolyhedron, vector);
sExtrudedPolyList.setVelocity(mVelocity);
sExtrudedPolyList.setCollisionList(&collisionList);
CollisionWorkingList& rList = mConvex.getWorkingList();
CollisionWorkingList* pList = rList.wLink.mNext;
while (pList != &rList) {
if ((pList->mConvex->getObject()->getTypeMask() & mask) != 0)
{
Box3F convexBox = pList->mConvex->getBoundingBox();
if (testBox.isOverlapped(convexBox))
{
pList->mConvex->getPolyList(&sExtrudedPolyList);
}
}
pList = pList->wLink.mNext;
}
if (collisionList.getTime() < 1.0)
{
// Set to collision point
F32 dt = time * collisionList.getTime();
pos += mVelocity * dt;
time -= dt;
// Pick the most resistant surface
F32 bd = 0;
const Collision* collision = 0;
for (int c = 0; c < collisionList.getCount(); c++) {
const Collision &cp = collisionList[c];
F32 dot = -mDot(mVelocity,cp.normal);
if (dot > bd) {
bd = dot;
collision = &cp;
}
}
if (collision && mDataBlock->sticky && collision->object->getTypeMask() & (STATIC_COLLISION_TYPEMASK)) {
mVelocity.set(0, 0, 0);
mAtRest = true;
mAtRestCounter = 0;
stickyNotify = true;
mStickyCollisionPos = collision->point;
mStickyCollisionNormal = collision->normal;
break;
} else {
// Subtract out velocity into surface and friction
if (collision) {
VectorF fv = mVelocity + collision->normal * bd;
F32 fvl = fv.len();
if (fvl) {
F32 ff = bd * mDataBlock->friction;
if (ff < fvl) {
fv *= ff / fvl;
fvl = ff;
}
}
bd *= 1 + mDataBlock->elasticity;
VectorF dv = collision->normal * (bd + 0.002);
mVelocity += dv;
mVelocity -= fv;
// Keep track of what we hit
contact = true;
U32 typeMask = collision->object->getTypeMask();
if (!(typeMask & StaticObjectType))
nonStatic = true;
if (isServerObject() && (typeMask & ShapeBaseObjectType)) {
ShapeBase* col = static_cast<ShapeBase*>(collision->object);
queueCollision(col,mVelocity - col->getVelocity());
}
}
}
}
else
{
pos = end;
break;
}
}
if (count == 3)
{
// Couldn't move...
mVelocity.set(0, 0, 0);
}
}
// If on the client, calculate delta for backstepping
if (isGhost()) {
delta.pos = pos;
delta.posVec -= pos;
delta.dt = 1;
}
// Update transform
MatrixF mat = mObjToWorld;
mat.setColumn(3,pos);
Parent::setTransform(mat);
enableCollision();
if (mCollisionObject)
mCollisionObject->enableCollision();
updateContainer();
if ( mPhysicsRep )
mPhysicsRep->setTransform( mat );
//
if (contact) {
// Check for rest condition
if (!nonStatic && mVelocity.len() < sAtRestVelocity) {
mVelocity.x = mVelocity.y = mVelocity.z = 0;
mAtRest = true;
mAtRestCounter = 0;
}
// Only update the client if we hit a non-static shape or
// if this is our final rest pos.
if (nonStatic || mAtRest)
setMaskBits(PositionMask);
}
// Collision callbacks. These need to be processed whether we hit
// anything or not.
if (!isGhost())
{
SimObjectPtr<Item> safePtr(this);
if (stickyNotify)
{
notifyCollision();
if(bool(safePtr))
onStickyCollision_callback( getIdString() );
}
else
notifyCollision();
// water
if(bool(safePtr))
{
if(!mInLiquid && mWaterCoverage != 0.0f)
{
onEnterLiquid_callback( getIdString(), Con::getFloatArg(mWaterCoverage), mLiquidType.c_str() );
mInLiquid = true;
}
else if(mInLiquid && mWaterCoverage == 0.0f)
{
onLeaveLiquid_callback(getIdString(), mLiquidType.c_str());
mInLiquid = false;
}
}
}
}
//----------------------------------------------------------------------------
static MatrixF IMat(1);
bool Item::buildPolyList(PolyListContext context, AbstractPolyList* polyList, const Box3F&, const SphereF&)
{
if ( context == PLC_Decal )
return false;
// Collision with the item is always against the item's object
// space bounding box axis aligned in world space.
Point3F pos;
mObjToWorld.getColumn(3,&pos);
IMat.setColumn(3,pos);
polyList->setTransform(&IMat, mObjScale);
polyList->setObject(this);
polyList->addBox(mObjBox);
return true;
}
//----------------------------------------------------------------------------
U32 Item::packUpdate(NetConnection *connection, U32 mask, BitStream *stream)
{
U32 retMask = Parent::packUpdate(connection,mask,stream);
if (stream->writeFlag(mask & InitialUpdateMask)) {
stream->writeFlag(mRotate);
stream->writeFlag(mStatic);
if (stream->writeFlag(getScale() != Point3F(1, 1, 1)))
mathWrite(*stream, getScale());
}
if (mask & ThrowSrcMask && mCollisionObject) {
S32 gIndex = connection->getGhostIndex(mCollisionObject);
if (stream->writeFlag(gIndex != -1))
stream->writeInt(gIndex,NetConnection::GhostIdBitSize);
}
else
stream->writeFlag(false);
if (stream->writeFlag(mask & RotationMask && !mRotate)) {
// Assumes rotation is about the Z axis
AngAxisF aa(mObjToWorld);
stream->writeFlag(aa.axis.z < 0);
stream->write(aa.angle);
}
if (stream->writeFlag(mask & PositionMask)) {
Point3F pos;
mObjToWorld.getColumn(3,&pos);
mathWrite(*stream, pos);
if (!stream->writeFlag(mAtRest)) {
mathWrite(*stream, mVelocity);
}
stream->writeFlag(!(mask & NoWarpMask));
}
return retMask;
}
void Item::unpackUpdate(NetConnection *connection, BitStream *stream)
{
Parent::unpackUpdate(connection,stream);
// InitialUpdateMask
if (stream->readFlag()) {
mRotate = stream->readFlag();
mStatic = stream->readFlag();
if (stream->readFlag())
mathRead(*stream, &mObjScale);
else
mObjScale.set(1, 1, 1);
}
// ThrowSrcMask && mCollisionObject
if (stream->readFlag()) {
S32 gIndex = stream->readInt(NetConnection::GhostIdBitSize);
setCollisionTimeout(static_cast<ShapeBase*>(connection->resolveGhost(gIndex)));
}
MatrixF mat = mObjToWorld;
// RotationMask && !mRotate
if (stream->readFlag()) {
// Assumes rotation is about the Z axis
AngAxisF aa;
aa.axis.set(0.0f, 0.0f, stream->readFlag() ? -1.0f : 1.0f);
stream->read(&aa.angle);
aa.setMatrix(&mat);
Point3F pos;
mObjToWorld.getColumn(3,&pos);
mat.setColumn(3,pos);
}
// PositionMask
if (stream->readFlag()) {
Point3F pos;
mathRead(*stream, &pos);
F32 speed = mVelocity.len();
if ((mAtRest = stream->readFlag()) == true)
mVelocity.set(0.0f, 0.0f, 0.0f);
else
mathRead(*stream, &mVelocity);
if (stream->readFlag() && isProperlyAdded()) {
// Determin number of ticks to warp based on the average
// of the client and server velocities.
delta.warpOffset = pos - delta.pos;
F32 as = (speed + mVelocity.len()) * 0.5f * TickSec;
F32 dt = (as > 0.00001f) ? delta.warpOffset.len() / as: sMaxWarpTicks;
delta.warpTicks = (S32)((dt > sMinWarpTicks)? getMax(mFloor(dt + 0.5f), 1.0f): 0.0f);
if (delta.warpTicks)
{
// Setup the warp to start on the next tick, only the
// object's position is warped.
if (delta.warpTicks > sMaxWarpTicks)
delta.warpTicks = sMaxWarpTicks;
delta.warpOffset /= (F32)delta.warpTicks;
}
else {
// Going to skip the warp, server and client are real close.
// Adjust the frame interpolation to move smoothly to the
// new position within the current tick.
Point3F cp = delta.pos + delta.posVec * delta.dt;
VectorF vec = delta.pos - cp;
F32 vl = vec.len();
if (vl) {
F32 s = delta.posVec.len() / vl;
delta.posVec = (cp - pos) * s;
}
delta.pos = pos;
mat.setColumn(3,pos);
}
}
else {
// Set the item to the server position
delta.warpTicks = 0;
delta.posVec.set(0,0,0);
delta.pos = pos;
delta.dt = 0;
mat.setColumn(3,pos);
}
}
Parent::setTransform(mat);
}
DefineEngineMethod( Item, isStatic, bool, (),,
"@brief Is the object static (ie, non-movable)?\n\n"
"@return True if the object is static, false if it is not.\n"
"@tsexample\n"
"// Query the item on if it is or is not static.\n"
"%isStatic = %itemData.isStatic();\n\n"
"@endtsexample\n\n"
"@see static\n"
)
{
return object->isStatic();
}
DefineEngineMethod( Item, isAtRest, bool, (),,
"@brief Is the object at rest (ie, no longer moving)?\n\n"
"@return True if the object is at rest, false if it is not.\n"
"@tsexample\n"
"// Query the item on if it is or is not at rest.\n"
"%isAtRest = %item.isAtRest();\n\n"
"@endtsexample\n\n"
)
{
return object->isAtRest();
}
DefineEngineMethod( Item, isRotating, bool, (),,
"@brief Is the object still rotating?\n\n"
"@return True if the object is still rotating, false if it is not.\n"
"@tsexample\n"
"// Query the item on if it is or is not rotating.\n"
"%isRotating = %itemData.isRotating();\n\n"
"@endtsexample\n\n"
"@see rotate\n"
)
{
return object->isRotating();
}
DefineEngineMethod( Item, setCollisionTimeout, bool, (int ignoreColObj),(NULL),
"@brief Temporarily disable collisions against a specific ShapeBase object.\n\n"
"This is useful to prevent a player from immediately picking up an Item they have "
"just thrown. Only one object may be on the timeout list at a time. The timeout is "
"defined as 15 ticks.\n\n"
"@param objectID ShapeBase object ID to disable collisions against.\n"
"@return Returns true if the ShapeBase object requested could be found, false if it could not.\n"
"@tsexample\n"
"// Set the ShapeBase Object ID to disable collisions against\n"
"%ignoreColObj = %player.getID();\n\n"
"// Inform this Item object to ignore collisions temproarily against the %ignoreColObj.\n"
"%item.setCollisionTimeout(%ignoreColObj);\n\n"
"@endtsexample\n\n"
)
{
ShapeBase* source = NULL;
if (Sim::findObject(ignoreColObj,source)) {
object->setCollisionTimeout(source);
return true;
}
return false;
}
DefineEngineMethod( Item, getLastStickyPos, const char*, (),,
"@brief Get the position on the surface on which this Item is stuck.\n\n"
"@return Returns The XYZ position of where this Item is stuck.\n"
"@tsexample\n"
"// Acquire the position where this Item is currently stuck\n"
"%stuckPosition = %item.getLastStickPos();\n\n"
"@endtsexample\n\n"
"@note Server side only.\n"
)
{
char* ret = Con::getReturnBuffer(256);
if (object->isServerObject())
dSprintf(ret, 255, "%g %g %g",
object->mStickyCollisionPos.x,
object->mStickyCollisionPos.y,
object->mStickyCollisionPos.z);
else
dStrcpy(ret, "0 0 0");
return ret;
}
DefineEngineMethod( Item, getLastStickyNormal, const char *, (),,
"@brief Get the normal of the surface on which the object is stuck.\n\n"
"@return Returns The XYZ normal from where this Item is stuck.\n"
"@tsexample\n"
"// Acquire the position where this Item is currently stuck\n"
"%stuckPosition = %item.getLastStickPos();\n\n"
"@endtsexample\n\n"
"@note Server side only.\n"
)
{
char* ret = Con::getReturnBuffer(256);
if (object->isServerObject())
dSprintf(ret, 255, "%g %g %g",
object->mStickyCollisionNormal.x,
object->mStickyCollisionNormal.y,
object->mStickyCollisionNormal.z);
else
dStrcpy(ret, "0 0 0");
return ret;
}
//----------------------------------------------------------------------------
bool Item::_setStatic(void *object, const char *index, const char *data)
{
Item *i = static_cast<Item*>(object);
i->mAtRest = false;
i->setMaskBits(InitialUpdateMask | PositionMask);
return true;
}
bool Item::_setRotate(void *object, const char *index, const char *data)
{
Item *i = static_cast<Item*>(object);
i->setMaskBits(InitialUpdateMask | RotationMask);
return true;
}
2012-09-19 15:15:01 +00:00
void Item::initPersistFields()
{
addGroup("Misc");
addProtectedField("static", TypeBool, Offset(mStatic, Item), &_setStatic, &defaultProtectedGetFn, "If true, the object is not moving in the world (and will not be updated through the network).\n");
addProtectedField("rotate", TypeBool, Offset(mRotate, Item), &_setRotate, &defaultProtectedGetFn, "If true, the object will automatically rotate around its Z axis.\n");
2012-09-19 15:15:01 +00:00
endGroup("Misc");
Parent::initPersistFields();
}
void Item::consoleInit()
{
Con::addVariable("Item::minWarpTicks",TypeF32,&sMinWarpTicks,
"@brief Fraction of tick at which instant warp occures on the client.\n\n"
"@ingroup GameObjects");
Con::addVariable("Item::maxWarpTicks",TypeS32,&sMaxWarpTicks,
"@brief When a warp needs to occur due to the client being too far off from the server, this is the "
"maximum number of ticks we'll allow the client to warp to catch up.\n\n"
"@ingroup GameObjects");
}
//----------------------------------------------------------------------------
void Item::prepRenderImage( SceneRenderState* state )
{
// Items do NOT render if destroyed
if (getDamageState() == Destroyed)
return;
Parent::prepRenderImage( state );
}
void Item::buildConvex(const Box3F& box, Convex* convex)
{
if (mShapeInstance == NULL)
return;
// These should really come out of a pool
mConvexList->collectGarbage();
if (box.isOverlapped(getWorldBox()) == false)
return;
// Just return a box convex for the entire shape...
Convex* cc = 0;
CollisionWorkingList& wl = convex->getWorkingList();
for (CollisionWorkingList* itr = wl.wLink.mNext; itr != &wl; itr = itr->wLink.mNext) {
if (itr->mConvex->getType() == BoxConvexType &&
itr->mConvex->getObject() == this) {
cc = itr->mConvex;
break;
}
}
if (cc)
return;
// Create a new convex.
BoxConvex* cp = new BoxConvex;
mConvexList->registerObject(cp);
convex->addToWorkingList(cp);
cp->init(this);
mObjBox.getCenter(&cp->mCenter);
cp->mSize.x = mObjBox.len_x() / 2.0f;
cp->mSize.y = mObjBox.len_y() / 2.0f;
cp->mSize.z = mObjBox.len_z() / 2.0f;
}
void Item::advanceTime(F32 dt)
{
Parent::advanceTime(dt);
if( mRotate )
{
F32 r = (dt / sRotationSpeed) * M_2PI;
Point3F pos = mRenderObjToWorld.getPosition();
MatrixF rotMatrix;
if( mRotate )
{
rotMatrix.set( EulerF( 0.0, 0.0, r ) );
}
else
{
rotMatrix.set( EulerF( r * 0.5, 0.0, r ) );
}
MatrixF mat = mRenderObjToWorld;
mat.setPosition( pos );
mat.mul( rotMatrix );
setRenderTransform(mat);
}
}