Torque3D/Engine/source/terrain/glsl/terrFeatureGLSL.cpp

1132 lines
39 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "terrain/glsl/terrFeatureGLSL.h"
#include "terrain/terrFeatureTypes.h"
#include "materials/materialFeatureTypes.h"
#include "materials/materialFeatureData.h"
#include "materials/processedMaterial.h"
#include "gfx/gfxDevice.h"
#include "shaderGen/langElement.h"
#include "shaderGen/shaderOp.h"
#include "shaderGen/featureMgr.h"
#include "shaderGen/shaderGen.h"
#include "core/module.h"
namespace
{
void register_glsl_shader_features_for_terrain(GFXAdapterType type)
{
if(type != OpenGL)
return;
FEATUREMGR->registerFeature( MFT_TerrainBaseMap, new TerrainBaseMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_TerrainParallaxMap, new NamedFeatureGLSL( "Terrain Parallax Texture" ) );
FEATUREMGR->registerFeature( MFT_TerrainDetailMap, new TerrainDetailMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_TerrainNormalMap, new TerrainNormalMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_TerrainMacroMap, new TerrainMacroMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_TerrainLightMap, new TerrainLightMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_TerrainSideProject, new NamedFeatureGLSL( "Terrain Side Projection" ) );
FEATUREMGR->registerFeature( MFT_TerrainAdditive, new TerrainAdditiveFeatGLSL );
FEATUREMGR->registerFeature( MFT_DeferredTerrainBaseMap, new TerrainBaseMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_DeferredTerrainMacroMap, new TerrainMacroMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_DeferredTerrainDetailMap, new TerrainDetailMapFeatGLSL );
FEATUREMGR->registerFeature( MFT_DeferredTerrainBlankInfoMap, new TerrainBlankInfoMapFeatGLSL );
}
};
MODULE_BEGIN( TerrainFeatGLSL )
MODULE_INIT_AFTER( ShaderGen )
MODULE_INIT
{
SHADERGEN->getFeatureInitSignal().notify(&register_glsl_shader_features_for_terrain);
}
MODULE_END;
TerrainFeatGLSL::TerrainFeatGLSL()
: mTorqueDep(ShaderGen::smCommonShaderPath + String("/gl/torque.glsl" ))
{
addDependency( &mTorqueDep );
}
Var* TerrainFeatGLSL::_getUniformVar( const char *name, const char *type, ConstantSortPosition csp )
{
Var *theVar = (Var*)LangElement::find( name );
if ( !theVar )
{
theVar = new Var;
theVar->setType( type );
theVar->setName( name );
theVar->uniform = true;
theVar->constSortPos = csp;
}
return theVar;
}
Var* TerrainFeatGLSL::_getInDetailCoord( Vector<ShaderComponent*> &componentList )
{
String name( String::ToString( "detCoord%d", getProcessIndex() ) );
Var *inDet = (Var*)LangElement::find( name );
if ( !inDet )
{
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
inDet = connectComp->getElement( RT_TEXCOORD );
inDet->setName( name );
inDet->setStructName( "IN" );
inDet->setType( "vec4" );
}
return inDet;
}
Var* TerrainFeatGLSL::_getInMacroCoord( Vector<ShaderComponent*> &componentList )
{
String name( String::ToString( "macroCoord%d", getProcessIndex() ) );
Var *inDet = (Var*)LangElement::find( name );
if ( !inDet )
{
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
inDet = connectComp->getElement( RT_TEXCOORD );
inDet->setName( name );
inDet->setStructName( "IN" );
inDet->setType( "vec4" );
}
return inDet;
}
Var* TerrainFeatGLSL::_getNormalMapTex()
{
String name( String::ToString( "normalMap%d", getProcessIndex() ) );
Var *normalMap = (Var*)LangElement::find( name );
if ( !normalMap )
{
normalMap = new Var;
normalMap->setType( "sampler2D" );
normalMap->setName( name );
normalMap->uniform = true;
normalMap->sampler = true;
normalMap->constNum = Var::getTexUnitNum();
}
return normalMap;
}
Var* TerrainFeatGLSL::_getDetailIdStrengthParallax()
{
String name( String::ToString( "detailIdStrengthParallax%d", getProcessIndex() ) );
Var *detailInfo = (Var*)LangElement::find( name );
if ( !detailInfo )
{
detailInfo = new Var;
detailInfo->setType( "vec3" );
detailInfo->setName( name );
detailInfo->uniform = true;
detailInfo->constSortPos = cspPotentialPrimitive;
}
return detailInfo;
}
Var* TerrainFeatGLSL::_getMacroIdStrengthParallax()
{
String name( String::ToString( "macroIdStrengthParallax%d", getProcessIndex() ) );
Var *detailInfo = (Var*)LangElement::find( name );
if ( !detailInfo )
{
detailInfo = new Var;
detailInfo->setType( "vec3" );
detailInfo->setName( name );
detailInfo->uniform = true;
detailInfo->constSortPos = cspPotentialPrimitive;
}
return detailInfo;
}
void TerrainBaseMapFeatGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
MultiLine *meta = new MultiLine;
output = meta;
// Generate the incoming texture var.
Var *inTex;
{
Var *inPos = (Var*)LangElement::find( "inPosition" );
if ( !inPos )
inPos = (Var*)LangElement::find( "position" );
inTex = new Var( "texCoord", "vec3" );
Var *oneOverTerrainSize = _getUniformVar( "oneOverTerrainSize", "float", cspPass );
// NOTE: The y coord here should be negative to have
// the texture maps not end up flipped which also caused
// normal and parallax mapping to be incorrect.
//
// This mistake early in development means that the layer
// id bilinear blend depends on it being that way.
//
// So instead i fixed this by flipping the base and detail
// coord y scale to compensate when rendering.
//
meta->addStatement( new GenOp( " @ = @.xyz * float3( @, @, -@ );\r\n",
new DecOp( inTex ), inPos, oneOverTerrainSize, oneOverTerrainSize, oneOverTerrainSize ) );
}
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
// Pass the texture coord to the pixel shader.
Var *outTex = connectComp->getElement( RT_TEXCOORD );
outTex->setName( "outTexCoord" );
outTex->setStructName( "OUT" );
outTex->setType( "vec3" );
meta->addStatement( new GenOp( " @.xy = @.xy;\r\n", outTex, inTex ) );
// If this shader has a side projected layer then we
// pass the dot product between the +Y and the normal
// thru outTexCoord.z for use in blending the textures.
if ( fd.features.hasFeature( MFT_TerrainSideProject ) )
{
Var *inNormal = (Var*)LangElement::find( "normal" );
meta->addStatement(
new GenOp( " @.z = pow( abs( dot( normalize( float3( @.x, @.y, 0 ) ), float3( 0, 1, 0 ) ) ), 10.0 );\r\n",
outTex, inNormal, inNormal ) );
}
else
meta->addStatement( new GenOp( " @.z = 0;\r\n", outTex ) );
// HACK: This is sort of lazy... we generate the tanget
// vector here so that we're sure it exists in the parallax
// and normal features which will expect "T" to exist.
//
// If this shader doesn't use it the shader compiler will
// optimize away this code.
//
Var *inTangentZ = getVertTexCoord( "tcTangentZ" );
Var *inTanget = new Var( "T", "vec3" );
Var *squareSize = _getUniformVar( "squareSize", "float", cspPass );
meta->addStatement( new GenOp( " @ = normalize( float3( @, 0, @ ) );\r\n",
new DecOp( inTanget ), squareSize, inTangentZ ) );
}
void TerrainBaseMapFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// grab connector texcoord register
Var *texCoord = getInTexCoord( "texCoord", "vec3", componentList );
// create texture var
Var *diffuseMap = new Var;
diffuseMap->setType( "sampler2D" );
diffuseMap->setName( "baseTexMap" );
diffuseMap->uniform = true;
diffuseMap->sampler = true;
diffuseMap->constNum = Var::getTexUnitNum(); // used as texture unit num here
MultiLine *meta = new MultiLine;
Var *baseColor = new Var;
baseColor->setType( "vec4" );
baseColor->setName( "baseColor" );
meta->addStatement( new GenOp( " @ = tex2D( @, @.xy );\r\n", new DecOp( baseColor ), diffuseMap, texCoord ) );
ShaderFeature::OutputTarget target = ShaderFeature::DefaultTarget;
if(fd.features.hasFeature(MFT_isDeferred))
{
target= ShaderFeature::RenderTarget1;
}
meta->addStatement( new GenOp( " @;\r\n", assignColor( baseColor, Material::Mul,NULL,target ) ) );
output = meta;
}
ShaderFeature::Resources TerrainBaseMapFeatGLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
res.numTexReg = 1;
res.numTex = 1;
return res;
}
U32 TerrainBaseMapFeatGLSL::getOutputTargets( const MaterialFeatureData &fd ) const
{
return fd.features[MFT_isDeferred] ? ShaderFeature::RenderTarget1 : ShaderFeature::DefaultTarget;
}
TerrainDetailMapFeatGLSL::TerrainDetailMapFeatGLSL()
: mTorqueDep(ShaderGen::smCommonShaderPath + String("/gl/torque.glsl" )),
mTerrainDep(ShaderGen::smCommonShaderPath + String("/terrain/terrain.glsl" ))
{
addDependency( &mTorqueDep );
addDependency( &mTerrainDep );
}
void TerrainDetailMapFeatGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
const S32 detailIndex = getProcessIndex();
// Grab incoming texture coords... the base map feature
// made sure this was created.
Var *inTex = (Var*)LangElement::find( "texCoord" );
AssertFatal( inTex, "The texture coord is missing!" );
// Grab the input position.
Var *inPos = (Var*)LangElement::find( "inPosition" );
if ( !inPos )
inPos = (Var*)LangElement::find( "position" );
// Get the object space eye position.
Var *eyePos = _getUniformVar( "eyePos", "vec3", cspPotentialPrimitive );
MultiLine *meta = new MultiLine;
// If we have parallax mapping then make sure we've sent
// the negative view vector to the pixel shader.
if ( fd.features.hasFeature( MFT_TerrainParallaxMap ) &&
!LangElement::find( "outNegViewTS" ) )
{
// Get the object to tangent transform which
// will consume 3 output registers.
Var *objToTangentSpace = getOutObjToTangentSpace( componentList, meta, fd );
// Now use a single output register to send the negative
// view vector in tangent space to the pixel shader.
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *outNegViewTS = connectComp->getElement( RT_TEXCOORD );
outNegViewTS->setName( "outNegViewTS" );
outNegViewTS->setStructName( "OUT" );
outNegViewTS->setType( "vec3" );
meta->addStatement( new GenOp( " @ = tMul( @, float3( @ - @.xyz ) );\r\n",
outNegViewTS, objToTangentSpace, eyePos, inPos ) );
}
// Get the distance from the eye to this vertex.
Var *dist = (Var*)LangElement::find( "dist" );
if ( !dist )
{
dist = new Var;
dist->setType( "float" );
dist->setName( "dist" );
meta->addStatement( new GenOp( " @ = distance( @.xyz, @ );\r\n",
new DecOp( dist ), inPos, eyePos ) );
}
// grab connector texcoord register
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *outTex = connectComp->getElement( RT_TEXCOORD );
outTex->setName( String::ToString( "detCoord%d", detailIndex ) );
outTex->setStructName( "OUT" );
outTex->setType( "vec4" );
// Get the detail scale and fade info.
Var *detScaleAndFade = new Var;
detScaleAndFade->setType( "vec4" );
detScaleAndFade->setName( String::ToString( "detailScaleAndFade%d", detailIndex ) );
detScaleAndFade->uniform = true;
detScaleAndFade->constSortPos = cspPotentialPrimitive;
// Setup the detail coord.
//
// NOTE: You see here we scale the texture coord by 'xyx'
// to generate the detail coord. This y is here because
// its scale is flipped to correct for the non negative y
// in texCoord.
//
// See TerrainBaseMapFeatGLSL::processVert().
//
meta->addStatement( new GenOp( " @.xyz = @ * @.xyx;\r\n", outTex, inTex, detScaleAndFade ) );
// And sneak the detail fade thru the w detailCoord.
meta->addStatement( new GenOp( " @.w = clamp( ( @.z - @ ) * @.w, 0.0, 1.0 );\r\n",
outTex, detScaleAndFade, dist, detScaleAndFade ) );
output = meta;
}
void TerrainDetailMapFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
const S32 detailIndex = getProcessIndex();
Var *inTex = getVertTexCoord( "texCoord" );
MultiLine *meta = new MultiLine;
// We need the negative tangent space view vector
// as in parallax mapping we step towards the camera.
Var *negViewTS = (Var*)LangElement::find( "negViewTS" );
if ( !negViewTS &&
fd.features.hasFeature( MFT_TerrainParallaxMap ) )
{
Var *inNegViewTS = (Var*)LangElement::find( "outNegViewTS" );
if ( !inNegViewTS )
{
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
inNegViewTS = connectComp->getElement( RT_TEXCOORD );
inNegViewTS->setName( "outNegViewTS" );
inNegViewTS->setStructName( "IN" );
inNegViewTS->setType( "vec3" );
}
negViewTS = new Var( "negViewTS", "vec3" );
meta->addStatement( new GenOp( " @ = normalize( @ );\r\n", new DecOp( negViewTS ), inNegViewTS ) );
}
// Get the layer samples.
Var *layerSample = (Var*)LangElement::find( "layerSample" );
if ( !layerSample )
{
layerSample = new Var;
layerSample->setType( "vec4" );
layerSample->setName( "layerSample" );
// Get the layer texture var
Var *layerTex = new Var;
layerTex->setType( "sampler2D" );
layerTex->setName( "layerTex" );
layerTex->uniform = true;
layerTex->sampler = true;
layerTex->constNum = Var::getTexUnitNum();
// Read the layer texture to get the samples.
meta->addStatement( new GenOp( " @ = round( tex2D( @, @.xy ) * 255.0f );\r\n",
new DecOp( layerSample ), layerTex, inTex ) );
}
Var *layerSize = (Var*)LangElement::find( "layerSize" );
if ( !layerSize )
{
layerSize = new Var;
layerSize->setType( "float" );
layerSize->setName( "layerSize" );
layerSize->uniform = true;
layerSize->constSortPos = cspPass;
}
// Grab the incoming detail coord.
Var *inDet = _getInDetailCoord( componentList );
// Get the detail id.
Var *detailInfo = _getDetailIdStrengthParallax();
// Create the detail blend var.
Var *detailBlend = new Var;
detailBlend->setType( "float" );
detailBlend->setName( String::ToString( "detailBlend%d", detailIndex ) );
// Calculate the blend for this detail texture.
meta->addStatement( new GenOp( " @ = calcBlend( @.x, @.xy, @, @ );\r\n",
new DecOp( detailBlend ), detailInfo, inTex, layerSize, layerSample ) );
// New terrain
Var *lerpBlend = (Var*)LangElement::find("lerpBlend");
if (!lerpBlend)
{
lerpBlend = new Var;
lerpBlend->setType("float");
lerpBlend->setName("lerpBlend");
lerpBlend->uniform = true;
lerpBlend->constSortPos = cspPrimitive;
}
Var *blendDepth = (Var*)LangElement::find(String::ToString("blendDepth%d", detailIndex));
if (!blendDepth)
{
blendDepth = new Var;
blendDepth->setType("float");
blendDepth->setName(String::ToString("blendDepth%d", detailIndex));
blendDepth->uniform = true;
blendDepth->constSortPos = cspPrimitive;
}
ShaderFeature::OutputTarget target = ShaderFeature::DefaultTarget;
if(fd.features.hasFeature( MFT_DeferredTerrainDetailMap ))
target= ShaderFeature::RenderTarget1;
Var *outColor = (Var*)LangElement::find( getOutputTargetVarName(target) );
if (!outColor)
{
// create color var
outColor = new Var;
outColor->setType("float4");
outColor->setName("col");
outColor->setStructName("OUT");
meta->addStatement(new GenOp(" @;\r\n", outColor));
}
Var *detailColor = (Var*)LangElement::find("detailColor");
if (!detailColor)
{
detailColor = new Var;
detailColor->setType("float4");
detailColor->setName("detailColor");
meta->addStatement(new GenOp(" @;\r\n", new DecOp(detailColor)));
}
// Get the detail texture.
Var *detailMap = new Var;
detailMap->setType("sampler2D");
detailMap->setName(String::ToString("detailMap%d", detailIndex));
detailMap->uniform = true;
detailMap->sampler = true;
detailMap->constNum = Var::getTexUnitNum(); // used as texture unit num here
// Get the normal map texture.
Var *normalMap = _getNormalMapTex();
// Issue happens somewhere here -----
// Sample the normal map.
//
// We take two normal samples and lerp between them for
// side projection layers... else a single sample.
LangElement *texOp;
// Note that we're doing the standard greyscale detail
// map technique here which can darken and lighten the
// diffuse texture.
//
// We take two color samples and lerp between them for
// side projection layers... else a single sample.
//
if (fd.features.hasFeature(MFT_TerrainSideProject, detailIndex))
{
meta->addStatement(new GenOp(" @ = ( lerp( tex2D( @, @.yz ), tex2D( @, @.xz ), @.z ) * 2.0 ) - 1.0;\r\n",
detailColor, detailMap, inDet, detailMap, inDet, inTex));
texOp = new GenOp("lerp( tex2D( @, @.yz ), tex2D( @, @.xz ), @.z )",
normalMap, inDet, normalMap, inDet, inTex);
}
else
{
meta->addStatement(new GenOp(" @ = ( tex2D( @, @.xy ) * 2.0 ) - 1.0;\r\n",
detailColor, detailMap, inDet));
texOp = new GenOp("tex2D(@, @.xy)", normalMap, inDet);
}
// New terrain
// Get a var and accumulate the blend amount.
Var *blendTotal = (Var*)LangElement::find( "blendTotal" );
if ( !blendTotal )
{
blendTotal = new Var;
blendTotal->setName( "blendTotal" );
blendTotal->setType( "float" );
meta->addStatement( new GenOp( " @ = 0;\r\n", new DecOp( blendTotal ) ) );
}
// Add to the blend total.
meta->addStatement(new GenOp(" @ = max( @, @ );\r\n", blendTotal, blendTotal, detailBlend));
// If we had a parallax feature... then factor in the parallax
// amount so that it fades out with the layer blending.
if ( fd.features.hasFeature( MFT_TerrainParallaxMap, detailIndex ) )
{
// Call the library function to do the rest.
if (fd.features.hasFeature(MFT_IsBC3nm, detailIndex))
{
meta->addStatement(new GenOp(" @.xy += parallaxOffsetDxtnm( @, @.xy, @, @.z * @ );\r\n",
inDet, normalMap, inDet, negViewTS, detailInfo, detailBlend));
}
else
{
meta->addStatement(new GenOp(" @.xy += parallaxOffset( @, @.xy, @, @.z * @ );\r\n",
inDet, normalMap, inDet, negViewTS, detailInfo, detailBlend));
}
}
// If we're using SM 3.0 then take advantage of
// dynamic branching to skip layers per-pixel.
if ( GFX->getPixelShaderVersion() >= 3.0f )
meta->addStatement( new GenOp( " if ( @ > 0.0f )\r\n", detailBlend ) );
meta->addStatement( new GenOp( " {\r\n" ) );
// Note that we're doing the standard greyscale detail
// map technique here which can darken and lighten the
// diffuse texture.
//
// We take two color samples and lerp between them for
// side projection layers... else a single sample.
//
if ( fd.features.hasFeature( MFT_TerrainSideProject, detailIndex ) )
{
meta->addStatement( new GenOp( " @ = ( lerp( tex2D( @, @.yz ), tex2D( @, @.xz ), @.z ) * 2.0 ) - 1.0;\r\n",
detailColor, detailMap, inDet, detailMap, inDet, inTex ) );
}
else
{
meta->addStatement( new GenOp( " @ = ( tex2D( @, @.xy ) * 2.0 ) - 1.0;\r\n",
detailColor, detailMap, inDet ) );
}
meta->addStatement( new GenOp( " @ *= @.y * @.w;\r\n",
detailColor, detailInfo, inDet ) );
meta->addStatement(new GenOp(" @.rgb = toGamma(@.rgb);\r\n", outColor, outColor));
meta->addStatement(new GenOp(" @ += @ * @;\r\n",
outColor, detailColor, detailBlend));
meta->addStatement(new GenOp(" @.rgb = toLinear(clamp(@.rgb, 0, 1));\r\n", outColor, outColor));
meta->addStatement( new GenOp( " }\r\n" ) );
output = meta;
}
ShaderFeature::Resources TerrainDetailMapFeatGLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
if ( getProcessIndex() == 0 )
{
// If this is the first detail pass then we
// samples from the layer tex.
res.numTex += 1;
// If this material also does parallax then it
// will generate the negative view vector and the
// worldToTanget transform.
if ( fd.features.hasFeature( MFT_TerrainParallaxMap ) )
res.numTexReg += 4;
}
// sample from the detail texture for diffuse coloring.
res.numTex += 1;
// If we have parallax for this layer then we'll also
// be sampling the normal map for the parallax heightmap.
if ( fd.features.hasFeature( MFT_TerrainParallaxMap, getProcessIndex() ) )
res.numTex += 1;
// Finally we always send the detail texture
// coord to the pixel shader.
res.numTexReg += 1;
return res;
}
U32 TerrainDetailMapFeatGLSL::getOutputTargets( const MaterialFeatureData &fd ) const
{
return fd.features[MFT_DeferredTerrainDetailMap] ? ShaderFeature::RenderTarget1 : ShaderFeature::DefaultTarget;
}
TerrainMacroMapFeatGLSL::TerrainMacroMapFeatGLSL()
: mTorqueDep(ShaderGen::smCommonShaderPath + String("/gl/torque.glsl" )),
mTerrainDep(ShaderGen::smCommonShaderPath + String("/terrain/terrain.glsl" ))
{
addDependency( &mTorqueDep );
addDependency( &mTerrainDep );
}
void TerrainMacroMapFeatGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
const S32 detailIndex = getProcessIndex();
// Grab incoming texture coords... the base map feature
// made sure this was created.
Var *inTex = (Var*)LangElement::find( "texCoord" );
AssertFatal( inTex, "The texture coord is missing!" );
// Grab the input position.
Var *inPos = (Var*)LangElement::find( "inPosition" );
if ( !inPos )
inPos = (Var*)LangElement::find( "position" );
// Get the object space eye position.
Var *eyePos = _getUniformVar( "eyePos", "vec3", cspPotentialPrimitive );
MultiLine *meta = new MultiLine;
// Get the distance from the eye to this vertex.
Var *dist = (Var*)LangElement::find( "macroDist" );
if ( !dist )
{
dist = new Var;
dist->setType( "float" );
dist->setName( "macroDist" );
meta->addStatement( new GenOp( " @ = distance( @.xyz, @ );\r\n",
new DecOp( dist ), inPos, eyePos ) );
}
// grab connector texcoord register
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *outTex = connectComp->getElement( RT_TEXCOORD );
outTex->setName( String::ToString( "macroCoord%d", detailIndex ) );
outTex->setStructName( "OUT" );
outTex->setType( "vec4" );
// Get the detail scale and fade info.
Var *detScaleAndFade = new Var;
detScaleAndFade->setType( "vec4" );
detScaleAndFade->setName( String::ToString( "macroScaleAndFade%d", detailIndex ) );
detScaleAndFade->uniform = true;
detScaleAndFade->constSortPos = cspPotentialPrimitive;
// Setup the detail coord.
meta->addStatement( new GenOp( " @.xyz = @ * @.xyx;\r\n", outTex, inTex, detScaleAndFade ) );
// And sneak the detail fade thru the w detailCoord.
meta->addStatement( new GenOp( " @.w = clamp( ( @.z - @ ) * @.w, 0.0, 1.0 );\r\n",
outTex, detScaleAndFade, dist, detScaleAndFade ) );
output = meta;
}
void TerrainMacroMapFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
const S32 detailIndex = getProcessIndex();
Var *inTex = getVertTexCoord( "texCoord" );
MultiLine *meta = new MultiLine;
// We need the negative tangent space view vector
// as in parallax mapping we step towards the camera.
Var *negViewTS = (Var*)LangElement::find( "negViewTS" );
if ( !negViewTS &&
fd.features.hasFeature( MFT_TerrainParallaxMap ) )
{
Var *inNegViewTS = (Var*)LangElement::find( "outNegViewTS" );
if ( !inNegViewTS )
{
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
inNegViewTS = connectComp->getElement( RT_TEXCOORD );
inNegViewTS->setName( "outNegViewTS" );
inNegViewTS->setStructName( "IN" );
inNegViewTS->setType( "vec3" );
}
negViewTS = new Var( "negViewTS", "vec3" );
meta->addStatement( new GenOp( " @ = normalize( @ );\r\n", new DecOp( negViewTS ), inNegViewTS ) );
}
// Get the layer samples.
Var *layerSample = (Var*)LangElement::find( "layerSample" );
if ( !layerSample )
{
layerSample = new Var;
layerSample->setType( "vec4" );
layerSample->setName( "layerSample" );
// Get the layer texture var
Var *layerTex = new Var;
layerTex->setType( "sampler2D" );
layerTex->setName( "macrolayerTex" );
layerTex->uniform = true;
layerTex->sampler = true;
layerTex->constNum = Var::getTexUnitNum();
// Read the layer texture to get the samples.
meta->addStatement( new GenOp( " @ = round( tex2D( @, @.xy ) * 255.0f );\r\n",
new DecOp( layerSample ), layerTex, inTex ) );
}
Var *layerSize = (Var*)LangElement::find( "layerSize" );
if ( !layerSize )
{
layerSize = new Var;
layerSize->setType( "float" );
layerSize->setName( "layerSize" );
layerSize->uniform = true;
layerSize->constSortPos = cspPass;
}
// Grab the incoming detail coord.
Var *inDet = _getInMacroCoord( componentList );
// Get the detail id.
Var *detailInfo = _getMacroIdStrengthParallax();
// Create the detail blend var.
Var *detailBlend = new Var;
detailBlend->setType( "float" );
detailBlend->setName( String::ToString( "macroBlend%d", detailIndex ) );
// Calculate the blend for this detail texture.
meta->addStatement( new GenOp( " @ = calcBlend( @.x, @.xy, @, @ );\r\n",
new DecOp( detailBlend ), detailInfo, inTex, layerSize, layerSample ) );
// Get a var and accumulate the blend amount.
Var *blendTotal = (Var*)LangElement::find( "blendTotal" );
if ( !blendTotal )
{
blendTotal = new Var;
//blendTotal->setName( "blendTotal" );
blendTotal->setName( "blendTotal" );
blendTotal->setType( "float" );
meta->addStatement( new GenOp( " @ = 0;\r\n", new DecOp( blendTotal ) ) );
}
// Add to the blend total.
meta->addStatement(new GenOp(" @ = max( @, @ );\r\n", blendTotal, blendTotal, detailBlend));
Var *detailColor = (Var*)LangElement::find( "macroColor" );
if ( !detailColor )
{
detailColor = new Var;
detailColor->setType( "vec4" );
detailColor->setName( "macroColor" );
meta->addStatement( new GenOp( " @;\r\n", new DecOp( detailColor ) ) );
}
// Get the detail texture.
Var *detailMap = new Var;
detailMap->setType( "sampler2D" );
detailMap->setName( String::ToString( "macroMap%d", detailIndex ) );
detailMap->uniform = true;
detailMap->sampler = true;
detailMap->constNum = Var::getTexUnitNum(); // used as texture unit num here
// If we're using SM 3.0 then take advantage of
// dynamic branching to skip layers per-pixel.
if ( GFX->getPixelShaderVersion() >= 3.0f )
meta->addStatement( new GenOp( " if ( @ > 0.0f )\r\n", detailBlend ) );
meta->addStatement( new GenOp( " {\r\n" ) );
// Note that we're doing the standard greyscale detail
// map technique here which can darken and lighten the
// diffuse texture.
//
// We take two color samples and lerp between them for
// side projection layers... else a single sample.
//
if ( fd.features.hasFeature( MFT_TerrainSideProject, detailIndex ) )
{
meta->addStatement( new GenOp( " @ = ( lerp( tex2D( @, @.yz ), tex2D( @, @.xz ), @.z ) * 2.0 ) - 1.0;\r\n",
detailColor, detailMap, inDet, detailMap, inDet, inTex ) );
}
else
{
meta->addStatement( new GenOp( " @ = ( tex2D( @, @.xy ) * 2.0 ) - 1.0;\r\n",
detailColor, detailMap, inDet ) );
}
meta->addStatement( new GenOp( " @ *= @.y * @.w;\r\n",
detailColor, detailInfo, inDet ) );
ShaderFeature::OutputTarget target = ShaderFeature::DefaultTarget;
if(fd.features.hasFeature(MFT_DeferredTerrainMacroMap))
target= ShaderFeature::RenderTarget1;
Var *outColor = (Var*)LangElement::find( getOutputTargetVarName(target) );
meta->addStatement(new GenOp(" @.rgb = toGamma(@.rgb);\r\n", outColor, outColor));
meta->addStatement(new GenOp(" @ += @ * @;\r\n",
outColor, detailColor, detailBlend));
meta->addStatement(new GenOp(" @.rgb = toLinear(clamp(@.rgb, 0, 1));\r\n", outColor, outColor));
meta->addStatement( new GenOp( " }\r\n" ) );
output = meta;
}
ShaderFeature::Resources TerrainMacroMapFeatGLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
if ( getProcessIndex() == 0 )
{
// If this is the first detail pass then we
// samples from the layer tex.
res.numTex += 1;
}
res.numTex += 1;
// Finally we always send the detail texture
// coord to the pixel shader.
res.numTexReg += 1;
return res;
}
U32 TerrainMacroMapFeatGLSL::getOutputTargets( const MaterialFeatureData &fd ) const
{
return fd.features[MFT_DeferredTerrainMacroMap] ? ShaderFeature::RenderTarget1 : ShaderFeature::DefaultTarget;
}
void TerrainNormalMapFeatGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// We only need to process normals during the deferred.
if ( !fd.features.hasFeature( MFT_DeferredConditioner ) )
return;
MultiLine *meta = new MultiLine;
// Make sure the world to tangent transform
// is created and available for the pixel shader.
getOutViewToTangent( componentList, meta, fd );
output = meta;
}
void TerrainNormalMapFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// We only need to process normals during the deferred.
if (!fd.features.hasFeature(MFT_DeferredConditioner))
return;
MultiLine *meta = new MultiLine;
Var *viewToTangent = getInViewToTangent( componentList );
// This var is read from GBufferConditionerGLSL and
// used in the deferred output.
Var *gbNormal = (Var*)LangElement::find( "gbNormal" );
if ( !gbNormal )
{
gbNormal = new Var;
gbNormal->setName( "gbNormal" );
gbNormal->setType( "vec3" );
meta->addStatement( new GenOp( " @ = tGetMatrix3Row(@, 2);\r\n", new DecOp( gbNormal ), viewToTangent ) );
}
const S32 normalIndex = getProcessIndex();
Var *detailBlend = (Var*)LangElement::find( String::ToString( "detailBlend%d", normalIndex ) );
AssertFatal( detailBlend, "The detail blend is missing!" );
// If we're using SM 3.0 then take advantage of
// dynamic branching to skip layers per-pixel.
if ( GFX->getPixelShaderVersion() >= 3.0f )
meta->addStatement( new GenOp( " if ( @ > 0.0f )\r\n", detailBlend ) );
meta->addStatement( new GenOp( " {\r\n" ) );
// Get the normal map texture.
Var *normalMap = _getNormalMapTex();
/// Get the texture coord.
Var *inDet = _getInDetailCoord( componentList );
Var *inTex = getVertTexCoord( "texCoord" );
// Sample the normal map.
//
// We take two normal samples and lerp between them for
// side projection layers... else a single sample.
LangElement *texOp;
if ( fd.features.hasFeature( MFT_TerrainSideProject, normalIndex ) )
{
texOp = new GenOp( "lerp( tex2D( @, @.yz ), tex2D( @, @.xz ), @.z )",
normalMap, inDet, normalMap, inDet, inTex );
}
else
texOp = new GenOp( "tex2D(@, @.xy)", normalMap, inDet );
// create bump normal
Var *bumpNorm = new Var;
bumpNorm->setName( "bumpNormal" );
bumpNorm->setType( "vec4" );
LangElement *bumpNormDecl = new DecOp( bumpNorm );
meta->addStatement( expandNormalMap( texOp, bumpNormDecl, bumpNorm, fd ) );
// Normalize is done later...
// Note: The reverse mul order is intentional. Affine matrix.
meta->addStatement( new GenOp( " @ = lerp( @, tMul( @.xyz, @ ), min( @, @.w ) );\r\n",
gbNormal, gbNormal, bumpNorm, viewToTangent, detailBlend, inDet ) );
// End the conditional block.
meta->addStatement( new GenOp( " }\r\n" ) );
// If this is the last normal map then we
// can test to see the total blend value
// to see if we should clip the result.
//if ( fd.features.getNextFeatureIndex( MFT_TerrainNormalMap, normalIndex ) == -1 )
//meta->addStatement( new GenOp( " clip( @ - 0.0001f );\r\n", blendTotal ) );
output = meta;
}
ShaderFeature::Resources TerrainNormalMapFeatGLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
// We only need to process normals during the deferred.
if ( fd.features.hasFeature( MFT_DeferredConditioner ) )
{
// If this is the first normal map and there
// are no parallax features then we will
// generate the worldToTanget transform.
if ( !fd.features.hasFeature( MFT_TerrainParallaxMap ) &&
( getProcessIndex() == 0 || !fd.features.hasFeature( MFT_TerrainNormalMap, getProcessIndex() - 1 ) ) )
res.numTexReg = 3;
res.numTex = 1;
}
return res;
}
void TerrainLightMapFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// grab connector texcoord register
Var *inTex = (Var*)LangElement::find( "texCoord" );
if ( !inTex )
return;
// Get the lightmap texture.
Var *lightMap = new Var;
lightMap->setType( "sampler2D" );
lightMap->setName( "lightMapTex" );
lightMap->uniform = true;
lightMap->sampler = true;
lightMap->constNum = Var::getTexUnitNum();
MultiLine *meta = new MultiLine;
// Find or create the lightMask value which is read by
// RTLighting to mask out the lights.
//
// The first light is always the sunlight so we apply
// the shadow mask to only the first channel.
//
Var *lightMask = (Var*)LangElement::find( "lightMask" );
if ( !lightMask )
{
lightMask = new Var( "lightMask", "vec4" );
meta->addStatement( new GenOp( " @ = vec4(1);\r\n", new DecOp( lightMask ) ) );
}
meta->addStatement( new GenOp( " @[0] = tex2D( @, @.xy ).r;\r\n", lightMask, lightMap, inTex ) );
output = meta;
}
ShaderFeature::Resources TerrainLightMapFeatGLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
res.numTex = 1;
return res;
}
void TerrainAdditiveFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
Var *color = NULL;
Var *normal = NULL;
if (fd.features[MFT_DeferredTerrainDetailMap])
{
color = (Var*) LangElement::find( getOutputTargetVarName(ShaderFeature::RenderTarget1) );
normal = (Var*) LangElement::find( getOutputTargetVarName(ShaderFeature::DefaultTarget) );
}
else
color = (Var*) LangElement::find( getOutputTargetVarName(ShaderFeature::DefaultTarget) );
Var *blendTotal = (Var*)LangElement::find( "blendTotal" );
if ( !color || !blendTotal )
return;
MultiLine *meta = new MultiLine;
meta->addStatement( new GenOp( " clip( @ - 0.0001 );\r\n", blendTotal ) );
meta->addStatement( new GenOp( " @.a = @;\r\n", color, blendTotal ) );
if (normal)
meta->addStatement(new GenOp(" @.a = @;\r\n", normal, blendTotal));
output = meta;
}
//standard matInfo map contains data of the form .r = bitflags, .g = (will contain AO),
//.b = specular strength, a= spec power.
//here, it's merely a cutout for now, so that lightmapping (target3) doesn't get mangled.
//we'll most likely revisit that later. possibly several ways...
U32 TerrainBlankInfoMapFeatGLSL::getOutputTargets(const MaterialFeatureData &fd) const
{
return fd.features[MFT_isDeferred] ? ShaderFeature::RenderTarget2 : ShaderFeature::RenderTarget1;
}
void TerrainBlankInfoMapFeatGLSL::processPix(Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd)
{
// search for material var
Var *material;
OutputTarget targ = RenderTarget1;
if (fd.features[MFT_isDeferred])
{
targ = RenderTarget2;
}
material = (Var*)LangElement::find(getOutputTargetVarName(targ));
MultiLine * meta = new MultiLine;
if (!material)
{
// create color var
material = new Var;
material->setType("vec4");
material->setName(getOutputTargetVarName(targ));
material->setStructName("OUT");
}
meta->addStatement(new GenOp(" @ = float4(0.0,0.0,0.0,0.0001);\r\n", material));
output = meta;
}