Torque3D/Engine/source/ts/tsShape.cpp
2014-09-14 21:42:51 +02:00

2297 lines
78 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "ts/tsShape.h"
#include "ts/tsLastDetail.h"
#include "ts/tsMaterialList.h"
#include "core/stringTable.h"
#include "console/console.h"
#include "ts/tsShapeInstance.h"
#include "collision/convex.h"
#include "materials/matInstance.h"
#include "materials/materialManager.h"
#include "math/mathIO.h"
#include "core/util/endian.h"
#include "core/stream/fileStream.h"
#include "console/compiler.h"
#include "core/fileObject.h"
#ifdef TORQUE_COLLADA
extern TSShape* loadColladaShape(const Torque::Path &path);
#endif
/// most recent version -- this is the version we write
S32 TSShape::smVersion = 26;
/// the version currently being read...valid only during a read
S32 TSShape::smReadVersion = -1;
const U32 TSShape::smMostRecentExporterVersion = DTS_EXPORTER_CURRENT_VERSION;
F32 TSShape::smAlphaOutLastDetail = -1.0f;
F32 TSShape::smAlphaInBillboard = 0.15f;
F32 TSShape::smAlphaOutBillboard = 0.15f;
F32 TSShape::smAlphaInDefault = -1.0f;
F32 TSShape::smAlphaOutDefault = -1.0f;
// don't bother even loading this many of the highest detail levels (but
// always load last renderable detail)
S32 TSShape::smNumSkipLoadDetails = 0;
bool TSShape::smInitOnRead = true;
TSShape::TSShape()
{
materialList = NULL;
mReadVersion = -1; // -1 means constructed from scratch (e.g., in exporter or no read yet)
mHasSkinMesh = false;
mSequencesConstructed = false;
mShapeData = NULL;
mShapeDataSize = 0;
mUseDetailFromScreenError = false;
mDetailLevelLookup.setSize( 1 );
mDetailLevelLookup[0].set( -1, 0 );
VECTOR_SET_ASSOCIATION(sequences);
VECTOR_SET_ASSOCIATION(nodeRotations);
VECTOR_SET_ASSOCIATION(nodeTranslations);
VECTOR_SET_ASSOCIATION(nodeUniformScales);
VECTOR_SET_ASSOCIATION(nodeAlignedScales);
VECTOR_SET_ASSOCIATION(nodeArbitraryScaleRots);
VECTOR_SET_ASSOCIATION(nodeArbitraryScaleFactors);
VECTOR_SET_ASSOCIATION(groundRotations);
VECTOR_SET_ASSOCIATION(groundTranslations);
VECTOR_SET_ASSOCIATION(triggers);
VECTOR_SET_ASSOCIATION(billboardDetails);
VECTOR_SET_ASSOCIATION(detailCollisionAccelerators);
VECTOR_SET_ASSOCIATION(names);
VECTOR_SET_ASSOCIATION( nodes );
VECTOR_SET_ASSOCIATION( objects );
VECTOR_SET_ASSOCIATION( objectStates );
VECTOR_SET_ASSOCIATION( subShapeFirstNode );
VECTOR_SET_ASSOCIATION( subShapeFirstObject );
VECTOR_SET_ASSOCIATION( detailFirstSkin );
VECTOR_SET_ASSOCIATION( subShapeNumNodes );
VECTOR_SET_ASSOCIATION( subShapeNumObjects );
VECTOR_SET_ASSOCIATION( details );
VECTOR_SET_ASSOCIATION( defaultRotations );
VECTOR_SET_ASSOCIATION( defaultTranslations );
VECTOR_SET_ASSOCIATION( subShapeFirstTranslucentObject );
VECTOR_SET_ASSOCIATION( meshes );
VECTOR_SET_ASSOCIATION( alphaIn );
VECTOR_SET_ASSOCIATION( alphaOut );
}
TSShape::~TSShape()
{
delete materialList;
S32 i;
// everything left over here is a legit mesh
for (i=0; i<meshes.size(); i++)
{
if (!meshes[i])
continue;
// Handle meshes that were either assembled with the shape or added later
if (((S8*)meshes[i] >= mShapeData) && ((S8*)meshes[i] < (mShapeData + mShapeDataSize)))
destructInPlace(meshes[i]);
else
delete meshes[i];
}
for (i=0; i<billboardDetails.size(); i++)
{
delete billboardDetails[i];
billboardDetails[i] = NULL;
}
billboardDetails.clear();
// Delete any generated accelerators
S32 dca;
for (dca = 0; dca < detailCollisionAccelerators.size(); dca++)
{
ConvexHullAccelerator* accel = detailCollisionAccelerators[dca];
if (accel != NULL) {
delete [] accel->vertexList;
delete [] accel->normalList;
for (S32 j = 0; j < accel->numVerts; j++)
delete [] accel->emitStrings[j];
delete [] accel->emitStrings;
delete accel;
}
}
for (dca = 0; dca < detailCollisionAccelerators.size(); dca++)
detailCollisionAccelerators[dca] = NULL;
if( mShapeData )
delete[] mShapeData;
}
const String& TSShape::getName( S32 nameIndex ) const
{
AssertFatal(nameIndex>=0 && nameIndex<names.size(),"TSShape::getName");
return names[nameIndex];
}
const String& TSShape::getMeshName( S32 meshIndex ) const
{
S32 nameIndex = objects[meshIndex].nameIndex;
if ( nameIndex < 0 )
return String::EmptyString;
return names[nameIndex];
}
const String& TSShape::getNodeName( S32 nodeIndex ) const
{
S32 nameIdx = nodes[nodeIndex].nameIndex;
if ( nameIdx < 0 )
return String::EmptyString;
return names[nameIdx];
}
const String& TSShape::getSequenceName( S32 seqIndex ) const
{
AssertFatal(seqIndex >= 0 && seqIndex<sequences.size(),"TSShape::getSequenceName index beyond range");
S32 nameIdx = sequences[seqIndex].nameIndex;
if ( nameIdx < 0 )
return String::EmptyString;
return names[nameIdx];
}
S32 TSShape::findName(const String &name) const
{
for (S32 i=0; i<names.size(); i++)
{
if (names[i].equal( name, String::NoCase ))
return i;
}
return -1;
}
const String& TSShape::getTargetName( S32 mapToNameIndex ) const
{
S32 targetCount = materialList->getMaterialNameList().size();
if(mapToNameIndex < 0 || mapToNameIndex >= targetCount)
return String::EmptyString;
return materialList->getMaterialNameList()[mapToNameIndex];
}
S32 TSShape::getTargetCount() const
{
if(!this)
return -1;
return materialList->getMaterialNameList().size();
}
S32 TSShape::findNode(S32 nameIndex) const
{
for (S32 i=0; i<nodes.size(); i++)
if (nodes[i].nameIndex==nameIndex)
return i;
return -1;
}
S32 TSShape::findObject(S32 nameIndex) const
{
for (S32 i=0; i<objects.size(); i++)
if (objects[i].nameIndex==nameIndex)
return i;
return -1;
}
S32 TSShape::findDetail(S32 nameIndex) const
{
for (S32 i=0; i<details.size(); i++)
if (details[i].nameIndex==nameIndex)
return i;
return -1;
}
S32 TSShape::findDetailBySize(S32 size) const
{
for (S32 i=0; i<details.size(); i++)
if (details[i].size==size)
return i;
return -1;
}
S32 TSShape::findSequence(S32 nameIndex) const
{
for (S32 i=0; i<sequences.size(); i++)
if (sequences[i].nameIndex==nameIndex)
return i;
return -1;
}
bool TSShape::findMeshIndex(const String& meshName, S32& objIndex, S32& meshIndex)
{
// Determine the object name and detail size from the mesh name
S32 detailSize = 999;
objIndex = findObject(String::GetTrailingNumber(meshName, detailSize));
if (objIndex < 0)
return false;
// Determine the subshape this object belongs to
S32 subShapeIndex = getSubShapeForObject(objIndex);
AssertFatal(subShapeIndex < subShapeFirstObject.size(), "Could not find subshape for object!");
// Get the detail levels for the subshape
Vector<S32> validDetails;
getSubShapeDetails(subShapeIndex, validDetails);
// Find the detail with the correct size
for (meshIndex = 0; meshIndex < validDetails.size(); meshIndex++)
{
const TSShape::Detail& det = details[validDetails[meshIndex]];
if (detailSize == det.size)
return true;
}
return false;
}
TSMesh* TSShape::findMesh(const String& meshName)
{
S32 objIndex, meshIndex;
if (!findMeshIndex(meshName, objIndex, meshIndex))
return 0;
return meshes[objects[objIndex].startMeshIndex + meshIndex];
}
S32 TSShape::getSubShapeForNode(S32 nodeIndex)
{
for (S32 i = 0; i < subShapeFirstNode.size(); i++)
{
S32 start = subShapeFirstNode[i];
S32 end = start + subShapeNumNodes[i];
if ((nodeIndex >= start) && (nodeIndex < end))
return i;;
}
return -1;
}
S32 TSShape::getSubShapeForObject(S32 objIndex)
{
for (S32 i = 0; i < subShapeFirstObject.size(); i++)
{
S32 start = subShapeFirstObject[i];
S32 end = start + subShapeNumObjects[i];
if ((objIndex >= start) && (objIndex < end))
return i;
}
return -1;
}
void TSShape::getSubShapeDetails(S32 subShapeIndex, Vector<S32>& validDetails)
{
validDetails.clear();
for (S32 i = 0; i < details.size(); i++)
{
if ((details[i].subShapeNum == subShapeIndex) ||
(details[i].subShapeNum < 0))
validDetails.push_back(i);
}
}
void TSShape::getNodeWorldTransform(S32 nodeIndex, MatrixF* mat) const
{
if ( nodeIndex == -1 )
{
mat->identity();
}
else
{
// Calculate the world transform of the given node
defaultRotations[nodeIndex].getQuatF().setMatrix(mat);
mat->setPosition(defaultTranslations[nodeIndex]);
S32 parentIndex = nodes[nodeIndex].parentIndex;
while (parentIndex != -1)
{
MatrixF mat2(*mat);
defaultRotations[parentIndex].getQuatF().setMatrix(mat);
mat->setPosition(defaultTranslations[parentIndex]);
mat->mul(mat2);
parentIndex = nodes[parentIndex].parentIndex;
}
}
}
void TSShape::getNodeObjects(S32 nodeIndex, Vector<S32>& nodeObjects)
{
for (S32 i = 0; i < objects.size(); i++)
{
if ((nodeIndex == -1) || (objects[i].nodeIndex == nodeIndex))
nodeObjects.push_back(i);
}
}
void TSShape::getNodeChildren(S32 nodeIndex, Vector<S32>& nodeChildren)
{
for (S32 i = 0; i < nodes.size(); i++)
{
if (nodes[i].parentIndex == nodeIndex)
nodeChildren.push_back(i);
}
}
void TSShape::getObjectDetails(S32 objIndex, Vector<S32>& objDetails)
{
// Get the detail levels for this subshape
Vector<S32> validDetails;
getSubShapeDetails(getSubShapeForObject(objIndex), validDetails);
// Get the non-null details for this object
const TSShape::Object& obj = objects[objIndex];
for (S32 i = 0; i < obj.numMeshes; i++)
{
if (meshes[obj.startMeshIndex + i])
objDetails.push_back(validDetails[i]);
}
}
void TSShape::init()
{
S32 numSubShapes = subShapeFirstNode.size();
AssertFatal(numSubShapes==subShapeFirstObject.size(),"TSShape::init");
S32 i,j;
// set up parent/child relationships on nodes and objects
for (i=0; i<nodes.size(); i++)
nodes[i].firstObject = nodes[i].firstChild = nodes[i].nextSibling = -1;
for (i=0; i<nodes.size(); i++)
{
S32 parentIndex = nodes[i].parentIndex;
if (parentIndex>=0)
{
if (nodes[parentIndex].firstChild<0)
nodes[parentIndex].firstChild=i;
else
{
S32 child = nodes[parentIndex].firstChild;
while (nodes[child].nextSibling>=0)
child = nodes[child].nextSibling;
nodes[child].nextSibling = i;
}
}
}
for (i=0; i<objects.size(); i++)
{
objects[i].nextSibling = -1;
S32 nodeIndex = objects[i].nodeIndex;
if (nodeIndex>=0)
{
if (nodes[nodeIndex].firstObject<0)
nodes[nodeIndex].firstObject = i;
else
{
S32 objectIndex = nodes[nodeIndex].firstObject;
while (objects[objectIndex].nextSibling>=0)
objectIndex = objects[objectIndex].nextSibling;
objects[objectIndex].nextSibling = i;
}
}
}
mFlags = 0;
for (i=0; i<sequences.size(); i++)
{
if (!sequences[i].animatesScale())
continue;
U32 curVal = mFlags & AnyScale;
U32 newVal = sequences[i].flags & AnyScale;
mFlags &= ~(AnyScale);
mFlags |= getMax(curVal,newVal); // take the larger value (can only convert upwards)
}
// set up alphaIn and alphaOut vectors...
alphaIn.setSize(details.size());
alphaOut.setSize(details.size());
for (i=0; i<details.size(); i++)
{
if (details[i].size<0)
{
// we don't care...
alphaIn[i] = 0.0f;
alphaOut[i] = 0.0f;
}
else if (i+1==details.size() || details[i+1].size<0)
{
alphaIn[i] = 0.0f;
alphaOut[i] = smAlphaOutLastDetail;
}
else
{
if (details[i+1].subShapeNum<0)
{
// following detail is a billboard detail...treat special...
alphaIn[i] = smAlphaInBillboard;
alphaOut[i] = smAlphaOutBillboard;
}
else
{
// next detail is normal detail
alphaIn[i] = smAlphaInDefault;
alphaOut[i] = smAlphaOutDefault;
}
}
}
for (i=mSmallestVisibleDL-1; i>=0; i--)
{
if (i<smNumSkipLoadDetails)
{
// this detail level renders when pixel size
// is larger than our cap...zap all the meshes and decals
// associated with it and use the next detail level
// instead...
S32 ss = details[i].subShapeNum;
S32 od = details[i].objectDetailNum;
if (ss==details[i+1].subShapeNum && od==details[i+1].objectDetailNum)
// doh! already done this one (init can be called multiple times on same shape due
// to sequence importing).
continue;
details[i].subShapeNum = details[i+1].subShapeNum;
details[i].objectDetailNum = details[i+1].objectDetailNum;
}
}
for (i=0; i<details.size(); i++)
{
S32 count = 0;
S32 ss = details[i].subShapeNum;
S32 od = details[i].objectDetailNum;
if (ss<0)
{
// billboard detail...
details[i].polyCount = 2;
continue;
}
S32 start = subShapeFirstObject[ss];
S32 end = start + subShapeNumObjects[ss];
for (j=start; j<end; j++)
{
Object & obj = objects[j];
if (od<obj.numMeshes)
{
TSMesh * mesh = meshes[obj.startMeshIndex+od];
count += mesh ? mesh->getNumPolys() : 0;
}
}
details[i].polyCount = count;
}
// Init the collision accelerator array. Note that we don't compute the
// accelerators until the app requests them
{
S32 dca;
for (dca = 0; dca < detailCollisionAccelerators.size(); dca++)
{
ConvexHullAccelerator* accel = detailCollisionAccelerators[dca];
if (accel != NULL) {
delete [] accel->vertexList;
delete [] accel->normalList;
for (S32 j = 0; j < accel->numVerts; j++)
delete [] accel->emitStrings[j];
delete [] accel->emitStrings;
delete accel;
}
}
detailCollisionAccelerators.setSize(details.size());
for (dca = 0; dca < detailCollisionAccelerators.size(); dca++)
detailCollisionAccelerators[dca] = NULL;
}
initVertexFeatures();
initMaterialList();
}
void TSShape::initVertexFeatures()
{
bool hasColors = false;
bool hasTexcoord2 = false;
Vector<TSMesh*>::iterator iter = meshes.begin();
for ( ; iter != meshes.end(); iter++ )
{
TSMesh *mesh = *iter;
if ( mesh &&
( mesh->getMeshType() == TSMesh::StandardMeshType ||
mesh->getMeshType() == TSMesh::SkinMeshType ) )
{
if ( mesh->mVertexData.isReady() )
{
hasColors |= mesh->mHasColor;
hasTexcoord2 |= mesh->mHasTVert2;
}
else
{
hasColors |= !mesh->colors.empty();
hasTexcoord2 |= !mesh->tverts2.empty();
}
}
}
mVertSize = ( hasTexcoord2 || hasColors ) ? sizeof(TSMesh::__TSMeshVertex_3xUVColor) : sizeof(TSMesh::__TSMeshVertexBase);
mVertexFormat.clear();
mVertexFormat.addElement( GFXSemantic::POSITION, GFXDeclType_Float3 );
mVertexFormat.addElement( GFXSemantic::TANGENTW, GFXDeclType_Float, 3 );
mVertexFormat.addElement( GFXSemantic::NORMAL, GFXDeclType_Float3 );
mVertexFormat.addElement( GFXSemantic::TANGENT, GFXDeclType_Float3 );
mVertexFormat.addElement( GFXSemantic::TEXCOORD, GFXDeclType_Float2, 0 );
if(hasTexcoord2 || hasColors)
{
mVertexFormat.addElement( GFXSemantic::TEXCOORD, GFXDeclType_Float2, 1 );
mVertexFormat.addElement( GFXSemantic::COLOR, GFXDeclType_Color );
mVertexFormat.addElement( GFXSemantic::TEXCOORD, GFXDeclType_Float, 2 );
}
// Go fix up meshes to include defaults for optional features
// and initialize them if they're not a skin mesh.
iter = meshes.begin();
for ( ; iter != meshes.end(); iter++ )
{
TSMesh *mesh = *iter;
if ( !mesh ||
( mesh->getMeshType() != TSMesh::StandardMeshType &&
mesh->getMeshType() != TSMesh::SkinMeshType ) )
continue;
// Set the flags.
mesh->mVertexFormat = &mVertexFormat;
mesh->mVertSize = mVertSize;
// Create and fill aligned data structure
mesh->convertToAlignedMeshData();
// Init the vertex buffer.
if ( mesh->getMeshType() == TSMesh::StandardMeshType )
mesh->createVBIB();
}
}
void TSShape::setupBillboardDetails( const String &cachePath )
{
// set up billboard details -- only do this once, meaning that
// if we add a sequence to the shape we don't redo the billboard
// details...
if ( !billboardDetails.empty() )
return;
for ( U32 i=0; i < details.size(); i++ )
{
const Detail &det = details[i];
if ( det.subShapeNum >= 0 )
continue; // not a billboard detail
while (billboardDetails.size() <= i )
billboardDetails.push_back(NULL);
billboardDetails[i] = new TSLastDetail( this,
cachePath,
det.bbEquatorSteps,
det.bbPolarSteps,
det.bbPolarAngle,
det.bbIncludePoles,
det.bbDetailLevel,
det.bbDimension );
billboardDetails[i]->update();
}
}
void TSShape::initMaterialList()
{
S32 numSubShapes = subShapeFirstObject.size();
#if defined(TORQUE_MAX_LIB)
subShapeFirstTranslucentObject.setSize(numSubShapes);
#endif
mHasSkinMesh = false;
S32 i,j,k;
// for each subshape, find the first translucent object
// also, while we're at it, set mHasTranslucency
for (S32 ss = 0; ss<numSubShapes; ss++)
{
S32 start = subShapeFirstObject[ss];
S32 end = subShapeNumObjects[ss];
subShapeFirstTranslucentObject[ss] = end;
for (i=start; i<end; i++)
{
// check to see if this object has translucency
Object & obj = objects[i];
for (j=0; j<obj.numMeshes; j++)
{
TSMesh * mesh = meshes[obj.startMeshIndex+j];
if (!mesh)
continue;
mHasSkinMesh |= mesh->getMeshType() == TSMesh::SkinMeshType;
for (k=0; k<mesh->primitives.size(); k++)
{
if (mesh->primitives[k].matIndex & TSDrawPrimitive::NoMaterial)
continue;
S32 flags = materialList->getFlags(mesh->primitives[k].matIndex & TSDrawPrimitive::MaterialMask);
if (flags & TSMaterialList::AuxiliaryMap)
continue;
if (flags & TSMaterialList::Translucent)
{
mFlags |= HasTranslucency;
subShapeFirstTranslucentObject[ss] = i;
break;
}
}
if (k!=mesh->primitives.size())
break;
}
if (j!=obj.numMeshes)
break;
}
if (i!=end)
break;
}
}
bool TSShape::preloadMaterialList(const Torque::Path &path)
{
if (materialList)
materialList->setTextureLookupPath(path.getPath());
return true;
}
bool TSShape::buildConvexHull(S32 dl) const
{
AssertFatal(dl>=0 && dl<details.size(),"TSShape::buildConvexHull: detail out of range");
bool ok = true;
const Detail & detail = details[dl];
S32 ss = detail.subShapeNum;
S32 od = detail.objectDetailNum;
S32 start = subShapeFirstObject[ss];
S32 end = subShapeNumObjects[ss];
for (S32 i=start; i<end; i++)
{
TSMesh * mesh = meshes[objects[i].startMeshIndex+od];
if (!mesh)
continue;
ok &= mesh->buildConvexHull();
}
return ok;
}
Vector<MatrixF> gTempNodeTransforms(__FILE__, __LINE__);
void TSShape::computeBounds(S32 dl, Box3F & bounds) const
{
// if dl==-1, nothing to do
if (dl==-1)
return;
AssertFatal(dl>=0 && dl<details.size(),"TSShapeInstance::computeBounds");
// get subshape and object detail
const TSDetail * detail = &details[dl];
S32 ss = detail->subShapeNum;
S32 od = detail->objectDetailNum;
// If we have no subshapes then there is
// no valid bounds for this detail level.
if ( ss < 0 )
return;
// set up temporary storage for non-local transforms...
S32 i;
S32 start = subShapeFirstNode[ss];
S32 end = subShapeNumNodes[ss] + start;
gTempNodeTransforms.setSize(end-start);
for (i=start; i<end; i++)
{
MatrixF mat;
QuatF q;
TSTransform::setMatrix(defaultRotations[i].getQuatF(&q),defaultTranslations[i],&mat);
if (nodes[i].parentIndex>=0)
gTempNodeTransforms[i-start].mul(gTempNodeTransforms[nodes[i].parentIndex-start],mat);
else
gTempNodeTransforms[i-start] = mat;
}
// run through objects and updating bounds as we go
bounds.minExtents.set( 10E30f, 10E30f, 10E30f);
bounds.maxExtents.set(-10E30f,-10E30f,-10E30f);
Box3F box;
start = subShapeFirstObject[ss];
end = subShapeNumObjects[ss] + start;
for (i=start; i<end; i++)
{
const Object * object = &objects[i];
TSMesh * mesh = od<object->numMeshes ? meshes[object->startMeshIndex+od] : NULL;
if (mesh)
{
static MatrixF idMat(true);
if (object->nodeIndex<0)
mesh->computeBounds(idMat,box);
else
mesh->computeBounds(gTempNodeTransforms[object->nodeIndex-start],box);
bounds.minExtents.setMin(box.minExtents);
bounds.maxExtents.setMax(box.maxExtents);
}
}
}
TSShapeAlloc TSShape::smTSAlloc;
#define tsalloc TSShape::smTSAlloc
// messy stuff: check to see if we should "skip" meshNum
// this assumes that meshes for a given object are in a row
// skipDL is the lowest detail number we keep (i.e., the # of details we skip)
bool TSShape::checkSkip(S32 meshNum, S32 & curObject, S32 skipDL)
{
if (skipDL==0)
// easy out...
return false;
// skip detail level exists on this subShape
S32 skipSS = details[skipDL].subShapeNum;
if (curObject<objects.size())
{
S32 start = objects[curObject].startMeshIndex;
if (meshNum>=start)
{
// we are either from this object, the next object, or a decal
if (meshNum < start + objects[curObject].numMeshes)
{
// this object...
if (subShapeFirstObject[skipSS]>curObject)
// haven't reached this subshape yet
return true;
if (skipSS+1==subShapeFirstObject.size() || curObject<subShapeFirstObject[skipSS+1])
// curObject is on subshape of skip detail...make sure it's after skipDL
return (meshNum-start<details[skipDL].objectDetailNum);
// if we get here, then curObject occurs on subShape after skip detail (so keep it)
return false;
}
else
// advance object, try again
return checkSkip(meshNum,++curObject,skipDL);
}
}
AssertFatal(0,"TSShape::checkSkip: assertion failed");
return false;
}
void TSShape::assembleShape()
{
S32 i,j;
// get counts...
S32 numNodes = tsalloc.get32();
S32 numObjects = tsalloc.get32();
S32 numDecals = tsalloc.get32();
S32 numSubShapes = tsalloc.get32();
S32 numIflMaterials = tsalloc.get32();
S32 numNodeRots;
S32 numNodeTrans;
S32 numNodeUniformScales;
S32 numNodeAlignedScales;
S32 numNodeArbitraryScales;
if (smReadVersion<22)
{
numNodeRots = numNodeTrans = tsalloc.get32() - numNodes;
numNodeUniformScales = numNodeAlignedScales = numNodeArbitraryScales = 0;
}
else
{
numNodeRots = tsalloc.get32();
numNodeTrans = tsalloc.get32();
numNodeUniformScales = tsalloc.get32();
numNodeAlignedScales = tsalloc.get32();
numNodeArbitraryScales = tsalloc.get32();
}
S32 numGroundFrames = 0;
if (smReadVersion>23)
numGroundFrames = tsalloc.get32();
S32 numObjectStates = tsalloc.get32();
S32 numDecalStates = tsalloc.get32();
S32 numTriggers = tsalloc.get32();
S32 numDetails = tsalloc.get32();
S32 numMeshes = tsalloc.get32();
S32 numSkins = 0;
if (smReadVersion<23)
// in later versions, skins are kept with other meshes
numSkins = tsalloc.get32();
S32 numNames = tsalloc.get32();
// Note that we are recalculating these values later on for safety.
mSmallestVisibleSize = (F32)tsalloc.get32();
mSmallestVisibleDL = tsalloc.get32();
tsalloc.checkGuard();
// get bounds...
tsalloc.get32((S32*)&radius,1);
tsalloc.get32((S32*)&tubeRadius,1);
tsalloc.get32((S32*)&center,3);
tsalloc.get32((S32*)&bounds,6);
tsalloc.checkGuard();
// copy various vectors...
S32 * ptr32 = tsalloc.copyToShape32(numNodes*5);
nodes.set(ptr32,numNodes);
tsalloc.checkGuard();
ptr32 = tsalloc.copyToShape32(numObjects*6,true);
if (!ptr32)
ptr32 = tsalloc.allocShape32(numSkins*6); // pre v23 shapes store skins and meshes separately...no longer
else
tsalloc.allocShape32(numSkins*6);
objects.set(ptr32,numObjects);
tsalloc.checkGuard();
// DEPRECATED decals
ptr32 = tsalloc.getPointer32(numDecals*5);
tsalloc.checkGuard();
// DEPRECATED ifl materials
ptr32 = tsalloc.copyToShape32(numIflMaterials*5);
tsalloc.checkGuard();
ptr32 = tsalloc.copyToShape32(numSubShapes,true);
subShapeFirstNode.set(ptr32,numSubShapes);
ptr32 = tsalloc.copyToShape32(numSubShapes,true);
subShapeFirstObject.set(ptr32,numSubShapes);
// DEPRECATED subShapeFirstDecal
ptr32 = tsalloc.getPointer32(numSubShapes);
tsalloc.checkGuard();
ptr32 = tsalloc.copyToShape32(numSubShapes);
subShapeNumNodes.set(ptr32,numSubShapes);
ptr32 = tsalloc.copyToShape32(numSubShapes);
subShapeNumObjects.set(ptr32,numSubShapes);
// DEPRECATED subShapeNumDecals
ptr32 = tsalloc.getPointer32(numSubShapes);
tsalloc.checkGuard();
ptr32 = tsalloc.allocShape32(numSubShapes);
subShapeFirstTranslucentObject.set(ptr32,numSubShapes);
// get default translation and rotation
S16 * ptr16 = tsalloc.allocShape16(0);
for (i=0;i<numNodes;i++)
tsalloc.copyToShape16(4);
defaultRotations.set(ptr16,numNodes);
tsalloc.align32();
ptr32 = tsalloc.allocShape32(0);
for (i=0;i<numNodes;i++)
{
tsalloc.copyToShape32(3);
tsalloc.copyToShape32(sizeof(Point3F)-12); // handle alignment issues w/ point3f
}
defaultTranslations.set(ptr32,numNodes);
// get any node sequence data stored in shape
nodeTranslations.setSize(numNodeTrans);
for (i=0;i<numNodeTrans;i++)
tsalloc.get32((S32*)&nodeTranslations[i],3);
nodeRotations.setSize(numNodeRots);
for (i=0;i<numNodeRots;i++)
tsalloc.get16((S16*)&nodeRotations[i],4);
tsalloc.align32();
tsalloc.checkGuard();
if (smReadVersion>21)
{
// more node sequence data...scale
nodeUniformScales.setSize(numNodeUniformScales);
for (i=0;i<numNodeUniformScales;i++)
tsalloc.get32((S32*)&nodeUniformScales[i],1);
nodeAlignedScales.setSize(numNodeAlignedScales);
for (i=0;i<numNodeAlignedScales;i++)
tsalloc.get32((S32*)&nodeAlignedScales[i],3);
nodeArbitraryScaleFactors.setSize(numNodeArbitraryScales);
for (i=0;i<numNodeArbitraryScales;i++)
tsalloc.get32((S32*)&nodeArbitraryScaleFactors[i],3);
nodeArbitraryScaleRots.setSize(numNodeArbitraryScales);
for (i=0;i<numNodeArbitraryScales;i++)
tsalloc.get16((S16*)&nodeArbitraryScaleRots[i],4);
tsalloc.align32();
tsalloc.checkGuard();
}
// old shapes need ground transforms moved to ground arrays...but only do it once
if (smReadVersion<22 && tsalloc.allocShape32(0))
{
for (i=0; i<sequences.size(); i++)
{
// move ground transform data to ground vectors
Sequence & seq = sequences[i];
S32 oldSz = groundTranslations.size();
groundTranslations.setSize(oldSz+seq.numGroundFrames);
groundRotations.setSize(oldSz+seq.numGroundFrames);
for (S32 j=0;j<seq.numGroundFrames;j++)
{
groundTranslations[j+oldSz] = nodeTranslations[seq.firstGroundFrame+j-numNodes];
groundRotations[j+oldSz] = nodeRotations[seq.firstGroundFrame+j-numNodes];
}
seq.firstGroundFrame = oldSz;
seq.baseTranslation -= numNodes;
seq.baseRotation -= numNodes;
seq.baseScale = 0; // not used on older shapes...but keep it clean
}
}
// version 22 & 23 shapes accidentally had no ground transforms, and ground for
// earlier shapes is handled just above, so...
if (smReadVersion>23)
{
groundTranslations.setSize(numGroundFrames);
for (i=0;i<numGroundFrames;i++)
tsalloc.get32((S32*)&groundTranslations[i],3);
groundRotations.setSize(numGroundFrames);
for (i=0;i<numGroundFrames;i++)
tsalloc.get16((S16*)&groundRotations[i],4);
tsalloc.align32();
tsalloc.checkGuard();
}
// object states
ptr32 = tsalloc.copyToShape32(numObjectStates*3);
objectStates.set(ptr32,numObjectStates);
tsalloc.allocShape32(numSkins*3); // provide buffer after objectStates for older shapes
tsalloc.checkGuard();
// DEPRECATED decal states
ptr32 = tsalloc.getPointer32(numDecalStates);
tsalloc.checkGuard();
// frame triggers
ptr32 = tsalloc.getPointer32(numTriggers*2);
triggers.setSize(numTriggers);
dMemcpy(triggers.address(),ptr32,sizeof(S32)*numTriggers*2);
tsalloc.checkGuard();
// details
if ( smReadVersion >= 26 )
{
U32 alignedSize32 = sizeof( Detail ) / 4;
ptr32 = tsalloc.copyToShape32( numDetails * alignedSize32, true );
details.set( ptr32, numDetails );
}
else
{
// Previous to version 26 the Detail structure
// only contained the first 7 values...
//
// struct Detail
// {
// S32 nameIndex;
// S32 subShapeNum;
// S32 objectDetailNum;
// F32 size;
// F32 averageError;
// F32 maxError;
// S32 polyCount;
// };
//
// In the code below we're reading just these 7 values and
// copying them to the new larger structure.
ptr32 = tsalloc.copyToShape32( numDetails * 7, true );
details.setSize( numDetails );
for ( U32 i = 0; i < details.size(); i++, ptr32 += 7 )
{
Detail *det = &(details[i]);
// Clear the struct... we don't want to leave
// garbage in the parts that are unfilled.
U32 alignedSize32 = sizeof( Detail );
dMemset( det, 0, alignedSize32 );
// Copy the old struct values over.
dMemcpy( det, ptr32, 7 * 4 );
// If this is an autobillboard then we need to
// fill in the new part of the struct.
if ( det->subShapeNum >= 0 )
continue;
S32 lastDetailOpts = det->objectDetailNum;
det->bbEquatorSteps = lastDetailOpts & 0x7F; // bits 0..6
det->bbPolarSteps = (lastDetailOpts >> 7) & 0x3F; // bits 7..12
det->bbPolarAngle = 0.5f * M_PI_F * (1.0f/64.0f) * (F32) (( lastDetailOpts >>13 ) & 0x3F); // bits 13..18
det->bbDetailLevel = (lastDetailOpts >> 19) & 0x0F; // 19..22
det->bbDimension = (lastDetailOpts >> 23) & 0xFF; // 23..30
det->bbIncludePoles = (lastDetailOpts & 0x80000000)!=0; // bit 31
}
}
// Some DTS exporters (MAX - I'm looking at you!) write garbage into the
// averageError and maxError values which stops LOD from working correctly.
// Try to detect and fix it
for ( U32 i = 0; i < details.size(); i++ )
{
if ( ( details[i].averageError == 0 ) || ( details[i].averageError > 10000 ) ||
( details[i].maxError == 0 ) || ( details[i].maxError > 10000 ) )
{
details[i].averageError = details[i].maxError = -1.0f;
}
}
// We don't trust the value of mSmallestVisibleDL loaded from the dts
// since some legacy meshes seem to have the wrong value. Recalculate it
// now that we have the details loaded.
updateSmallestVisibleDL();
S32 skipDL = getMin(mSmallestVisibleDL,smNumSkipLoadDetails);
if (skipDL < 0)
skipDL = 0;
tsalloc.checkGuard();
// about to read in the meshes...first must allocate some scratch space
S32 scratchSize = getMax(numSkins,numMeshes);
TSMesh::smVertsList.setSize(scratchSize);
TSMesh::smTVertsList.setSize(scratchSize);
if ( smReadVersion >= 26 )
{
TSMesh::smTVerts2List.setSize(scratchSize);
TSMesh::smColorsList.setSize(scratchSize);
}
TSMesh::smNormsList.setSize(scratchSize);
TSMesh::smEncodedNormsList.setSize(scratchSize);
TSMesh::smDataCopied.setSize(scratchSize);
TSSkinMesh::smInitTransformList.setSize(scratchSize);
TSSkinMesh::smVertexIndexList.setSize(scratchSize);
TSSkinMesh::smBoneIndexList.setSize(scratchSize);
TSSkinMesh::smWeightList.setSize(scratchSize);
TSSkinMesh::smNodeIndexList.setSize(scratchSize);
for (i=0; i<numMeshes; i++)
{
TSMesh::smVertsList[i]=NULL;
TSMesh::smTVertsList[i]=NULL;
if ( smReadVersion >= 26 )
{
TSMesh::smTVerts2List[i] = NULL;
TSMesh::smColorsList[i] = NULL;
}
TSMesh::smNormsList[i]=NULL;
TSMesh::smEncodedNormsList[i]=NULL;
TSMesh::smDataCopied[i]=false;
TSSkinMesh::smInitTransformList[i] = NULL;
TSSkinMesh::smVertexIndexList[i] = NULL;
TSSkinMesh::smBoneIndexList[i] = NULL;
TSSkinMesh::smWeightList[i] = NULL;
TSSkinMesh::smNodeIndexList[i] = NULL;
}
// read in the meshes (sans skins)...straightforward read one at a time
ptr32 = tsalloc.allocShape32(numMeshes + numSkins*numDetails); // leave room for skins on old shapes
S32 curObject = 0; // for tracking skipped meshes
for (i=0; i<numMeshes; i++)
{
bool skip = checkSkip(i,curObject,skipDL); // skip this mesh?
S32 meshType = tsalloc.get32();
if (meshType == TSMesh::DecalMeshType)
// decal mesh deprecated
skip = true;
TSMesh * mesh = TSMesh::assembleMesh(meshType,skip);
if (ptr32)
{
ptr32[i] = skip ? 0 : (S32)mesh;
meshes.push_back(skip ? 0 : mesh);
}
// fill in location of verts, tverts, and normals for detail levels
if (mesh && meshType!=TSMesh::DecalMeshType)
{
TSMesh::smVertsList[i] = mesh->verts.address();
TSMesh::smTVertsList[i] = mesh->tverts.address();
if (smReadVersion >= 26)
{
TSMesh::smTVerts2List[i] = mesh->tverts2.address();
TSMesh::smColorsList[i] = mesh->colors.address();
}
TSMesh::smNormsList[i] = mesh->norms.address();
TSMesh::smEncodedNormsList[i] = mesh->encodedNorms.address();
TSMesh::smDataCopied[i] = !skip; // as long as we didn't skip this mesh, the data should be in shape now
if (meshType==TSMesh::SkinMeshType)
{
TSSkinMesh * skin = (TSSkinMesh*)mesh;
TSMesh::smVertsList[i] = skin->batchData.initialVerts.address();
TSMesh::smNormsList[i] = skin->batchData.initialNorms.address();
TSSkinMesh::smInitTransformList[i] = skin->batchData.initialTransforms.address();
TSSkinMesh::smVertexIndexList[i] = skin->vertexIndex.address();
TSSkinMesh::smBoneIndexList[i] = skin->boneIndex.address();
TSSkinMesh::smWeightList[i] = skin->weight.address();
TSSkinMesh::smNodeIndexList[i] = skin->batchData.nodeIndex.address();
}
}
}
tsalloc.checkGuard();
// names
char * nameBufferStart = (char*)tsalloc.getPointer8(0);
char * name = nameBufferStart;
S32 nameBufferSize = 0;
names.setSize(numNames);
for (i=0; i<numNames; i++)
{
for (j=0; name[j]; j++)
;
names[i] = name;
nameBufferSize += j + 1;
name += j + 1;
}
tsalloc.getPointer8(nameBufferSize);
tsalloc.align32();
tsalloc.checkGuard();
if (smReadVersion<23)
{
// get detail information about skins...
S32 * detFirstSkin = tsalloc.getPointer32(numDetails);
S32 * detailNumSkins = tsalloc.getPointer32(numDetails);
tsalloc.checkGuard();
// about to read in skins...clear out scratch space...
if (numSkins)
{
TSSkinMesh::smInitTransformList.setSize(numSkins);
TSSkinMesh::smVertexIndexList.setSize(numSkins);
TSSkinMesh::smBoneIndexList.setSize(numSkins);
TSSkinMesh::smWeightList.setSize(numSkins);
TSSkinMesh::smNodeIndexList.setSize(numSkins);
}
for (i=0; i<numSkins; i++)
{
TSMesh::smVertsList[i]=NULL;
TSMesh::smTVertsList[i]=NULL;
TSMesh::smNormsList[i]=NULL;
TSMesh::smEncodedNormsList[i]=NULL;
TSMesh::smDataCopied[i]=false;
TSSkinMesh::smInitTransformList[i] = NULL;
TSSkinMesh::smVertexIndexList[i] = NULL;
TSSkinMesh::smBoneIndexList[i] = NULL;
TSSkinMesh::smWeightList[i] = NULL;
TSSkinMesh::smNodeIndexList[i] = NULL;
}
// skins
ptr32 = tsalloc.allocShape32(numSkins);
for (i=0; i<numSkins; i++)
{
bool skip = i<detFirstSkin[skipDL];
TSSkinMesh * skin = (TSSkinMesh*)TSMesh::assembleMesh(TSMesh::SkinMeshType,skip);
if (meshes.address())
{
// add pointer to skin in shapes list of meshes
// we reserved room for this above...
meshes.set(meshes.address(),meshes.size()+1);
meshes[meshes.size()-1] = skip ? NULL : skin;
}
// fill in location of verts, tverts, and normals for shared detail levels
if (skin)
{
TSMesh::smVertsList[i] = skin->batchData.initialVerts.address();
TSMesh::smTVertsList[i] = skin->tverts.address();
TSMesh::smNormsList[i] = skin->batchData.initialNorms.address();
TSMesh::smEncodedNormsList[i] = skin->encodedNorms.address();
TSMesh::smDataCopied[i] = !skip; // as long as we didn't skip this mesh, the data should be in shape now
TSSkinMesh::smInitTransformList[i] = skin->batchData.initialTransforms.address();
TSSkinMesh::smVertexIndexList[i] = skin->vertexIndex.address();
TSSkinMesh::smBoneIndexList[i] = skin->boneIndex.address();
TSSkinMesh::smWeightList[i] = skin->weight.address();
TSSkinMesh::smNodeIndexList[i] = skin->batchData.nodeIndex.address();
}
}
tsalloc.checkGuard();
// we now have skins in mesh list...add skin objects to object list and patch things up
fixupOldSkins(numMeshes,numSkins,numDetails,detFirstSkin,detailNumSkins);
}
// allocate storage space for some arrays (filled in during Shape::init)...
ptr32 = tsalloc.allocShape32(numDetails);
alphaIn.set(ptr32,numDetails);
ptr32 = tsalloc.allocShape32(numDetails);
alphaOut.set(ptr32,numDetails);
}
void TSShape::disassembleShape()
{
S32 i;
// set counts...
S32 numNodes = tsalloc.set32(nodes.size());
S32 numObjects = tsalloc.set32(objects.size());
tsalloc.set32(0); // DEPRECATED decals
S32 numSubShapes = tsalloc.set32(subShapeFirstNode.size());
tsalloc.set32(0); // DEPRECATED ifl materials
S32 numNodeRotations = tsalloc.set32(nodeRotations.size());
S32 numNodeTranslations = tsalloc.set32(nodeTranslations.size());
S32 numNodeUniformScales = tsalloc.set32(nodeUniformScales.size());
S32 numNodeAlignedScales = tsalloc.set32(nodeAlignedScales.size());
S32 numNodeArbitraryScales = tsalloc.set32(nodeArbitraryScaleFactors.size());
S32 numGroundFrames = tsalloc.set32(groundTranslations.size());
S32 numObjectStates = tsalloc.set32(objectStates.size());
tsalloc.set32(0); // DEPRECATED decals
S32 numTriggers = tsalloc.set32(triggers.size());
S32 numDetails = tsalloc.set32(details.size());
S32 numMeshes = tsalloc.set32(meshes.size());
S32 numNames = tsalloc.set32(names.size());
tsalloc.set32((S32)mSmallestVisibleSize);
tsalloc.set32(mSmallestVisibleDL);
tsalloc.setGuard();
// get bounds...
tsalloc.copyToBuffer32((S32*)&radius,1);
tsalloc.copyToBuffer32((S32*)&tubeRadius,1);
tsalloc.copyToBuffer32((S32*)&center,3);
tsalloc.copyToBuffer32((S32*)&bounds,6);
tsalloc.setGuard();
// copy various vectors...
tsalloc.copyToBuffer32((S32*)nodes.address(),numNodes*5);
tsalloc.setGuard();
tsalloc.copyToBuffer32((S32*)objects.address(),numObjects*6);
tsalloc.setGuard();
// DEPRECATED: no copy decals
tsalloc.setGuard();
tsalloc.copyToBuffer32(0,0); // DEPRECATED: ifl materials!
tsalloc.setGuard();
tsalloc.copyToBuffer32((S32*)subShapeFirstNode.address(),numSubShapes);
tsalloc.copyToBuffer32((S32*)subShapeFirstObject.address(),numSubShapes);
tsalloc.copyToBuffer32(0, numSubShapes); // DEPRECATED: no copy subShapeFirstDecal
tsalloc.setGuard();
tsalloc.copyToBuffer32((S32*)subShapeNumNodes.address(),numSubShapes);
tsalloc.copyToBuffer32((S32*)subShapeNumObjects.address(),numSubShapes);
tsalloc.copyToBuffer32(0, numSubShapes); // DEPRECATED: no copy subShapeNumDecals
tsalloc.setGuard();
// default transforms...
tsalloc.copyToBuffer16((S16*)defaultRotations.address(),numNodes*4);
tsalloc.copyToBuffer32((S32*)defaultTranslations.address(),numNodes*3);
// animated transforms...
tsalloc.copyToBuffer16((S16*)nodeRotations.address(),numNodeRotations*4);
tsalloc.copyToBuffer32((S32*)nodeTranslations.address(),numNodeTranslations*3);
tsalloc.setGuard();
// ...with scale
tsalloc.copyToBuffer32((S32*)nodeUniformScales.address(),numNodeUniformScales);
tsalloc.copyToBuffer32((S32*)nodeAlignedScales.address(),numNodeAlignedScales*3);
tsalloc.copyToBuffer32((S32*)nodeArbitraryScaleFactors.address(),numNodeArbitraryScales*3);
tsalloc.copyToBuffer16((S16*)nodeArbitraryScaleRots.address(),numNodeArbitraryScales*4);
tsalloc.setGuard();
tsalloc.copyToBuffer32((S32*)groundTranslations.address(),3*numGroundFrames);
tsalloc.copyToBuffer16((S16*)groundRotations.address(),4*numGroundFrames);
tsalloc.setGuard();
// object states..
tsalloc.copyToBuffer32((S32*)objectStates.address(),numObjectStates*3);
tsalloc.setGuard();
// decal states...
// DEPRECATED (numDecalStates = 0)
tsalloc.setGuard();
// frame triggers
tsalloc.copyToBuffer32((S32*)triggers.address(),numTriggers*2);
tsalloc.setGuard();
// details
if (TSShape::smVersion > 25)
{
U32 alignedSize32 = sizeof( Detail ) / 4;
tsalloc.copyToBuffer32((S32*)details.address(),numDetails * alignedSize32 );
}
else
{
// Legacy details => no explicit autobillboard parameters
U32 legacyDetailSize32 = 7; // only store the first 7 4-byte values of each detail
for ( S32 i = 0; i < details.size(); i++ )
tsalloc.copyToBuffer32( (S32*)&details[i], legacyDetailSize32 );
}
tsalloc.setGuard();
// read in the meshes (sans skins)...
bool * isMesh = new bool[numMeshes]; // funny business because decals are pretend meshes (legacy issue)
for (i=0;i<numMeshes;i++)
isMesh[i]=false;
for (i=0; i<objects.size(); i++)
{
for (S32 j=0; j<objects[i].numMeshes; j++)
// even if an empty mesh, it's a mesh...
isMesh[objects[i].startMeshIndex+j]=true;
}
for (i=0; i<numMeshes; i++)
{
TSMesh * mesh = NULL;
// decal mesh deprecated
if (isMesh[i])
mesh = meshes[i];
tsalloc.set32( (mesh && mesh->getMeshType() != TSMesh::DecalMeshType) ? mesh->getMeshType() : TSMesh::NullMeshType);
if (mesh)
mesh->disassemble();
}
delete [] isMesh;
tsalloc.setGuard();
// names
for (i=0; i<numNames; i++)
tsalloc.copyToBuffer8((S8 *)(names[i].c_str()),names[i].length()+1);
tsalloc.setGuard();
}
//-------------------------------------------------
// write whole shape
//-------------------------------------------------
/** Determine whether we can write this shape in TSTPRO compatible format */
bool TSShape::canWriteOldFormat() const
{
// Cannot use old format if using autobillboard details
for (S32 i = 0; i < details.size(); i++)
{
if (details[i].subShapeNum < 0)
return false;
}
for (S32 i = 0; i < meshes.size(); i++)
{
if (!meshes[i])
continue;
// Cannot use old format if using the new functionality (COLORs, 2nd UV set)
if (meshes[i]->tverts2.size() || meshes[i]->colors.size())
return false;
// Cannot use old format if any primitive has too many triangles
// (ie. cannot fit in a S16)
for (S32 j = 0; j < meshes[i]->primitives.size(); j++)
{
if ((meshes[i]->primitives[j].start +
meshes[i]->primitives[j].numElements) >= (1 << 15))
{
return false;
}
}
}
return true;
}
void TSShape::write(Stream * s, bool saveOldFormat)
{
S32 currentVersion = smVersion;
if (saveOldFormat)
smVersion = 24;
// write version
s->write(smVersion | (mExporterVersion<<16));
tsalloc.setWrite();
disassembleShape();
S32 * buffer32 = tsalloc.getBuffer32();
S16 * buffer16 = tsalloc.getBuffer16();
S8 * buffer8 = tsalloc.getBuffer8();
S32 size32 = tsalloc.getBufferSize32();
S32 size16 = tsalloc.getBufferSize16();
S32 size8 = tsalloc.getBufferSize8();
// convert sizes to dwords...
if (size16 & 1)
size16 += 2;
size16 >>= 1;
if (size8 & 3)
size8 += 4;
size8 >>= 2;
S32 sizeMemBuffer, start16, start8;
sizeMemBuffer = size32 + size16 + size8;
start16 = size32;
start8 = start16+size16;
// in dwords -- write will properly endian-flip.
s->write(sizeMemBuffer);
s->write(start16);
s->write(start8);
// endian-flip the entire write buffers.
fixEndian(buffer32,buffer16,buffer8,size32,size16,size8);
// now write buffers
s->write(size32*4,buffer32);
s->write(size16*4,buffer16);
s->write(size8 *4,buffer8);
// write sequences - write will properly endian-flip.
s->write(sequences.size());
for (S32 i=0; i<sequences.size(); i++)
sequences[i].write(s);
// write material list - write will properly endian-flip.
materialList->write(*s);
delete [] buffer32;
delete [] buffer16;
delete [] buffer8;
smVersion = currentVersion;
}
//-------------------------------------------------
// read whole shape
//-------------------------------------------------
bool TSShape::read(Stream * s)
{
// read version - read handles endian-flip
s->read(&smReadVersion);
mExporterVersion = smReadVersion >> 16;
smReadVersion &= 0xFF;
if (smReadVersion>smVersion)
{
// error -- don't support future versions yet :>
Con::errorf(ConsoleLogEntry::General,
"Error: attempt to load a version %i dts-shape, can currently only load version %i and before.",
smReadVersion,smVersion);
return false;
}
mReadVersion = smReadVersion;
S32 * memBuffer32;
S16 * memBuffer16;
S8 * memBuffer8;
S32 count32, count16, count8;
if (mReadVersion<19)
{
Con::errorf("... Shape with old version.");
return false;
}
else
{
S32 i;
U32 sizeMemBuffer, startU16, startU8;
// in dwords. - read handles endian-flip
s->read(&sizeMemBuffer);
s->read(&startU16);
s->read(&startU8);
if (s->getStatus()!=Stream::Ok)
{
Con::errorf(ConsoleLogEntry::General, "Error: bad shape file.");
return false;
}
S32 * tmp = new S32[sizeMemBuffer];
s->read(sizeof(S32)*sizeMemBuffer,(U8*)tmp);
memBuffer32 = tmp;
memBuffer16 = (S16*)(tmp+startU16);
memBuffer8 = (S8*)(tmp+startU8);
count32 = startU16;
count16 = startU8-startU16;
count8 = sizeMemBuffer-startU8;
// read sequences
S32 numSequences;
s->read(&numSequences);
sequences.setSize(numSequences);
for (i=0; i<numSequences; i++)
{
sequences[i].read(s);
// Store initial (empty) source data
sequences[i].sourceData.total = sequences[i].numKeyframes;
sequences[i].sourceData.end = sequences[i].sourceData.total - 1;
}
// read material list
delete materialList; // just in case...
materialList = new TSMaterialList;
materialList->read(*s);
}
// since we read in the buffers, we need to endian-flip their entire contents...
fixEndian(memBuffer32,memBuffer16,memBuffer8,count32,count16,count8);
tsalloc.setRead(memBuffer32,memBuffer16,memBuffer8,true);
assembleShape(); // determine size of buffer needed
mShapeDataSize = tsalloc.getSize();
tsalloc.doAlloc();
mShapeData = tsalloc.getBuffer();
tsalloc.setRead(memBuffer32,memBuffer16,memBuffer8,false);
assembleShape(); // copy to buffer
AssertFatal(tsalloc.getSize()==mShapeDataSize,"TSShape::read: shape data buffer size mis-calculated");
delete [] memBuffer32;
if (smInitOnRead)
init();
//if (names.size() == 3 && dStricmp(names[2], "Box") == 0)
//{
// Con::errorf("\nnodes.set(dMalloc(%d * sizeof(Node)), %d);", nodes.size(), nodes.size());
// for (U32 i = 0; i < nodes.size(); i++)
// {
// Node& obj = nodes[i];
// Con::errorf(" nodes[%d].nameIndex = %d;", i, obj.nameIndex);
// Con::errorf(" nodes[%d].parentIndex = %d;", i, obj.parentIndex);
// Con::errorf(" nodes[%d].firstObject = %d;", i, obj.firstObject);
// Con::errorf(" nodes[%d].firstChild = %d;", i, obj.firstChild);
// Con::errorf(" nodes[%d].nextSibling = %d;", i, obj.nextSibling);
// }
// Con::errorf("\nobjects.set(dMalloc(%d * sizeof(Object)), %d);", objects.size(), objects.size());
// for (U32 i = 0; i < objects.size(); i++)
// {
// Object& obj = objects[i];
// Con::errorf(" objects[%d].nameIndex = %d;", i, obj.nameIndex);
// Con::errorf(" objects[%d].numMeshes = %d;", i, obj.numMeshes);
// Con::errorf(" objects[%d].startMeshIndex = %d;", i, obj.startMeshIndex);
// Con::errorf(" objects[%d].nodeIndex = %d;", i, obj.nodeIndex);
// Con::errorf(" objects[%d].nextSibling = %d;", i, obj.nextSibling);
// Con::errorf(" objects[%d].firstDecal = %d;", i, obj.firstDecal);
// }
// Con::errorf("\nobjectStates.set(dMalloc(%d * sizeof(ObjectState)), %d);", objectStates.size(), objectStates.size());
// for (U32 i = 0; i < objectStates.size(); i++)
// {
// ObjectState& obj = objectStates[i];
// Con::errorf(" objectStates[%d].vis = %g;", i, obj.vis);
// Con::errorf(" objectStates[%d].frameIndex = %d;", i, obj.frameIndex);
// Con::errorf(" objectStates[%d].matFrameIndex = %d;", i, obj.matFrameIndex);
// }
// Con::errorf("\nsubShapeFirstNode.set(dMalloc(%d * sizeof(S32)), %d);", subShapeFirstNode.size(), subShapeFirstNode.size());
// for (U32 i = 0; i < subShapeFirstNode.size(); i++)
// Con::errorf(" subShapeFirstNode[%d] = %d;", i, subShapeFirstNode[i]);
// Con::errorf("\nsubShapeFirstObject.set(dMalloc(%d * sizeof(S32)), %d);", subShapeFirstObject.size(), subShapeFirstObject.size());
// for (U32 i = 0; i < subShapeFirstObject.size(); i++)
// Con::errorf(" subShapeFirstObject[%d] = %d;", i, subShapeFirstObject[i]);
// //Con::errorf("numDetailFirstSkins = %d", detailFirstSkin.size());
// Con::errorf("\nsubShapeNumNodes.set(dMalloc(%d * sizeof(S32)), %d);", subShapeNumNodes.size(), subShapeNumNodes.size());
// for (U32 i = 0; i < subShapeNumNodes.size(); i++)
// Con::errorf(" subShapeNumNodes[%d] = %d;", i, subShapeNumNodes[i]);
// Con::errorf("\nsubShapeNumObjects.set(dMalloc(%d * sizeof(S32)), %d);", subShapeNumObjects.size(), subShapeNumObjects.size());
// for (U32 i = 0; i < subShapeNumObjects.size(); i++)
// Con::errorf(" subShapeNumObjects[%d] = %d;", i, subShapeNumObjects[i]);
// Con::errorf("\ndetails.set(dMalloc(%d * sizeof(Detail)), %d);", details.size(), details.size());
// for (U32 i = 0; i < details.size(); i++)
// {
// Detail& obj = details[i];
// Con::errorf(" details[%d].nameIndex = %d;", i, obj.nameIndex);
// Con::errorf(" details[%d].subShapeNum = %d;", i, obj.subShapeNum);
// Con::errorf(" details[%d].objectDetailNum = %d;", i, obj.objectDetailNum);
// Con::errorf(" details[%d].size = %g;", i, obj.size);
// Con::errorf(" details[%d].averageError = %g;", i, obj.averageError);
// Con::errorf(" details[%d].maxError = %g;", i, obj.maxError);
// Con::errorf(" details[%d].polyCount = %d;", i, obj.polyCount);
// }
// Con::errorf("\ndefaultRotations.set(dMalloc(%d * sizeof(Quat16)), %d);", defaultRotations.size(), defaultRotations.size());
// for (U32 i = 0; i < defaultRotations.size(); i++)
// {
// Con::errorf(" defaultRotations[%d].x = %g;", i, defaultRotations[i].x);
// Con::errorf(" defaultRotations[%d].y = %g;", i, defaultRotations[i].y);
// Con::errorf(" defaultRotations[%d].z = %g;", i, defaultRotations[i].z);
// Con::errorf(" defaultRotations[%d].w = %g;", i, defaultRotations[i].w);
// }
// Con::errorf("\ndefaultTranslations.set(dMalloc(%d * sizeof(Point3F)), %d);", defaultTranslations.size(), defaultTranslations.size());
// for (U32 i = 0; i < defaultTranslations.size(); i++)
// Con::errorf(" defaultTranslations[%d].set(%g, %g, %g);", i, defaultTranslations[i].x, defaultTranslations[i].y, defaultTranslations[i].z);
// Con::errorf("\nsubShapeFirstTranslucentObject.set(dMalloc(%d * sizeof(S32)), %d);", subShapeFirstTranslucentObject.size(), subShapeFirstTranslucentObject.size());
// for (U32 i = 0; i < subShapeFirstTranslucentObject.size(); i++)
// Con::errorf(" subShapeFirstTranslucentObject[%d] = %d;", i, subShapeFirstTranslucentObject[i]);
// Con::errorf("\nmeshes.set(dMalloc(%d * sizeof(TSMesh)), %d);", meshes.size(), meshes.size());
// for (U32 i = 0; i < meshes.size(); i++)
// {
// TSMesh* obj = meshes[i];
// if (obj)
// {
// Con::errorf(" meshes[%d]->meshType = %d;", i, obj->meshType);
// Con::errorf(" meshes[%d]->mBounds.minExtents.set(%g, %g, %g);", i, obj->mBounds.minExtents.x, obj->mBounds.minExtents.y, obj->mBounds.minExtents.z);
// Con::errorf(" meshes[%d]->mBounds.maxExtents.set(%g, %g, %g);", i, obj->mBounds.maxExtents.x, obj->mBounds.maxExtents.y, obj->mBounds.maxExtents.z);
// Con::errorf(" meshes[%d]->mCenter.set(%g, %g, %g);", i, obj->mCenter.x, obj->mCenter.y, obj->mCenter.z);
// Con::errorf(" meshes[%d]->mRadius = %g;", i, obj->mRadius);
// Con::errorf(" meshes[%d]->mVisibility = %g;", i, obj->mVisibility);
// Con::errorf(" meshes[%d]->mDynamic = %d;", i, obj->mDynamic);
// Con::errorf(" meshes[%d]->parentMesh = %d;", i, obj->parentMesh);
// Con::errorf(" meshes[%d]->numFrames = %d;", i, obj->numFrames);
// Con::errorf(" meshes[%d]->numMatFrames = %d;", i, obj->numMatFrames);
// Con::errorf(" meshes[%d]->vertsPerFrame = %d;", i, obj->vertsPerFrame);
// Con::errorf("\n meshes[%d]->verts.set(dMalloc(%d * sizeof(Point3F)), %d);", obj->verts.size(), obj->verts.size());
// for (U32 j = 0; j < obj->verts.size(); j++)
// Con::errorf(" meshes[%d]->verts[%d].set(%g, %g, %g);", i, j, obj->verts[j].x, obj->verts[j].y, obj->verts[j].z);
// Con::errorf("\n meshes[%d]->norms.set(dMalloc(%d * sizeof(Point3F)), %d);", obj->norms.size(), obj->norms.size());
// for (U32 j = 0; j < obj->norms.size(); j++)
// Con::errorf(" meshes[%d]->norms[%d].set(%g, %g, %g);", i, j, obj->norms[j].x, obj->norms[j].y, obj->norms[j].z);
// Con::errorf("\n meshes[%d]->tverts.set(dMalloc(%d * sizeof(Point2F)), %d);", obj->tverts.size(), obj->tverts.size());
// for (U32 j = 0; j < obj->tverts.size(); j++)
// Con::errorf(" meshes[%d]->tverts[%d].set(%g, %g);", i, j, obj->tverts[j].x, obj->tverts[j].y);
// Con::errorf("\n meshes[%d]->primitives.set(dMalloc(%d * sizeof(TSDrawPrimitive)), %d);", obj->primitives.size(), obj->primitives.size());
// for (U32 j = 0; j < obj->primitives.size(); j++)
// {
// TSDrawPrimitive& prim = obj->primitives[j];
// Con::errorf(" meshes[%d]->primitives[%d].start = %d;", i, j, prim.start);
// Con::errorf(" meshes[%d]->primitives[%d].numElements = %d;", i, j, prim.numElements);
// Con::errorf(" meshes[%d]->primitives[%d].matIndex = %d;", i, j, prim.matIndex);
// }
// Con::errorf("\n meshes[%d]->encodedNorms.set(dMalloc(%d * sizeof(U8)), %d);", obj->encodedNorms.size(), obj->encodedNorms.size());
// for (U32 j = 0; j < obj->encodedNorms.size(); j++)
// Con::errorf(" meshes[%d]->encodedNorms[%d] = %c;", i, j, obj->encodedNorms[j]);
// Con::errorf("\n meshes[%d]->indices.set(dMalloc(%d * sizeof(U16)), %d);", obj->indices.size(), obj->indices.size());
// for (U32 j = 0; j < obj->indices.size(); j++)
// Con::errorf(" meshes[%d]->indices[%d] = %d;", i, j, obj->indices[j]);
// Con::errorf("\n meshes[%d]->initialTangents.set(dMalloc(%d * sizeof(Point3F)), %d);", obj->initialTangents.size(), obj->initialTangents.size());
// for (U32 j = 0; j < obj->initialTangents.size(); j++)
// Con::errorf(" meshes[%d]->initialTangents[%d].set(%g, %g, %g);", i, j, obj->initialTangents[j].x, obj->initialTangents[j].y, obj->initialTangents[j].z);
// Con::errorf("\n meshes[%d]->tangents.set(dMalloc(%d * sizeof(Point4F)), %d);", obj->tangents.size(), obj->tangents.size());
// for (U32 j = 0; j < obj->tangents.size(); j++)
// Con::errorf(" meshes[%d]->tangents[%d].set(%g, %g, %g, %g);", i, j, obj->tangents[j].x, obj->tangents[j].y, obj->tangents[j].z, obj->tangents[j].w);
// Con::errorf(" meshes[%d]->billboardAxis.set(%g, %g, %g);", i, obj->billboardAxis.x, obj->billboardAxis.y, obj->billboardAxis.z);
// Con::errorf("\n meshes[%d]->planeNormals.set(dMalloc(%d * sizeof(Point3F)), %d);", obj->planeNormals.size(), obj->planeNormals.size());
// for (U32 j = 0; j < obj->planeNormals.size(); j++)
// Con::errorf(" meshes[%d]->planeNormals[%d].set(%g, %g, %g);", i, j, obj->planeNormals[j].x, obj->planeNormals[j].y, obj->planeNormals[j].z);
// Con::errorf("\n meshes[%d]->planeConstants.set(dMalloc(%d * sizeof(F32)), %d);", obj->planeConstants.size(), obj->planeConstants.size());
// for (U32 j = 0; j < obj->planeConstants.size(); j++)
// Con::errorf(" meshes[%d]->planeConstants[%d] = %g;", i, j, obj->planeConstants[j]);
// Con::errorf("\n meshes[%d]->planeMaterials.set(dMalloc(%d * sizeof(U32)), %d);", obj->planeMaterials.size(), obj->planeMaterials.size());
// for (U32 j = 0; j < obj->planeMaterials.size(); j++)
// Con::errorf(" meshes[%d]->planeMaterials[%d] = %d;", i, j, obj->planeMaterials[j]);
// Con::errorf(" meshes[%d]->planesPerFrame = %d;", i, obj->planesPerFrame);
// Con::errorf(" meshes[%d]->mergeBufferStart = %d;", i, obj->mergeBufferStart);
// }
// }
// Con::errorf("\nalphaIn.set(dMalloc(%d * sizeof(F32)), %d);", alphaIn.size(), alphaIn.size());
// for (U32 i = 0; i < alphaIn.size(); i++)
// Con::errorf(" alphaIn[%d] = %g;", i, alphaIn[i]);
// Con::errorf("\nalphaOut.set(dMalloc(%d * sizeof(F32)), %d);", alphaOut.size(), alphaOut.size());
// for (U32 i = 0; i < alphaOut.size(); i++)
// Con::errorf(" alphaOut[%d] = %g;", i, alphaOut[i]);
// //Con::errorf("numSequences = %d", sequences.size());
// //Con::errorf("numNodeRotations = %d", nodeRotations.size());
// //Con::errorf("numNodeTranslations = %d", nodeTranslations.size());
// //Con::errorf("numNodeUniformScales = %d", nodeUniformScales.size());
// //Con::errorf("numNodeAlignedScales = %d", nodeAlignedScales.size());
// //Con::errorf("numNodeArbitraryScaleRots = %d", nodeArbitraryScaleRots.size());
// //Con::errorf("numNodeArbitraryScaleFactors = %d", nodeArbitraryScaleFactors.size());
// //Con::errorf("numGroundRotations = %d", groundRotations.size());
// //Con::errorf("numGroundTranslations = %d", groundTranslations.size());
// //Con::errorf("numTriggers = %d", triggers.size());
// //Con::errorf("numBillboardDetails = %d", billboardDetails.size());
// //Con::errorf("\nnumDetailCollisionAccelerators = %d", detailCollisionAccelerators.size());
// //for (U32 i = 0; i < detailCollisionAccelerators.size(); i++)
// //{
// // ConvexHullAccelerator* obj = detailCollisionAccelerators[i];
// // if (obj)
// // {
// // Con::errorf(" detailCollisionAccelerators[%d].numVerts = %d", i, obj->numVerts);
// // for (U32 j = 0; j < obj->numVerts; j++)
// // {
// // Con::errorf(" verts[%d](%g, %g, %g)", j, obj->vertexList[j].x, obj->vertexList[j].y, obj->vertexList[j].z);
// // Con::errorf(" norms[%d](%g, %g, %g)", j, obj->normalList[j].x, obj->normalList[j].y, obj->normalList[j].z);
// // //U8** emitStrings;
// // }
// // }
// //}
// Con::errorf("\nnames.setSize(%d);", names.size());
// for (U32 i = 0; i < names.size(); i++)
// Con::errorf(" names[%d] = StringTable->insert(\"%s\");", i, names[i]);
// //TSMaterialList * materialList;
// Con::errorf("\nradius = %g;", radius);
// Con::errorf("tubeRadius = %g;", tubeRadius);
// Con::errorf("center.set(%g, %g, %g);", center.x, center.y, center.z);
// Con::errorf("bounds.minExtents.set(%g, %g, %g);", bounds.minExtents.x, bounds.minExtents.y, bounds.minExtents.z);
// Con::errorf("bounds.maxExtents.set(%g, %g, %g);", bounds.maxExtents.x, bounds.maxExtents.y, bounds.maxExtents.z);
// Con::errorf("\nmExporterVersion = %d;", mExporterVersion);
// Con::errorf("mSmallestVisibleSize = %g;", mSmallestVisibleSize);
// Con::errorf("mSmallestVisibleDL = %d;", mSmallestVisibleDL);
// Con::errorf("mReadVersion = %d;", mReadVersion);
// Con::errorf("mFlags = %d;", mFlags);
// //Con::errorf("data = %d", data);
// Con::errorf("mSequencesConstructed = %d;", mSequencesConstructed);
//}
return true;
}
void TSShape::createEmptyShape()
{
nodes.set(dMalloc(1 * sizeof(Node)), 1);
nodes[0].nameIndex = 1;
nodes[0].parentIndex = -1;
nodes[0].firstObject = 0;
nodes[0].firstChild = -1;
nodes[0].nextSibling = -1;
objects.set(dMalloc(1 * sizeof(Object)), 1);
objects[0].nameIndex = 2;
objects[0].numMeshes = 1;
objects[0].startMeshIndex = 0;
objects[0].nodeIndex = 0;
objects[0].nextSibling = -1;
objects[0].firstDecal = -1;
objectStates.set(dMalloc(1 * sizeof(ObjectState)), 1);
objectStates[0].vis = 1;
objectStates[0].frameIndex = 0;
objectStates[0].matFrameIndex = 0;
subShapeFirstNode.set(dMalloc(1 * sizeof(S32)), 1);
subShapeFirstNode[0] = 0;
subShapeFirstObject.set(dMalloc(1 * sizeof(S32)), 1);
subShapeFirstObject[0] = 0;
detailFirstSkin.set(NULL, 0);
subShapeNumNodes.set(dMalloc(1 * sizeof(S32)), 1);
subShapeNumNodes[0] = 1;
subShapeNumObjects.set(dMalloc(1 * sizeof(S32)), 1);
subShapeNumObjects[0] = 1;
details.set(dMalloc(1 * sizeof(Detail)), 1);
details[0].nameIndex = 0;
details[0].subShapeNum = 0;
details[0].objectDetailNum = 0;
details[0].size = 2.0f;
details[0].averageError = -1.0f;
details[0].maxError = -1.0f;
details[0].polyCount = 0;
defaultRotations.set(dMalloc(1 * sizeof(Quat16)), 1);
defaultRotations[0].x = 0.0f;
defaultRotations[0].y = 0.0f;
defaultRotations[0].z = 0.0f;
defaultRotations[0].w = 0.0f;
defaultTranslations.set(dMalloc(1 * sizeof(Point3F)), 1);
defaultTranslations[0].set(0.0f, 0.0f, 0.0f);
subShapeFirstTranslucentObject.set(dMalloc(1 * sizeof(S32)), 1);
subShapeFirstTranslucentObject[0] = 1;
alphaIn.set(dMalloc(1 * sizeof(F32)), 1);
alphaIn[0] = 0;
alphaOut.set(dMalloc(1 * sizeof(F32)), 1);
alphaOut[0] = -1;
sequences.set(NULL, 0);
nodeRotations.set(NULL, 0);
nodeTranslations.set(NULL, 0);
nodeUniformScales.set(NULL, 0);
nodeAlignedScales.set(NULL, 0);
nodeArbitraryScaleRots.set(NULL, 0);
nodeArbitraryScaleFactors.set(NULL, 0);
groundRotations.set(NULL, 0);
groundTranslations.set(NULL, 0);
triggers.set(NULL, 0);
billboardDetails.set(NULL, 0);
names.setSize(3);
names[0] = StringTable->insert("Detail2");
names[1] = StringTable->insert("Mesh2");
names[2] = StringTable->insert("Mesh");
radius = 0.866025f;
tubeRadius = 0.707107f;
center.set(0.0f, 0.5f, 0.0f);
bounds.minExtents.set(-0.5f, 0.0f, -0.5f);
bounds.maxExtents.set(0.5f, 1.0f, 0.5f);
mExporterVersion = 124;
mSmallestVisibleSize = 2;
mSmallestVisibleDL = 0;
mReadVersion = 24;
mFlags = 0;
mSequencesConstructed = 0;
mUseDetailFromScreenError = false;
mDetailLevelLookup.setSize( 1 );
mDetailLevelLookup[0].set( -1, 0 );
// Init the collision accelerator array. Note that we don't compute the
// accelerators until the app requests them
detailCollisionAccelerators.setSize(details.size());
for (U32 i = 0; i < detailCollisionAccelerators.size(); i++)
detailCollisionAccelerators[i] = NULL;
}
void TSShape::fixEndian(S32 * buff32, S16 * buff16, S8 *, S32 count32, S32 count16, S32)
{
// if endian-ness isn't the same, need to flip the buffer contents.
if (0x12345678!=convertLEndianToHost(0x12345678))
{
for (S32 i=0; i<count32; i++)
buff32[i]=convertLEndianToHost(buff32[i]);
for (S32 i=0; i<count16*2; i++)
buff16[i]=convertLEndianToHost(buff16[i]);
}
}
template<> void *Resource<TSShape>::create(const Torque::Path &path)
{
// Execute the shape script if it exists
Torque::Path scriptPath(path);
scriptPath.setExtension("cs");
// Don't execute the script if we're already doing so!
StringTableEntry currentScript = Platform::stripBasePath(CodeBlock::getCurrentCodeBlockFullPath());
if (!scriptPath.getFullPath().equal(currentScript))
{
Torque::Path scriptPathDSO(scriptPath);
scriptPathDSO.setExtension("cs.dso");
if (Torque::FS::IsFile(scriptPathDSO) || Torque::FS::IsFile(scriptPath))
{
String evalCmd = "exec(\"" + scriptPath + "\");";
String instantGroup = Con::getVariable("InstantGroup");
Con::setIntVariable("InstantGroup", RootGroupId);
Con::evaluate((const char*)evalCmd.c_str(), false, scriptPath.getFullPath());
Con::setVariable("InstantGroup", instantGroup.c_str());
}
}
// Attempt to load the shape
TSShape * ret = 0;
bool readSuccess = false;
const String extension = path.getExtension();
if ( extension.equal( "dts", String::NoCase ) )
{
FileStream stream;
stream.open( path.getFullPath(), Torque::FS::File::Read );
if ( stream.getStatus() != Stream::Ok )
{
Con::errorf( "Resource<TSShape>::create - Could not open '%s'", path.getFullPath().c_str() );
return NULL;
}
ret = new TSShape;
readSuccess = ret->read(&stream);
}
else if ( extension.equal( "dae", String::NoCase ) || extension.equal( "kmz", String::NoCase ) )
{
#ifdef TORQUE_COLLADA
// Attempt to load the DAE file
ret = loadColladaShape(path);
readSuccess = (ret != NULL);
#else
// No COLLADA support => attempt to load the cached DTS file instead
Torque::Path cachedPath = path;
cachedPath.setExtension("cached.dts");
FileStream stream;
stream.open( cachedPath.getFullPath(), Torque::FS::File::Read );
if ( stream.getStatus() != Stream::Ok )
{
Con::errorf( "Resource<TSShape>::create - Could not open '%s'", cachedPath.getFullPath().c_str() );
return NULL;
}
ret = new TSShape;
readSuccess = ret->read(&stream);
#endif
}
else
{
Con::errorf( "Resource<TSShape>::create - '%s' has an unknown file format", path.getFullPath().c_str() );
delete ret;
return NULL;
}
if( !readSuccess )
{
Con::errorf( "Resource<TSShape>::create - Error reading '%s'", path.getFullPath().c_str() );
delete ret;
ret = NULL;
}
return ret;
}
template<> ResourceBase::Signature Resource<TSShape>::signature()
{
return MakeFourCC('t','s','s','h');
}
TSShape::ConvexHullAccelerator* TSShape::getAccelerator(S32 dl)
{
AssertFatal(dl < details.size(), "Error, bad detail level!");
if (dl == -1)
return NULL;
AssertFatal( detailCollisionAccelerators.size() == details.size(),
"TSShape::getAccelerator() - mismatched array sizes!" );
if (detailCollisionAccelerators[dl] == NULL)
computeAccelerator(dl);
AssertFatal(detailCollisionAccelerators[dl] != NULL, "This should be non-null after computing it!");
return detailCollisionAccelerators[dl];
}
void TSShape::computeAccelerator(S32 dl)
{
AssertFatal(dl < details.size(), "Error, bad detail level!");
// Have we already computed this?
if (detailCollisionAccelerators[dl] != NULL)
return;
// Create a bogus features list...
ConvexFeature cf;
MatrixF mat(true);
Point3F n(0, 0, 1);
const TSDetail* detail = &details[dl];
S32 ss = detail->subShapeNum;
S32 od = detail->objectDetailNum;
S32 start = subShapeFirstObject[ss];
S32 end = subShapeNumObjects[ss] + start;
if (start < end)
{
// run through objects and collide
// DMMNOTE: This assumes that the transform of the collision hulls is
// identity...
U32 surfaceKey = 0;
for (S32 i = start; i < end; i++)
{
const TSObject* obj = &objects[i];
if (obj->numMeshes && od < obj->numMeshes) {
TSMesh* mesh = meshes[obj->startMeshIndex + od];
if (mesh)
mesh->getFeatures(0, mat, n, &cf, surfaceKey);
}
}
}
Vector<Point3F> fixedVerts;
VECTOR_SET_ASSOCIATION(fixedVerts);
S32 i;
for (i = 0; i < cf.mVertexList.size(); i++) {
S32 j;
bool found = false;
for (j = 0; j < cf.mFaceList.size(); j++) {
if (cf.mFaceList[j].vertex[0] == i ||
cf.mFaceList[j].vertex[1] == i ||
cf.mFaceList[j].vertex[2] == i) {
found = true;
break;
}
}
if (!found)
continue;
found = false;
for (j = 0; j < fixedVerts.size(); j++) {
if (fixedVerts[j] == cf.mVertexList[i]) {
found = true;
break;
}
}
if (found == true) {
// Ok, need to replace any references to vertex i in the facelists with
// a reference to vertex j in the fixed list
for (S32 k = 0; k < cf.mFaceList.size(); k++) {
for (S32 l = 0; l < 3; l++) {
if (cf.mFaceList[k].vertex[l] == i)
cf.mFaceList[k].vertex[l] = j;
}
}
} else {
for (S32 k = 0; k < cf.mFaceList.size(); k++) {
for (S32 l = 0; l < 3; l++) {
if (cf.mFaceList[k].vertex[l] == i)
cf.mFaceList[k].vertex[l] = fixedVerts.size();
}
}
fixedVerts.push_back(cf.mVertexList[i]);
}
}
cf.mVertexList.setSize(0);
cf.mVertexList = fixedVerts;
// Ok, so now we have a vertex list. Lets copy that out...
ConvexHullAccelerator* accel = new ConvexHullAccelerator;
detailCollisionAccelerators[dl] = accel;
accel->numVerts = cf.mVertexList.size();
accel->vertexList = new Point3F[accel->numVerts];
dMemcpy(accel->vertexList, cf.mVertexList.address(), sizeof(Point3F) * accel->numVerts);
accel->normalList = new Point3F[cf.mFaceList.size()];
for (i = 0; i < cf.mFaceList.size(); i++)
accel->normalList[i] = cf.mFaceList[i].normal;
accel->emitStrings = new U8*[accel->numVerts];
dMemset(accel->emitStrings, 0, sizeof(U8*) * accel->numVerts);
for (i = 0; i < accel->numVerts; i++) {
S32 j;
Vector<U32> faces;
VECTOR_SET_ASSOCIATION(faces);
for (j = 0; j < cf.mFaceList.size(); j++) {
if (cf.mFaceList[j].vertex[0] == i ||
cf.mFaceList[j].vertex[1] == i ||
cf.mFaceList[j].vertex[2] == i) {
faces.push_back(j);
}
}
AssertFatal(faces.size() != 0, "Huh? Vertex unreferenced by any faces");
// Insert all faces that didn't make the first cut, but share a plane with
// a face that's on the short list.
for (j = 0; j < cf.mFaceList.size(); j++) {
bool found = false;
S32 k;
for (k = 0; k < faces.size(); k++) {
if (faces[k] == j)
found = true;
}
if (found)
continue;
found = false;
for (k = 0; k < faces.size(); k++) {
if (mDot(accel->normalList[faces[k]], accel->normalList[j]) > 0.999) {
found = true;
break;
}
}
if (found)
faces.push_back(j);
}
Vector<U32> vertRemaps;
VECTOR_SET_ASSOCIATION(vertRemaps);
for (j = 0; j < faces.size(); j++) {
for (U32 k = 0; k < 3; k++) {
U32 insert = cf.mFaceList[faces[j]].vertex[k];
bool found = false;
for (S32 l = 0; l < vertRemaps.size(); l++) {
if (insert == vertRemaps[l]) {
found = true;
break;
}
}
if (!found)
vertRemaps.push_back(insert);
}
}
Vector<Point2I> edges;
VECTOR_SET_ASSOCIATION(edges);
for (j = 0; j < faces.size(); j++) {
for (U32 k = 0; k < 3; k++) {
U32 edgeStart = cf.mFaceList[faces[j]].vertex[(k + 0) % 3];
U32 edgeEnd = cf.mFaceList[faces[j]].vertex[(k + 1) % 3];
U32 e0 = getMin(edgeStart, edgeEnd);
U32 e1 = getMax(edgeStart, edgeEnd);
bool found = false;
for (S32 l = 0; l < edges.size(); l++) {
if (edges[l].x == e0 && edges[l].y == e1) {
found = true;
break;
}
}
if (!found)
edges.push_back(Point2I(e0, e1));
}
}
//AssertFatal(vertRemaps.size() < 256 && faces.size() < 256 && edges.size() < 256,
// "Error, ran over the shapebase assumptions about convex hulls.");
U32 emitStringLen = 1 + vertRemaps.size() +
1 + (edges.size() * 2) +
1 + (faces.size() * 4);
accel->emitStrings[i] = new U8[emitStringLen];
U32 currPos = 0;
accel->emitStrings[i][currPos++] = vertRemaps.size();
for (j = 0; j < vertRemaps.size(); j++)
accel->emitStrings[i][currPos++] = vertRemaps[j];
accel->emitStrings[i][currPos++] = edges.size();
for (j = 0; j < edges.size(); j++) {
S32 l;
U32 old = edges[j].x;
bool found = false;
for (l = 0; l < vertRemaps.size(); l++) {
if (vertRemaps[l] == old) {
found = true;
accel->emitStrings[i][currPos++] = l;
break;
}
}
AssertFatal(found, "Error, couldn't find the remap!");
old = edges[j].y;
found = false;
for (l = 0; l < vertRemaps.size(); l++) {
if (vertRemaps[l] == old) {
found = true;
accel->emitStrings[i][currPos++] = l;
break;
}
}
AssertFatal(found, "Error, couldn't find the remap!");
}
accel->emitStrings[i][currPos++] = faces.size();
for (j = 0; j < faces.size(); j++) {
accel->emitStrings[i][currPos++] = faces[j];
for (U32 k = 0; k < 3; k++) {
U32 old = cf.mFaceList[faces[j]].vertex[k];
bool found = false;
for (S32 l = 0; l < vertRemaps.size(); l++) {
if (vertRemaps[l] == old) {
found = true;
accel->emitStrings[i][currPos++] = l;
break;
}
}
AssertFatal(found, "Error, couldn't find the remap!");
}
}
AssertFatal(currPos == emitStringLen, "Error, over/underflowed the emission string!");
}
}