mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-19 20:24:49 +00:00
Fixed loose file bindings for all associated slots in level asset, such as postFX file, decals, etc Expanded TSStatic onInspect testcase to parse materialSlots and hook-in a specialized material field for editing/quick reference from the inspector Adjusted expand behavior of guiTree to be more reliable Added internal name 'stack' to inspectorGroup's stack child objects for easier access to add programatic fields Removed redundant PreMult translucency type code Added setting of feature so probes work when in forward/basic lit mode Corrected indexing error in SQLiteObject class so it properly parses with the updated console API Tweaked the FOV setting logic in GameConnection::onControlObjectChange to not be spammy Fixed var when trying to bind the camera to the client Added project setting field to dictate the default render mode between Forward or Deferred Integrated MotionBlur PostFX into updated PostFX Editor paradigm and exposed the samples uniform as an editable field Integrated DOF PostFX into updated PostFX Editor paradigm Updated setting group name for vignette postFX Shifted shaderCache to be in data/cache along with other cached files Added helper function to replace strings in a file Fixed ExampleCppObject asset to have correct loose file references Adjusted editor default level logic so it can be modifed and then stored, as well as reset back to the original default Fixed verve reference to root scene group Adjusted location of a nonmodal gui profile so it loads at the correct time Reorganized AssetBrowser loading and refresh logic so it doesn't stack multiple refresh requests back-to-back causing lag Updated the search behavior to search not just the current address, but all child folders as well, making it far more useful Initial work into zip and folder drag-and-drop asset importing support Removed the import config setting for 'always display material maps' as it is redundant with the new importer context menu actions Updated example asset type file Ensured all asset types have proper handling for move, rename and delete actions Fixed double-click behavior on folders in the AB Fixed CPP asset preview Added better logic to discern if a top-level folder belongs to a module or not in the AB directory browser Added ability to convert a non-module top-level folder in the AB into a module Added initial hooks for being able to generate a new Editor Tool, similar to how the AB can generate modules Renamed CPP asset template files to have the .template so they aren't accidentally picked up by cmake Fixed convex editor's material handling to work with AB and reference back properly Updated AB images for folder up/down navigation buttons, and the breadcrumb divider arrow Made PostFX Editor properly allow for input pass-through so you can still edit the level with it open Added some additional common text gui profiles Disabled calls to old editor settings logic in various editors to remove spam Added callOnModules call so tools can initialize properly when the world editor is opened Fixed logic test for visualizers Added ability for cmake to scan tools directory for any tools that add source files
534 lines
19 KiB
C++
534 lines
19 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Copyright (c) 2012 GarageGames, LLC
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to
|
|
// deal in the Software without restriction, including without limitation the
|
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
// sell copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
// IN THE SOFTWARE.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "platform/platform.h"
|
|
#include "materials/processedMaterial.h"
|
|
|
|
#include "materials/sceneData.h"
|
|
#include "materials/materialParameters.h"
|
|
#include "materials/matTextureTarget.h"
|
|
#include "materials/materialFeatureTypes.h"
|
|
#include "materials/materialManager.h"
|
|
#include "scene/sceneRenderState.h"
|
|
#include "gfx/gfxPrimitiveBuffer.h"
|
|
#include "gfx/gfxTextureManager.h"
|
|
#include "gfx/sim/cubemapData.h"
|
|
|
|
RenderPassData::RenderPassData()
|
|
{
|
|
reset();
|
|
}
|
|
|
|
void RenderPassData::reset()
|
|
{
|
|
for( U32 i = 0; i < Material::MAX_TEX_PER_PASS; ++ i )
|
|
{
|
|
destructInPlace( &mTexSlot[ i ] );
|
|
mSamplerNames[ i ].clear();
|
|
}
|
|
|
|
dMemset( &mTexSlot, 0, sizeof(mTexSlot) );
|
|
dMemset( &mTexType, 0, sizeof(mTexType) );
|
|
|
|
mCubeMap = NULL;
|
|
mNumTex = mNumTexReg = mStageNum = 0;
|
|
mGlow = false;
|
|
mBlendOp = Material::None;
|
|
|
|
mFeatureData.clear();
|
|
|
|
for (U32 i = 0; i < STATE_MAX; i++)
|
|
mRenderStates[i] = NULL;
|
|
}
|
|
|
|
String RenderPassData::describeSelf() const
|
|
{
|
|
String desc;
|
|
|
|
// Now write all the textures.
|
|
String texName;
|
|
for ( U32 i=0; i < Material::MAX_TEX_PER_PASS; i++ )
|
|
{
|
|
if ( mTexType[i] == Material::TexTarget )
|
|
texName = ( mTexSlot[i].texTarget ) ? mTexSlot[i].texTarget->getName() : "null_texTarget";
|
|
else if ( mTexType[i] == Material::Cube && mCubeMap )
|
|
texName = mCubeMap->getPath();
|
|
else if ( mTexSlot[i].texObject )
|
|
texName = mTexSlot[i].texObject->getPath();
|
|
else
|
|
continue;
|
|
|
|
desc += String::ToString( "TexSlot %d: %d, %s\n", i, mTexType[i], texName.c_str() );
|
|
}
|
|
|
|
// Write out the first render state which is the
|
|
// basis for all the other states and shoud be
|
|
// enough to define the pass uniquely.
|
|
desc += mRenderStates[0]->getDesc().describeSelf();
|
|
|
|
return desc;
|
|
}
|
|
|
|
ProcessedMaterial::ProcessedMaterial()
|
|
: mMaterial( NULL ),
|
|
mCurrentParams( NULL ),
|
|
mHasSetStageData( false ),
|
|
mHasGlow( false ),
|
|
mHasAccumulation( false ),
|
|
mMaxStages( 0 ),
|
|
mVertexFormat( NULL ),
|
|
mUserObject( NULL )
|
|
{
|
|
VECTOR_SET_ASSOCIATION( mPasses );
|
|
}
|
|
|
|
ProcessedMaterial::~ProcessedMaterial()
|
|
{
|
|
T3D::for_each( mPasses.begin(), mPasses.end(), T3D::delete_pointer() );
|
|
}
|
|
|
|
void ProcessedMaterial::_setBlendState(Material::BlendOp blendOp, GFXStateBlockDesc& desc )
|
|
{
|
|
switch( blendOp )
|
|
{
|
|
case Material::Add:
|
|
{
|
|
desc.blendSrc = GFXBlendOne;
|
|
desc.blendDest = GFXBlendOne;
|
|
break;
|
|
}
|
|
case Material::AddAlpha:
|
|
{
|
|
desc.blendSrc = GFXBlendSrcAlpha;
|
|
desc.blendDest = GFXBlendOne;
|
|
break;
|
|
}
|
|
case Material::Mul:
|
|
{
|
|
desc.blendSrc = GFXBlendDestColor;
|
|
desc.blendDest = GFXBlendInvSrcAlpha;
|
|
break;
|
|
}
|
|
case Material::PreMul:
|
|
{
|
|
desc.blendSrc = GFXBlendOne;
|
|
desc.blendDest = GFXBlendInvSrcAlpha;
|
|
break;
|
|
}
|
|
case Material::LerpAlpha:
|
|
{
|
|
desc.blendSrc = GFXBlendSrcAlpha;
|
|
desc.blendDest = GFXBlendInvSrcAlpha;
|
|
break;
|
|
}
|
|
case Material::Sub:
|
|
{
|
|
desc.blendOp = GFXBlendOpSubtract;
|
|
desc.blendSrc = GFXBlendOne;
|
|
desc.blendDest = GFXBlendOne;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
// default to LerpAlpha
|
|
desc.blendSrc = GFXBlendSrcAlpha;
|
|
desc.blendDest = GFXBlendInvSrcAlpha;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ProcessedMaterial::setBuffers(GFXVertexBufferHandleBase* vertBuffer, GFXPrimitiveBufferHandle* primBuffer)
|
|
{
|
|
GFX->setVertexBuffer( *vertBuffer );
|
|
GFX->setPrimitiveBuffer( *primBuffer );
|
|
}
|
|
|
|
bool ProcessedMaterial::stepInstance()
|
|
{
|
|
AssertFatal( false, "ProcessedMaterial::stepInstance() - This type of material doesn't support instancing!" );
|
|
return false;
|
|
}
|
|
|
|
String ProcessedMaterial::_getTexturePath(const String& filename)
|
|
{
|
|
// if '/', then path is specified, use it.
|
|
if( filename.find('/') != String::NPos )
|
|
{
|
|
return filename;
|
|
}
|
|
|
|
// otherwise, construct path
|
|
return mMaterial->getPath() + filename;
|
|
}
|
|
|
|
GFXTexHandle ProcessedMaterial::_createTexture( const char* filename, GFXTextureProfile *profile)
|
|
{
|
|
return GFXTexHandle( _getTexturePath(filename), profile, avar("%s() - NA (line %d)", __FUNCTION__, __LINE__) );
|
|
}
|
|
|
|
GFXTexHandle ProcessedMaterial::_createCompositeTexture(const char *filenameR, const char *filenameG, const char *filenameB, const char *filenameA, U32 inputKey[4], GFXTextureProfile *profile)
|
|
{
|
|
return GFXTexHandle(_getTexturePath(filenameR), _getTexturePath(filenameG), _getTexturePath(filenameB), _getTexturePath(filenameA), inputKey, profile, avar("%s() - NA (line %d)", __FUNCTION__, __LINE__));
|
|
}
|
|
|
|
void ProcessedMaterial::addStateBlockDesc(const GFXStateBlockDesc& sb)
|
|
{
|
|
mUserDefined = sb;
|
|
}
|
|
|
|
void ProcessedMaterial::_initStateBlockTemplates(GFXStateBlockDesc& stateTranslucent, GFXStateBlockDesc& stateGlow, GFXStateBlockDesc& stateReflect)
|
|
{
|
|
// Translucency
|
|
stateTranslucent.blendDefined = true;
|
|
stateTranslucent.blendEnable = mMaterial->mTranslucentBlendOp != Material::None;
|
|
_setBlendState(mMaterial->mTranslucentBlendOp, stateTranslucent);
|
|
stateTranslucent.zDefined = true;
|
|
stateTranslucent.zWriteEnable = mMaterial->mTranslucentZWrite;
|
|
stateTranslucent.alphaDefined = true;
|
|
stateTranslucent.alphaTestEnable = mMaterial->mAlphaTest;
|
|
stateTranslucent.alphaTestRef = mMaterial->mAlphaRef;
|
|
stateTranslucent.alphaTestFunc = GFXCmpGreaterEqual;
|
|
stateTranslucent.samplersDefined = true;
|
|
stateTranslucent.samplers[0].textureColorOp = GFXTOPModulate;
|
|
stateTranslucent.samplers[0].alphaOp = GFXTOPModulate;
|
|
stateTranslucent.samplers[0].alphaArg1 = GFXTATexture;
|
|
stateTranslucent.samplers[0].alphaArg2 = GFXTADiffuse;
|
|
|
|
// Glow
|
|
stateGlow.zDefined = true;
|
|
stateGlow.zWriteEnable = false;
|
|
|
|
// Reflect
|
|
stateReflect.cullDefined = true;
|
|
stateReflect.cullMode = mMaterial->mDoubleSided ? GFXCullNone : GFXCullCW;
|
|
}
|
|
|
|
void ProcessedMaterial::_initRenderPassDataStateBlocks()
|
|
{
|
|
for (U32 pass = 0; pass < mPasses.size(); pass++)
|
|
_initRenderStateStateBlocks( mPasses[pass] );
|
|
}
|
|
|
|
void ProcessedMaterial::_initPassStateBlock( RenderPassData *rpd, GFXStateBlockDesc &result )
|
|
{
|
|
if ( rpd->mBlendOp != Material::None )
|
|
{
|
|
result.blendDefined = true;
|
|
result.blendEnable = true;
|
|
_setBlendState( rpd->mBlendOp, result );
|
|
}
|
|
|
|
if (mMaterial && mMaterial->isDoubleSided())
|
|
{
|
|
result.cullDefined = true;
|
|
result.cullMode = GFXCullNone;
|
|
}
|
|
|
|
if(mMaterial && mMaterial->mAlphaTest)
|
|
{
|
|
result.alphaDefined = true;
|
|
result.alphaTestEnable = mMaterial->mAlphaTest;
|
|
result.alphaTestRef = mMaterial->mAlphaRef;
|
|
result.alphaTestFunc = GFXCmpGreaterEqual;
|
|
}
|
|
|
|
result.samplersDefined = true;
|
|
NamedTexTarget *texTarget;
|
|
|
|
U32 maxAnisotropy = 1;
|
|
if (mMaterial && mMaterial->mUseAnisotropic[ rpd->mStageNum ] )
|
|
maxAnisotropy = MATMGR->getDefaultAnisotropy();
|
|
|
|
for( U32 i=0; i < rpd->mNumTex; i++ )
|
|
{
|
|
U32 currTexFlag = rpd->mTexType[i];
|
|
|
|
switch( currTexFlag )
|
|
{
|
|
default:
|
|
{
|
|
result.samplers[i].textureColorOp = GFXTOPModulate;
|
|
result.samplers[i].addressModeU = GFXAddressWrap;
|
|
result.samplers[i].addressModeV = GFXAddressWrap;
|
|
|
|
if ( maxAnisotropy > 1 )
|
|
{
|
|
result.samplers[i].minFilter = GFXTextureFilterAnisotropic;
|
|
result.samplers[i].magFilter = GFXTextureFilterAnisotropic;
|
|
result.samplers[i].maxAnisotropy = maxAnisotropy;
|
|
}
|
|
else
|
|
{
|
|
result.samplers[i].minFilter = GFXTextureFilterLinear;
|
|
result.samplers[i].magFilter = GFXTextureFilterLinear;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Material::Cube:
|
|
case Material::SGCube:
|
|
case Material::NormalizeCube:
|
|
{
|
|
result.samplers[i].addressModeU = GFXAddressClamp;
|
|
result.samplers[i].addressModeV = GFXAddressClamp;
|
|
result.samplers[i].addressModeW = GFXAddressClamp;
|
|
result.samplers[i].minFilter = GFXTextureFilterLinear;
|
|
result.samplers[i].magFilter = GFXTextureFilterLinear;
|
|
break;
|
|
}
|
|
|
|
case Material::TexTarget:
|
|
{
|
|
texTarget = mPasses[0]->mTexSlot[i].texTarget;
|
|
if ( texTarget )
|
|
texTarget->setupSamplerState( &result.samplers[i] );
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The deferred will take care of writing to the
|
|
// zbuffer, so we don't have to by default.
|
|
if ( MATMGR->getDeferredEnabled() &&
|
|
!mFeatures.hasFeature(MFT_ForwardShading))
|
|
result.setZReadWrite( result.zEnable, false );
|
|
|
|
result.addDesc(mUserDefined);
|
|
}
|
|
|
|
/// Creates the default state blocks for a list of render states
|
|
void ProcessedMaterial::_initRenderStateStateBlocks( RenderPassData *rpd )
|
|
{
|
|
GFXStateBlockDesc stateTranslucent;
|
|
GFXStateBlockDesc stateGlow;
|
|
GFXStateBlockDesc stateReflect;
|
|
GFXStateBlockDesc statePass;
|
|
|
|
_initStateBlockTemplates( stateTranslucent, stateGlow, stateReflect );
|
|
_initPassStateBlock( rpd, statePass );
|
|
|
|
// Ok, we've got our templates set up, let's combine them together based on state and
|
|
// create our state blocks.
|
|
for (U32 i = 0; i < RenderPassData::STATE_MAX; i++)
|
|
{
|
|
GFXStateBlockDesc stateFinal;
|
|
|
|
if (i & RenderPassData::STATE_REFLECT)
|
|
stateFinal.addDesc(stateReflect);
|
|
if (i & RenderPassData::STATE_TRANSLUCENT)
|
|
stateFinal.addDesc(stateTranslucent);
|
|
if (i & RenderPassData::STATE_GLOW)
|
|
stateFinal.addDesc(stateGlow);
|
|
|
|
stateFinal.addDesc(statePass);
|
|
|
|
if (i & RenderPassData::STATE_WIREFRAME)
|
|
stateFinal.fillMode = GFXFillWireframe;
|
|
|
|
GFXStateBlockRef sb = GFX->createStateBlock(stateFinal);
|
|
rpd->mRenderStates[i] = sb;
|
|
}
|
|
}
|
|
|
|
U32 ProcessedMaterial::_getRenderStateIndex( const SceneRenderState *sceneState,
|
|
const SceneData &sgData )
|
|
{
|
|
// Based on what the state of the world is, get our render state block
|
|
U32 currState = 0;
|
|
|
|
// NOTE: We should only use per-material or per-pass hints to
|
|
// change the render state. This is importaint because we
|
|
// only change the state blocks between material passes.
|
|
//
|
|
// For example sgData.visibility would be bad to use
|
|
// in here without changing how RenderMeshMgr works.
|
|
|
|
if ( sgData.binType == SceneData::GlowBin )
|
|
currState |= RenderPassData::STATE_GLOW;
|
|
|
|
if ( sceneState && sceneState->isReflectPass() )
|
|
currState |= RenderPassData::STATE_REFLECT;
|
|
|
|
if ( sgData.binType != SceneData::DeferredBin &&
|
|
mMaterial->isTranslucent() )
|
|
currState |= RenderPassData::STATE_TRANSLUCENT;
|
|
|
|
if ( sgData.wireframe )
|
|
currState |= RenderPassData::STATE_WIREFRAME;
|
|
|
|
return currState;
|
|
}
|
|
|
|
void ProcessedMaterial::_setRenderState( const SceneRenderState *state,
|
|
const SceneData& sgData,
|
|
U32 pass )
|
|
{
|
|
// Make sure we have the pass
|
|
if ( pass >= mPasses.size() )
|
|
return;
|
|
|
|
U32 currState = _getRenderStateIndex( state, sgData );
|
|
|
|
GFX->setStateBlock(mPasses[pass]->mRenderStates[currState]);
|
|
}
|
|
|
|
|
|
void ProcessedMaterial::_setStageData()
|
|
{
|
|
// Only do this once
|
|
if (mHasSetStageData)
|
|
return;
|
|
mHasSetStageData = true;
|
|
|
|
U32 i;
|
|
|
|
// Load up all the textures for every possible stage
|
|
for (i = 0; i < Material::MAX_STAGES; i++)
|
|
{
|
|
// DiffuseMap
|
|
if (mMaterial->mDiffuseMapFilename[i].isNotEmpty())
|
|
{
|
|
mStages[i].setTex(MFT_DiffuseMap, _createTexture(mMaterial->mDiffuseMapFilename[i], &GFXStaticTextureSRGBProfile));
|
|
if (!mStages[i].getTex(MFT_DiffuseMap))
|
|
{
|
|
//If we start with a #, we're probably actually attempting to hit a named target and it may not get a hit on the first pass. So we'll
|
|
//pass on the error rather than spamming the console
|
|
if (!mMaterial->mDiffuseMapFilename[i].startsWith("#"))
|
|
mMaterial->logError("Failed to load diffuse map %s for stage %i", _getTexturePath(mMaterial->mDiffuseMapFilename[i]).c_str(), i);
|
|
|
|
// Load a debug texture to make it clear to the user
|
|
// that the texture for this stage was missing.
|
|
mStages[i].setTex(MFT_DiffuseMap, _createTexture(GFXTextureManager::getMissingTexturePath().c_str(), &GFXStaticTextureSRGBProfile));
|
|
}
|
|
}
|
|
else if (mMaterial->mDiffuseMapAsset[i] && !mMaterial->mDiffuseMapAsset[i].isNull())
|
|
{
|
|
mStages[i].setTex(MFT_DiffuseMap, mMaterial->mDiffuseMapAsset[i]->getImage());
|
|
if (!mStages[i].getTex(MFT_DiffuseMap))
|
|
{
|
|
// Load a debug texture to make it clear to the user
|
|
// that the texture for this stage was missing.
|
|
mStages[i].setTex(MFT_DiffuseMap, _createTexture(GFXTextureManager::getMissingTexturePath().c_str(), &GFXStaticTextureSRGBProfile));
|
|
}
|
|
}
|
|
|
|
// OverlayMap
|
|
if (mMaterial->mOverlayMapFilename[i].isNotEmpty())
|
|
{
|
|
mStages[i].setTex(MFT_OverlayMap, _createTexture(mMaterial->mOverlayMapFilename[i], &GFXStaticTextureSRGBProfile));
|
|
if (!mStages[i].getTex(MFT_OverlayMap))
|
|
mMaterial->logError("Failed to load overlay map %s for stage %i", _getTexturePath(mMaterial->mOverlayMapFilename[i]).c_str(), i);
|
|
}
|
|
|
|
// LightMap
|
|
if (mMaterial->mLightMapFilename[i].isNotEmpty())
|
|
{
|
|
mStages[i].setTex(MFT_LightMap, _createTexture(mMaterial->mLightMapFilename[i], &GFXStaticTextureSRGBProfile));
|
|
if (!mStages[i].getTex(MFT_LightMap))
|
|
mMaterial->logError("Failed to load light map %s for stage %i", _getTexturePath(mMaterial->mLightMapFilename[i]).c_str(), i);
|
|
}
|
|
|
|
// ToneMap
|
|
if (mMaterial->mToneMapFilename[i].isNotEmpty())
|
|
{
|
|
mStages[i].setTex(MFT_ToneMap, _createTexture(mMaterial->mToneMapFilename[i], &GFXStaticTextureProfile));
|
|
if (!mStages[i].getTex(MFT_ToneMap))
|
|
mMaterial->logError("Failed to load tone map %s for stage %i", _getTexturePath(mMaterial->mToneMapFilename[i]).c_str(), i);
|
|
}
|
|
|
|
// DetailMap
|
|
if (mMaterial->mDetailMapFilename[i].isNotEmpty())
|
|
{
|
|
mStages[i].setTex(MFT_DetailMap, _createTexture(mMaterial->mDetailMapFilename[i], &GFXStaticTextureProfile));
|
|
if (!mStages[i].getTex(MFT_DetailMap))
|
|
mMaterial->logError("Failed to load detail map %s for stage %i", _getTexturePath(mMaterial->mDetailMapFilename[i]).c_str(), i);
|
|
}
|
|
|
|
// NormalMap
|
|
if (mMaterial->mNormalMapFilename[i].isNotEmpty())
|
|
{
|
|
mStages[i].setTex(MFT_NormalMap, _createTexture(mMaterial->mNormalMapFilename[i], &GFXNormalMapProfile));
|
|
if (!mStages[i].getTex(MFT_NormalMap))
|
|
mMaterial->logError("Failed to load normal map %s for stage %i", _getTexturePath(mMaterial->mNormalMapFilename[i]).c_str(), i);
|
|
}
|
|
|
|
// Detail Normal Map
|
|
if (mMaterial->mDetailNormalMapFilename[i].isNotEmpty())
|
|
{
|
|
mStages[i].setTex(MFT_DetailNormalMap, _createTexture(mMaterial->mDetailNormalMapFilename[i], &GFXNormalMapProfile));
|
|
if (!mStages[i].getTex(MFT_DetailNormalMap))
|
|
mMaterial->logError("Failed to load normal map %s for stage %i", _getTexturePath(mMaterial->mDetailNormalMapFilename[i]).c_str(), i);
|
|
}
|
|
|
|
GFXTextureProfile* profile = &GFXStaticTextureProfile;
|
|
if (mMaterial->mIsSRGb[i])
|
|
profile = &GFXStaticTextureSRGBProfile;
|
|
|
|
// PBRConfig
|
|
if (mMaterial->mPBRConfigMapFilename[i].isNotEmpty())
|
|
{
|
|
mStages[i].setTex(MFT_PBRConfigMap, _createTexture(mMaterial->mPBRConfigMapFilename[i], profile));
|
|
if (!mStages[i].getTex(MFT_PBRConfigMap))
|
|
mMaterial->logError("Failed to load PBR Config map %s for stage %i", _getTexturePath(mMaterial->mPBRConfigMapFilename[i]).c_str(), i);
|
|
}
|
|
else
|
|
{
|
|
if (mMaterial->mRoughMapFilename[i].isNotEmpty() && mMaterial->mMetalMapFilename[i].isNotEmpty())
|
|
{
|
|
U32 inputKey[4];
|
|
inputKey[0] = mMaterial->mSmoothnessChan[i];
|
|
inputKey[1] = mMaterial->mAOChan[i];
|
|
inputKey[2] = mMaterial->mMetalChan[i];
|
|
inputKey[3] = 0;
|
|
mStages[i].setTex(MFT_PBRConfigMap, _createCompositeTexture(mMaterial->mRoughMapFilename[i], mMaterial->mAOMapFilename[i],
|
|
mMaterial->mMetalMapFilename[i], "",
|
|
inputKey, profile));
|
|
if (!mStages[i].getTex(MFT_PBRConfigMap))
|
|
mMaterial->logError("Failed to load PBR Config map %s for stage %i", _getTexturePath(mMaterial->mPBRConfigMapFilename[i]).c_str(), i);
|
|
}
|
|
}
|
|
if (mMaterial->mGlowMapFilename[i].isNotEmpty())
|
|
{
|
|
mStages[i].setTex(MFT_GlowMap, _createTexture(mMaterial->mGlowMapFilename[i], &GFXStaticTextureProfile));
|
|
if (!mStages[i].getTex(MFT_GlowMap))
|
|
mMaterial->logError("Failed to load glow map %s for stage %i", _getTexturePath(mMaterial->mGlowMapFilename[i]).c_str(), i);
|
|
}
|
|
}
|
|
|
|
mMaterial->mCubemapData = dynamic_cast<CubemapData*>(Sim::findObject(mMaterial->mCubemapName));
|
|
if (!mMaterial->mCubemapData)
|
|
mMaterial->mCubemapData = NULL;
|
|
|
|
|
|
// If we have a cubemap put it on stage 0 (cubemaps only supported on stage 0)
|
|
if (mMaterial->mCubemapData)
|
|
{
|
|
mMaterial->mCubemapData->createMap();
|
|
mStages[0].setCubemap(mMaterial->mCubemapData->mCubemap);
|
|
if (!mStages[0].getCubemap())
|
|
mMaterial->logError("Failed to load cubemap");
|
|
}
|
|
}
|
|
|