Torque3D/Engine/source/T3D/physics/bullet/btCollision.cpp

356 lines
12 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "T3D/physics/bullet/btCollision.h"
#include "math/mPoint3.h"
#include "math/mMatrix.h"
#include "T3D/physics/bullet/bt.h"
#include "T3D/physics/bullet/btCasts.h"
class btHeightfieldTerrainShapeCustom : public btHeightfieldTerrainShape
{
bool* mHoles;
public:
btHeightfieldTerrainShapeCustom(const bool *holes,
int heightStickWidth,
int heightStickLength,
const void* heightfieldData,
btScalar heightScale,
btScalar minHeight,
btScalar maxHeight,
int upAxis,
PHY_ScalarType heightDataType,
bool flipQuadEdges) : btHeightfieldTerrainShape(heightStickWidth,
heightStickLength,
heightfieldData,
heightScale,
minHeight,
maxHeight,
upAxis,
heightDataType,
flipQuadEdges)
{
mHoles = new bool[heightStickWidth * heightStickLength];
dMemcpy(mHoles, holes, heightStickWidth * heightStickLength * sizeof(bool));
}
virtual ~btHeightfieldTerrainShapeCustom()
{
delete[] mHoles;
}
virtual void processAllTriangles(btTriangleCallback* callback, const btVector3& aabbMin, const btVector3& aabbMax) const;
};
BtCollision::BtCollision()
: mCompound( NULL ),
mLocalXfm( true )
{
}
BtCollision::~BtCollision()
{
SAFE_DELETE( mCompound );
for ( U32 i=0; i < mShapes.size(); i++ )
delete mShapes[i];
for ( U32 i=0; i < mMeshInterfaces.size(); i++ )
delete mMeshInterfaces[i];
}
btCollisionShape* BtCollision::getShape()
{
if ( mCompound )
return mCompound;
if ( mShapes.empty() )
return NULL;
return mShapes.first();
}
void BtCollision::_addShape( btCollisionShape *shape, const MatrixF &localXfm )
{
AssertFatal( !shape->isCompound(), "BtCollision::_addShape - Shape should not be a compound!" );
// Stick the shape into the array to delete later. Remember
// that the compound shape doesn't delete its children.
mShapes.push_back( shape );
// If this is the first shape then just store the
// local transform and we're done.
if ( mShapes.size() == 1 )
{
mLocalXfm = localXfm;
return;
}
// We use a compound to store the shapes with their
// local transforms... so create it if we haven't already.
if ( !mCompound )
{
mCompound = new btCompoundShape();
// There should only be one shape now... add it and
// clear the local transform.
mCompound->addChildShape( btCast<btTransform>( mLocalXfm ), mShapes.first() );
mLocalXfm = MatrixF::Identity;
}
// Add the new shape to the compound.
mCompound->addChildShape( btCast<btTransform>( localXfm ), shape );
}
void BtCollision::addPlane( const PlaneF &plane )
{
// NOTE: Torque uses a negative D... thats why we flip it here.
btStaticPlaneShape *shape = new btStaticPlaneShape( btVector3( plane.x, plane.y, plane.z ), -plane.d );
_addShape( shape, MatrixF::Identity );
}
void BtCollision::addBox( const Point3F &halfWidth,
const MatrixF &localXfm )
{
btBoxShape *shape = new btBoxShape( btVector3( halfWidth.x, halfWidth.y, halfWidth.z ) );
shape->setMargin( 0.01f );
_addShape( shape, localXfm );
}
void BtCollision::addSphere( const F32 radius,
const MatrixF &localXfm )
{
btSphereShape *shape = new btSphereShape( radius );
shape->setMargin( 0.01f );
_addShape( shape, localXfm );
}
void BtCollision::addCapsule( F32 radius,
F32 height,
const MatrixF &localXfm )
{
btCapsuleShape *shape = new btCapsuleShape( radius, height );
shape->setMargin( 0.01f );
_addShape( shape, localXfm );
}
bool BtCollision::addConvex( const Point3F *points,
U32 count,
const MatrixF &localXfm )
{
btConvexHullShape *shape = new btConvexHullShape( (btScalar*)points, count, sizeof( Point3F ) );
shape->setMargin( 0.01f );
_addShape( shape, localXfm );
return true;
}
bool BtCollision::addTriangleMesh( const Point3F *vert,
U32 vertCount,
const U32 *index,
U32 triCount,
const MatrixF &localXfm )
{
// Setup the interface for loading the triangles.
btTriangleMesh *meshInterface = new btTriangleMesh( true, false );
for ( ; triCount-- ; )
{
meshInterface->addTriangle( btCast<btVector3>( vert[ *( index + 0 ) ] ),
btCast<btVector3>( vert[ *( index + 1 ) ] ),
btCast<btVector3>( vert[ *( index + 2 ) ] ),
false );
index += 3;
}
mMeshInterfaces.push_back( meshInterface );
btBvhTriangleMeshShape *shape = new btBvhTriangleMeshShape( meshInterface, true, true );
shape->setMargin( 0.01f );
_addShape( shape, localXfm );
return true;
}
bool BtCollision::addHeightfield( const U16 *heights,
const bool *holes, // TODO: Bullet height fields do not support holes
U32 blockSize,
F32 metersPerSample,
const MatrixF &localXfm )
{
// We pass the absolute maximum and minimum of a U16 height
// field and not the actual min and max. This helps with
// placement.
const F32 heightScale = 0.03125f;
const F32 minHeight = 0;
const F32 maxHeight = 65535 * heightScale;
btHeightfieldTerrainShapeCustom* shape = new btHeightfieldTerrainShapeCustom(holes,
blockSize, blockSize,
reinterpret_cast<const void*>(heights),
heightScale,
0, 0xFFFF * heightScale,
2, // Z up!
PHY_SHORT,
false);
shape->setMargin( 0.01f );
shape->setLocalScaling( btVector3( metersPerSample, metersPerSample, 1.0f ) );
shape->setUseDiamondSubdivision( true );
// The local axis of the heightfield is the exact center of
// its bounds defined as...
//
// ( blockSize * samplesPerMeter, blockSize * samplesPerMeter, maxHeight ) / 2.0f
//
// So we create a local transform to move it to the min point
// of the bounds so it matched Torque terrain.
Point3F offset( (F32)blockSize * metersPerSample / 2.0f,
(F32)blockSize * metersPerSample / 2.0f,
maxHeight / 2.0f );
// And also bump it by half a sample square size.
offset.x -= metersPerSample / 2.0f;
offset.y -= metersPerSample / 2.0f;
MatrixF offsetXfm( true );
offsetXfm.setPosition( offset );
_addShape( shape, offsetXfm );
return true;
}
void btHeightfieldTerrainShapeCustom::processAllTriangles(btTriangleCallback* callback, const btVector3& aabbMin, const btVector3& aabbMax) const
{
// scale down the input aabb's so they are in local (non-scaled) coordinates
btVector3 localAabbMin = aabbMin * btVector3(1.f / m_localScaling[0], 1.f / m_localScaling[1], 1.f / m_localScaling[2]);
btVector3 localAabbMax = aabbMax * btVector3(1.f / m_localScaling[0], 1.f / m_localScaling[1], 1.f / m_localScaling[2]);
// account for local origin
localAabbMin += m_localOrigin;
localAabbMax += m_localOrigin;
//quantize the aabbMin and aabbMax, and adjust the start/end ranges
int quantizedAabbMin[3];
int quantizedAabbMax[3];
quantizeWithClamp(quantizedAabbMin, localAabbMin, 0);
quantizeWithClamp(quantizedAabbMax, localAabbMax, 1);
// expand the min/max quantized values
// this is to catch the case where the input aabb falls between grid points!
for (int i = 0; i < 3; ++i) {
quantizedAabbMin[i]--;
quantizedAabbMax[i]++;
}
int startX = 0;
int endX = m_heightStickWidth - 1;
int startJ = 0;
int endJ = m_heightStickLength - 1;
switch (m_upAxis)
{
case 0:
{
if (quantizedAabbMin[1] > startX)
startX = quantizedAabbMin[1];
if (quantizedAabbMax[1] < endX)
endX = quantizedAabbMax[1];
if (quantizedAabbMin[2] > startJ)
startJ = quantizedAabbMin[2];
if (quantizedAabbMax[2] < endJ)
endJ = quantizedAabbMax[2];
break;
}
case 1:
{
if (quantizedAabbMin[0] > startX)
startX = quantizedAabbMin[0];
if (quantizedAabbMax[0] < endX)
endX = quantizedAabbMax[0];
if (quantizedAabbMin[2] > startJ)
startJ = quantizedAabbMin[2];
if (quantizedAabbMax[2] < endJ)
endJ = quantizedAabbMax[2];
break;
};
case 2:
{
if (quantizedAabbMin[0] > startX)
startX = quantizedAabbMin[0];
if (quantizedAabbMax[0] < endX)
endX = quantizedAabbMax[0];
if (quantizedAabbMin[1] > startJ)
startJ = quantizedAabbMin[1];
if (quantizedAabbMax[1] < endJ)
endJ = quantizedAabbMax[1];
break;
}
default:
{
//need to get valid m_upAxis
btAssert(0);
}
}
for (int j = startJ; j < endJ; j++)
{
for (int x = startX; x < endX; x++)
{
U32 index = (m_heightStickLength - (m_heightStickLength - x - 1)) + (j * m_heightStickWidth);
if (mHoles && mHoles[getMax((S32)index - 1, 0)])
continue;
btVector3 vertices[3];
if (m_flipQuadEdges || (m_useDiamondSubdivision && !((j + x) & 1)) || (m_useZigzagSubdivision && !(j & 1)))
{
//first triangle
getVertex(x, j, vertices[0]);
getVertex(x, j + 1, vertices[1]);
getVertex(x + 1, j + 1, vertices[2]);
callback->processTriangle(vertices, x, j);
//second triangle
// getVertex(x,j,vertices[0]);//already got this vertex before, thanks to Danny Chapman
getVertex(x + 1, j + 1, vertices[1]);
getVertex(x + 1, j, vertices[2]);
callback->processTriangle(vertices, x, j);
}
else
{
//first triangle
getVertex(x, j, vertices[0]);
getVertex(x, j + 1, vertices[1]);
getVertex(x + 1, j, vertices[2]);
callback->processTriangle(vertices, x, j);
//second triangle
getVertex(x + 1, j, vertices[0]);
//getVertex(x,j+1,vertices[1]);
getVertex(x + 1, j + 1, vertices[2]);
callback->processTriangle(vertices, x, j);
}
}
}
}