Torque3D/Engine/lib/openal-soft/Alc/effects/pshifter.c
2018-05-09 20:48:18 +10:00

526 lines
17 KiB
C
Raw Blame History

/**
* OpenAL cross platform audio library
* Copyright (C) 2018 by Raul Herraiz.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <math.h>
#include <stdlib.h>
#include "alMain.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
#include "filters/defs.h"
#define STFT_SIZE 1024
#define STFT_HALF_SIZE (STFT_SIZE>>1)
#define OVERSAMP (1<<2)
#define STFT_STEP (STFT_SIZE / OVERSAMP)
#define FIFO_LATENCY (STFT_STEP * (OVERSAMP-1))
typedef struct ALcomplex {
ALdouble Real;
ALdouble Imag;
} ALcomplex;
typedef struct ALphasor {
ALdouble Amplitude;
ALdouble Phase;
} ALphasor;
typedef struct ALFrequencyDomain {
ALdouble Amplitude;
ALdouble Frequency;
} ALfrequencyDomain;
typedef struct ALpshifterState {
DERIVE_FROM_TYPE(ALeffectState);
/* Effect parameters */
ALsizei count;
ALsizei PitchShiftI;
ALfloat PitchShift;
ALfloat FreqPerBin;
/*Effects buffers*/
ALfloat InFIFO[STFT_SIZE];
ALfloat OutFIFO[STFT_STEP];
ALdouble LastPhase[STFT_HALF_SIZE+1];
ALdouble SumPhase[STFT_HALF_SIZE+1];
ALdouble OutputAccum[STFT_SIZE];
ALcomplex FFTbuffer[STFT_SIZE];
ALfrequencyDomain Analysis_buffer[STFT_HALF_SIZE+1];
ALfrequencyDomain Syntesis_buffer[STFT_HALF_SIZE+1];
alignas(16) ALfloat BufferOut[BUFFERSIZE];
/* Effect gains for each output channel */
ALfloat CurrentGains[MAX_OUTPUT_CHANNELS];
ALfloat TargetGains[MAX_OUTPUT_CHANNELS];
} ALpshifterState;
static ALvoid ALpshifterState_Destruct(ALpshifterState *state);
static ALboolean ALpshifterState_deviceUpdate(ALpshifterState *state, ALCdevice *device);
static ALvoid ALpshifterState_update(ALpshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props);
static ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels);
DECLARE_DEFAULT_ALLOCATORS(ALpshifterState)
DEFINE_ALEFFECTSTATE_VTABLE(ALpshifterState);
/* Define a Hann window, used to filter the STFT input and output. */
alignas(16) static ALdouble HannWindow[STFT_SIZE];
static void InitHannWindow(void)
{
ALsizei i;
/* Create lookup table of the Hann window for the desired size, i.e. STFT_SIZE */
for(i = 0;i < STFT_SIZE>>1;i++)
{
ALdouble val = sin(M_PI * (ALdouble)i / (ALdouble)(STFT_SIZE-1));
HannWindow[i] = HannWindow[STFT_SIZE-1-i] = val * val;
}
}
static alonce_flag HannInitOnce = AL_ONCE_FLAG_INIT;
/* Fast double-to-int conversion. Assumes the FPU is already in round-to-zero
* mode. */
static inline ALint fastd2i(ALdouble d)
{
/* NOTE: SSE2 is required for the efficient double-to-int opcodes on x86.
* Otherwise, we need to rely on x87's fistp opcode with it already in
* round-to-zero mode. x86-64 guarantees SSE2 support.
*/
#if (defined(__i386__) && !defined(__SSE2_MATH__)) || (defined(_M_IX86_FP) && (_M_IX86_FP < 2))
#ifdef HAVE_LRINTF
return lrint(d);
#elif defined(_MSC_VER) && defined(_M_IX86)
ALint i;
__asm fld d
__asm fistp i
return i;
#else
return (ALint)d;
#endif
#else
return (ALint)d;
#endif
}
/* Converts ALcomplex to ALphasor */
static inline ALphasor rect2polar(ALcomplex number)
{
ALphasor polar;
polar.Amplitude = sqrt(number.Real*number.Real + number.Imag*number.Imag);
polar.Phase = atan2(number.Imag, number.Real);
return polar;
}
/* Converts ALphasor to ALcomplex */
static inline ALcomplex polar2rect(ALphasor number)
{
ALcomplex cartesian;
cartesian.Real = number.Amplitude * cos(number.Phase);
cartesian.Imag = number.Amplitude * sin(number.Phase);
return cartesian;
}
/* Addition of two complex numbers (ALcomplex format) */
static inline ALcomplex complex_add(ALcomplex a, ALcomplex b)
{
ALcomplex result;
result.Real = a.Real + b.Real;
result.Imag = a.Imag + b.Imag;
return result;
}
/* Subtraction of two complex numbers (ALcomplex format) */
static inline ALcomplex complex_sub(ALcomplex a, ALcomplex b)
{
ALcomplex result;
result.Real = a.Real - b.Real;
result.Imag = a.Imag - b.Imag;
return result;
}
/* Multiplication of two complex numbers (ALcomplex format) */
static inline ALcomplex complex_mult(ALcomplex a, ALcomplex b)
{
ALcomplex result;
result.Real = a.Real*b.Real - a.Imag*b.Imag;
result.Imag = a.Imag*b.Real + a.Real*b.Imag;
return result;
}
/* Iterative implementation of 2-radix FFT (In-place algorithm). Sign = -1 is
* FFT and 1 is iFFT (inverse). Fills FFTBuffer[0...FFTSize-1] with the
* Discrete Fourier Transform (DFT) of the time domain data stored in
* FFTBuffer[0...FFTSize-1]. FFTBuffer is an array of complex numbers
* (ALcomplex), FFTSize MUST BE power of two.
*/
static inline ALvoid FFT(ALcomplex *FFTBuffer, ALsizei FFTSize, ALdouble Sign)
{
ALsizei i, j, k, mask, step, step2;
ALcomplex temp, u, w;
ALdouble arg;
/* Bit-reversal permutation applied to a sequence of FFTSize items */
for(i = 1;i < FFTSize-1;i++)
{
for(mask = 0x1, j = 0;mask < FFTSize;mask <<= 1)
{
if((i&mask) != 0)
j++;
j <<= 1;
}
j >>= 1;
if(i < j)
{
temp = FFTBuffer[i];
FFTBuffer[i] = FFTBuffer[j];
FFTBuffer[j] = temp;
}
}
/* Iterative form of Danielson<6F>Lanczos lemma */
for(i = 1, step = 2;i < FFTSize;i<<=1, step<<=1)
{
step2 = step >> 1;
arg = M_PI / step2;
w.Real = cos(arg);
w.Imag = sin(arg) * Sign;
u.Real = 1.0;
u.Imag = 0.0;
for(j = 0;j < step2;j++)
{
for(k = j;k < FFTSize;k+=step)
{
temp = complex_mult(FFTBuffer[k+step2], u);
FFTBuffer[k+step2] = complex_sub(FFTBuffer[k], temp);
FFTBuffer[k] = complex_add(FFTBuffer[k], temp);
}
u = complex_mult(u, w);
}
}
}
static void ALpshifterState_Construct(ALpshifterState *state)
{
ALeffectState_Construct(STATIC_CAST(ALeffectState, state));
SET_VTABLE2(ALpshifterState, ALeffectState, state);
alcall_once(&HannInitOnce, InitHannWindow);
}
static ALvoid ALpshifterState_Destruct(ALpshifterState *state)
{
ALeffectState_Destruct(STATIC_CAST(ALeffectState,state));
}
static ALboolean ALpshifterState_deviceUpdate(ALpshifterState *state, ALCdevice *device)
{
/* (Re-)initializing parameters and clear the buffers. */
state->count = FIFO_LATENCY;
state->PitchShiftI = FRACTIONONE;
state->PitchShift = 1.0f;
state->FreqPerBin = device->Frequency / (ALfloat)STFT_SIZE;
memset(state->InFIFO, 0, sizeof(state->InFIFO));
memset(state->OutFIFO, 0, sizeof(state->OutFIFO));
memset(state->FFTbuffer, 0, sizeof(state->FFTbuffer));
memset(state->LastPhase, 0, sizeof(state->LastPhase));
memset(state->SumPhase, 0, sizeof(state->SumPhase));
memset(state->OutputAccum, 0, sizeof(state->OutputAccum));
memset(state->Analysis_buffer, 0, sizeof(state->Analysis_buffer));
memset(state->Syntesis_buffer, 0, sizeof(state->Syntesis_buffer));
memset(state->CurrentGains, 0, sizeof(state->CurrentGains));
memset(state->TargetGains, 0, sizeof(state->TargetGains));
return AL_TRUE;
}
static ALvoid ALpshifterState_update(ALpshifterState *state, const ALCcontext *context, const ALeffectslot *slot, const ALeffectProps *props)
{
const ALCdevice *device = context->Device;
ALfloat coeffs[MAX_AMBI_COEFFS];
float pitch;
pitch = powf(2.0f,
(ALfloat)(props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune) / 1200.0f
);
state->PitchShiftI = (ALsizei)(pitch*FRACTIONONE + 0.5f);
state->PitchShift = state->PitchShiftI * (1.0f/FRACTIONONE);
CalcAngleCoeffs(0.0f, 0.0f, 0.0f, coeffs);
ComputeDryPanGains(&device->Dry, coeffs, slot->Params.Gain, state->TargetGains);
}
static ALvoid ALpshifterState_process(ALpshifterState *state, ALsizei SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALsizei NumChannels)
{
/* Pitch shifter engine based on the work of Stephan Bernsee.
* http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/
*/
static const ALdouble expected = M_PI*2.0 / OVERSAMP;
const ALdouble freq_per_bin = state->FreqPerBin;
ALfloat *restrict bufferOut = state->BufferOut;
ALsizei count = state->count;
ALsizei i, j, k;
for(i = 0;i < SamplesToDo;)
{
do {
/* Fill FIFO buffer with samples data */
state->InFIFO[count] = SamplesIn[0][i];
bufferOut[i] = state->OutFIFO[count - FIFO_LATENCY];
count++;
} while(++i < SamplesToDo && count < STFT_SIZE);
/* Check whether FIFO buffer is filled */
if(count < STFT_SIZE) break;
count = FIFO_LATENCY;
/* Real signal windowing and store in FFTbuffer */
for(k = 0;k < STFT_SIZE;k++)
{
state->FFTbuffer[k].Real = state->InFIFO[k] * HannWindow[k];
state->FFTbuffer[k].Imag = 0.0;
}
/* ANALYSIS */
/* Apply FFT to FFTbuffer data */
FFT(state->FFTbuffer, STFT_SIZE, -1.0);
/* Analyze the obtained data. Since the real FFT is symmetric, only
* STFT_HALF_SIZE+1 samples are needed.
*/
for(k = 0;k < STFT_HALF_SIZE+1;k++)
{
ALphasor component;
ALdouble tmp;
ALint qpd;
/* Compute amplitude and phase */
component = rect2polar(state->FFTbuffer[k]);
/* Compute phase difference and subtract expected phase difference */
tmp = (component.Phase - state->LastPhase[k]) - k*expected;
/* Map delta phase into +/- Pi interval */
qpd = fastd2i(tmp / M_PI);
tmp -= M_PI * (qpd + (qpd%2));
/* Get deviation from bin frequency from the +/- Pi interval */
tmp /= expected;
/* Compute the k-th partials' true frequency, twice the amplitude
* for maintain the gain (because half of bins are used) and store
* amplitude and true frequency in analysis buffer.
*/
state->Analysis_buffer[k].Amplitude = 2.0 * component.Amplitude;
state->Analysis_buffer[k].Frequency = (k + tmp) * freq_per_bin;
/* Store actual phase[k] for the calculations in the next frame*/
state->LastPhase[k] = component.Phase;
}
/* PROCESSING */
/* pitch shifting */
for(k = 0;k < STFT_HALF_SIZE+1;k++)
{
state->Syntesis_buffer[k].Amplitude = 0.0;
state->Syntesis_buffer[k].Frequency = 0.0;
}
for(k = 0;k < STFT_HALF_SIZE+1;k++)
{
j = (k*state->PitchShiftI) >> FRACTIONBITS;
if(j >= STFT_HALF_SIZE+1) break;
state->Syntesis_buffer[j].Amplitude += state->Analysis_buffer[k].Amplitude;
state->Syntesis_buffer[j].Frequency = state->Analysis_buffer[k].Frequency *
state->PitchShift;
}
/* SYNTHESIS */
/* Synthesis the processing data */
for(k = 0;k < STFT_HALF_SIZE+1;k++)
{
ALphasor component;
ALdouble tmp;
/* Compute bin deviation from scaled freq */
tmp = state->Syntesis_buffer[k].Frequency/freq_per_bin - k;
/* Calculate actual delta phase and accumulate it to get bin phase */
state->SumPhase[k] += (k + tmp) * expected;
component.Amplitude = state->Syntesis_buffer[k].Amplitude;
component.Phase = state->SumPhase[k];
/* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/
state->FFTbuffer[k] = polar2rect(component);
}
/* zero negative frequencies for recontruct a real signal */
for(k = STFT_HALF_SIZE+1;k < STFT_SIZE;k++)
{
state->FFTbuffer[k].Real = 0.0;
state->FFTbuffer[k].Imag = 0.0;
}
/* Apply iFFT to buffer data */
FFT(state->FFTbuffer, STFT_SIZE, 1.0);
/* Windowing and add to output */
for(k = 0;k < STFT_SIZE;k++)
state->OutputAccum[k] += HannWindow[k] * state->FFTbuffer[k].Real /
(0.5 * STFT_HALF_SIZE * OVERSAMP);
/* Shift accumulator, input & output FIFO */
for(k = 0;k < STFT_STEP;k++) state->OutFIFO[k] = (ALfloat)state->OutputAccum[k];
for(j = 0;k < STFT_SIZE;k++,j++) state->OutputAccum[j] = state->OutputAccum[k];
for(;j < STFT_SIZE;j++) state->OutputAccum[j] = 0.0;
for(k = 0;k < FIFO_LATENCY;k++)
state->InFIFO[k] = state->InFIFO[k+STFT_STEP];
}
state->count = count;
/* Now, mix the processed sound data to the output. */
MixSamples(bufferOut, NumChannels, SamplesOut, state->CurrentGains, state->TargetGains,
maxi(SamplesToDo, 512), 0, SamplesToDo);
}
typedef struct PshifterStateFactory {
DERIVE_FROM_TYPE(EffectStateFactory);
} PshifterStateFactory;
static ALeffectState *PshifterStateFactory_create(PshifterStateFactory *UNUSED(factory))
{
ALpshifterState *state;
NEW_OBJ0(state, ALpshifterState)();
if(!state) return NULL;
return STATIC_CAST(ALeffectState, state);
}
DEFINE_EFFECTSTATEFACTORY_VTABLE(PshifterStateFactory);
EffectStateFactory *PshifterStateFactory_getFactory(void)
{
static PshifterStateFactory PshifterFactory = { { GET_VTABLE2(PshifterStateFactory, EffectStateFactory) } };
return STATIC_CAST(EffectStateFactory, &PshifterFactory);
}
void ALpshifter_setParamf(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat UNUSED(val))
{
alSetError( context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param );
}
void ALpshifter_setParamfv(ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, const ALfloat *UNUSED(vals))
{
alSetError( context, AL_INVALID_ENUM, "Invalid pitch shifter float-vector property 0x%04x", param );
}
void ALpshifter_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
{
ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_PITCH_SHIFTER_COARSE_TUNE:
if(!(val >= AL_PITCH_SHIFTER_MIN_COARSE_TUNE && val <= AL_PITCH_SHIFTER_MAX_COARSE_TUNE))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter coarse tune out of range");
props->Pshifter.CoarseTune = val;
break;
case AL_PITCH_SHIFTER_FINE_TUNE:
if(!(val >= AL_PITCH_SHIFTER_MIN_FINE_TUNE && val <= AL_PITCH_SHIFTER_MAX_FINE_TUNE))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter fine tune out of range");
props->Pshifter.FineTune = val;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param);
}
}
void ALpshifter_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
{
ALpshifter_setParami(effect, context, param, vals[0]);
}
void ALpshifter_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
{
const ALeffectProps *props = &effect->Props;
switch(param)
{
case AL_PITCH_SHIFTER_COARSE_TUNE:
*val = (ALint)props->Pshifter.CoarseTune;
break;
case AL_PITCH_SHIFTER_FINE_TUNE:
*val = (ALint)props->Pshifter.FineTune;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param);
}
}
void ALpshifter_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
{
ALpshifter_getParami(effect, context, param, vals);
}
void ALpshifter_getParamf(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(val))
{
alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param);
}
void ALpshifter_getParamfv(const ALeffect *UNUSED(effect), ALCcontext *context, ALenum param, ALfloat *UNUSED(vals))
{
alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float vector-property 0x%04x", param);
}
DEFINE_ALEFFECT_VTABLE(ALpshifter);