Torque3D/Templates/Full/game/shaders/common/cloudLayerP.hlsl
2016-03-20 21:50:21 +10:00

146 lines
6 KiB
HLSL

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "shaderModel.hlsl"
#include "torque.hlsl"
//-----------------------------------------------------------------------------
// Structures
//-----------------------------------------------------------------------------
struct ConnectData
{
float4 hpos : TORQUE_POSITION;
float4 texCoord12 : TEXCOORD0;
float4 texCoord34 : TEXCOORD1;
float3 vLightTS : TEXCOORD2; // light vector in tangent space, denormalized
float3 vViewTS : TEXCOORD3; // view vector in tangent space, denormalized
float worldDist : TEXCOORD4;
};
//-----------------------------------------------------------------------------
// Uniforms
//-----------------------------------------------------------------------------
TORQUE_UNIFORM_SAMPLER2D(normalHeightMap, 0);
uniform float3 ambientColor;
uniform float3 sunColor;
uniform float cloudCoverage;
uniform float3 cloudBaseColor;
uniform float cloudExposure;
//-----------------------------------------------------------------------------
// Globals
//-----------------------------------------------------------------------------
// The per-color weighting to be used for luminance calculations in RGB order.
static const float3 LUMINANCE_VECTOR = float3(0.2125f, 0.7154f, 0.0721f);
//-----------------------------------------------------------------------------
// Functions
//-----------------------------------------------------------------------------
// Calculates the Rayleigh phase function
float getRayleighPhase( float angle )
{
return 0.75 * ( 1.0 + pow( angle, 2 ) );
}
// Returns the output rgb color given a texCoord and parameters it uses
// for lighting calculation.
float3 ComputeIllumination( float2 texCoord,
float3 vLightTS,
float3 vViewTS,
float3 vNormalTS )
{
//return noiseNormal;
//return vNormalTS;
float3 vLightTSAdj = float3( -vLightTS.x, -vLightTS.y, vLightTS.z );
float dp = dot( vNormalTS, vLightTSAdj );
// Calculate the amount of illumination (lightTerm)...
// We do both a rim lighting effect and a halfLambertian lighting effect
// and combine the result.
float halfLambertTerm = saturate( pow( dp * 0.5 + 0.5, 1 ) );
float rimLightTerm = pow( ( 1.0 - dp ), 1.0 );
float lightTerm = saturate( halfLambertTerm * 1.0 + rimLightTerm * dp );
lightTerm *= 0.5;
// Use a simple RayleighPhase function to simulate single scattering towards
// the camera.
float angle = dot( vLightTS, vViewTS );
lightTerm *= getRayleighPhase( angle );
// Combine terms and colors into the output color.
//float3 lightColor = ( lightTerm * sunColor * fOcclusionShadow ) + ambientColor;
float3 lightColor = lerp( ambientColor, sunColor, lightTerm );
//lightColor = lerp( lightColor, ambientColor, cloudCoverage );
float3 finalColor = cloudBaseColor * lightColor;
return finalColor;
}
float4 main( ConnectData IN ) : TORQUE_TARGET0
{
// Normalize the interpolated vectors:
float3 vViewTS = normalize( IN.vViewTS );
float3 vLightTS = normalize( IN.vLightTS );
float4 cResultColor = float4( 0, 0, 0, 1 );
float2 texSample = IN.texCoord12.xy;
float4 noise1 = TORQUE_TEX2D( normalHeightMap, IN.texCoord12.zw );
noise1 = normalize( ( noise1 - 0.5 ) * 2.0 );
//return noise1;
float4 noise2 = TORQUE_TEX2D(normalHeightMap, IN.texCoord34.xy);
noise2 = normalize( ( noise2 - 0.5 ) * 2.0 );
//return noise2;
float3 noiseNormal = normalize( noise1 + noise2 ).xyz;
//return float4( noiseNormal, 1.0 );
float noiseHeight = noise1.a * noise2.a * ( cloudCoverage / 2.0 + 0.5 );
float3 vNormalTS = normalize( TORQUE_TEX2D(normalHeightMap, texSample).xyz * 2.0 - 1.0);
vNormalTS += noiseNormal;
vNormalTS = normalize( vNormalTS );
// Compute resulting color for the pixel:
cResultColor.rgb = ComputeIllumination( texSample, vLightTS, vViewTS, vNormalTS );
float coverage = ( cloudCoverage - 0.5 ) * 2.0;
cResultColor.a = TORQUE_TEX2D(normalHeightMap, texSample).a + coverage + noiseHeight;
if ( cloudCoverage > -1.0 )
cResultColor.a /= 1.0 + coverage;
cResultColor.a = saturate( cResultColor.a * pow( saturate(cloudCoverage), 0.25 ) );
cResultColor.a = lerp( cResultColor.a, 0.0, 1.0 - pow(IN.worldDist,2.0) );
cResultColor.rgb *= cloudExposure;
return hdrEncode( cResultColor );
}