mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-19 20:24:49 +00:00
721 lines
27 KiB
C++
721 lines
27 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Copyright (c) 2012 GarageGames, LLC
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to
|
|
// deal in the Software without restriction, including without limitation the
|
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
// sell copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
// IN THE SOFTWARE.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "platform/platform.h"
|
|
#include "lighting/advanced/glsl/advancedLightingFeaturesGLSL.h"
|
|
|
|
#include "lighting/advanced/advancedLightBinManager.h"
|
|
#include "shaderGen/langElement.h"
|
|
#include "shaderGen/shaderOp.h"
|
|
#include "shaderGen/conditionerFeature.h"
|
|
#include "renderInstance/renderDeferredMgr.h"
|
|
#include "materials/processedMaterial.h"
|
|
#include "materials/materialFeatureTypes.h"
|
|
|
|
|
|
void DeferredRTLightingFeatGLSL::processPixMacros( Vector<GFXShaderMacro> ¯os,
|
|
const MaterialFeatureData &fd )
|
|
{
|
|
// Skip deferred features, and use forward shading instead
|
|
if ( fd.features[MFT_ForwardShading] )
|
|
{
|
|
Parent::processPixMacros( macros, fd );
|
|
return;
|
|
}
|
|
|
|
// Pull in the uncondition method for the light info buffer
|
|
NamedTexTarget *texTarget = NamedTexTarget::find( AdvancedLightBinManager::smBufferName );
|
|
if ( texTarget && texTarget->getConditioner() )
|
|
{
|
|
ConditionerMethodDependency *unconditionMethod = texTarget->getConditioner()->getConditionerMethodDependency(ConditionerFeature::UnconditionMethod);
|
|
unconditionMethod->createMethodMacro( String::ToLower( AdvancedLightBinManager::smBufferName ) + "Uncondition", macros );
|
|
addDependency(unconditionMethod);
|
|
}
|
|
}
|
|
|
|
void DeferredRTLightingFeatGLSL::processVert( Vector<ShaderComponent*> &componentList,
|
|
const MaterialFeatureData &fd )
|
|
{
|
|
// Skip deferred features, and use forward shading instead
|
|
if ( fd.features[MFT_ForwardShading] )
|
|
{
|
|
Parent::processVert( componentList, fd );
|
|
return;
|
|
}
|
|
|
|
// Pass screen space position to pixel shader to compute a full screen buffer uv
|
|
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
|
|
Var *ssPos = connectComp->getElement( RT_TEXCOORD );
|
|
ssPos->setName( "screenspacePos" );
|
|
ssPos->setStructName( "OUT" );
|
|
ssPos->setType( "vec4" );
|
|
|
|
Var *outPosition = (Var*) LangElement::find( "gl_Position" );
|
|
AssertFatal( outPosition, "No gl_Position, ohnoes." );
|
|
|
|
output = new GenOp( " @ = @;\r\n", ssPos, outPosition );
|
|
}
|
|
|
|
void DeferredRTLightingFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
|
|
const MaterialFeatureData &fd )
|
|
{
|
|
// Skip deferred features, and use forward shading instead
|
|
if ( fd.features[MFT_ForwardShading] )
|
|
{
|
|
Parent::processPix( componentList, fd );
|
|
return;
|
|
}
|
|
|
|
MultiLine *meta = new MultiLine;
|
|
|
|
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
|
|
Var *ssPos = connectComp->getElement( RT_TEXCOORD );
|
|
ssPos->setName( "screenspacePos" );
|
|
ssPos->setStructName( "IN" );
|
|
ssPos->setType( "vec4" );
|
|
|
|
Var *uvScene = new Var;
|
|
uvScene->setType( "vec2" );
|
|
uvScene->setName( "uvScene" );
|
|
LangElement *uvSceneDecl = new DecOp( uvScene );
|
|
|
|
String rtParamName = String::ToString( "rtParams%s", "lightInfoBuffer" );
|
|
Var *rtParams = (Var*) LangElement::find( rtParamName );
|
|
if( !rtParams )
|
|
{
|
|
rtParams = new Var;
|
|
rtParams->setType( "vec4" );
|
|
rtParams->setName( rtParamName );
|
|
rtParams->uniform = true;
|
|
rtParams->constSortPos = cspPass;
|
|
}
|
|
|
|
meta->addStatement( new GenOp( " @ = @.xy / @.w;\r\n", uvSceneDecl, ssPos, ssPos ) ); // get the screen coord... its -1 to +1
|
|
meta->addStatement( new GenOp( " @ = ( @ + 1.0 ) / 2.0;\r\n", uvScene, uvScene ) ); // get the screen coord to 0 to 1
|
|
meta->addStatement( new GenOp( " @.y = 1.0 - @.y;\r\n", uvScene, uvScene ) ); // flip the y axis
|
|
meta->addStatement( new GenOp( " @ = ( @ * @.zw ) + @.xy;\r\n", uvScene, uvScene, rtParams, rtParams) ); // scale it down and offset it to the rt size
|
|
|
|
Var *lightInfoSamp = new Var;
|
|
lightInfoSamp->setType( "vec4" );
|
|
lightInfoSamp->setName( "lightInfoSample" );
|
|
|
|
// create texture var
|
|
Var *lightInfoBuffer = new Var;
|
|
lightInfoBuffer->setType( "sampler2D" );
|
|
lightInfoBuffer->setName( "lightInfoBuffer" );
|
|
lightInfoBuffer->uniform = true;
|
|
lightInfoBuffer->sampler = true;
|
|
lightInfoBuffer->constNum = Var::getTexUnitNum(); // used as texture unit num here
|
|
|
|
// Declare the RTLighting variables in this feature, they will either be assigned
|
|
// in this feature, or in the tonemap/lightmap feature
|
|
Var *d_lightcolor = new Var( "d_lightcolor", "vec3" );
|
|
meta->addStatement( new GenOp( " @;\r\n", new DecOp( d_lightcolor ) ) );
|
|
|
|
Var *d_NL_Att = new Var( "d_NL_Att", "float" );
|
|
meta->addStatement( new GenOp( " @;\r\n", new DecOp( d_NL_Att ) ) );
|
|
|
|
Var *d_specular = new Var( "d_specular", "float" );
|
|
meta->addStatement( new GenOp( " @;\r\n", new DecOp( d_specular ) ) );
|
|
|
|
|
|
// Perform the uncondition here.
|
|
String unconditionLightInfo = String::ToLower( AdvancedLightBinManager::smBufferName ) + "Uncondition";
|
|
meta->addStatement( new GenOp( avar( " %s(tex2D(@, @), @, @, @);\r\n",
|
|
unconditionLightInfo.c_str() ), lightInfoBuffer, uvScene, d_lightcolor, d_NL_Att, d_specular ) );
|
|
|
|
// If this has an interlaced pre-pass, do averaging here
|
|
if( fd.features[MFT_InterlacedDeferred] )
|
|
{
|
|
Var *oneOverTargetSize = (Var*) LangElement::find( "oneOverTargetSize" );
|
|
if( !oneOverTargetSize )
|
|
{
|
|
oneOverTargetSize = new Var;
|
|
oneOverTargetSize->setType( "vec2" );
|
|
oneOverTargetSize->setName( "oneOverTargetSize" );
|
|
oneOverTargetSize->uniform = true;
|
|
oneOverTargetSize->constSortPos = cspPass;
|
|
}
|
|
|
|
meta->addStatement( new GenOp( " float id_NL_Att, id_specular;\r\n vec3 id_lightcolor;\r\n" ) );
|
|
meta->addStatement( new GenOp( avar( " %s(tex2D(@, @ + vec2(0.0, @.y)), id_lightcolor, id_NL_Att, id_specular);\r\n",
|
|
unconditionLightInfo.c_str() ), lightInfoBuffer, uvScene, oneOverTargetSize ) );
|
|
|
|
meta->addStatement( new GenOp(" @ = lerp(@, id_lightcolor, 0.5);\r\n", d_lightcolor, d_lightcolor ) );
|
|
meta->addStatement( new GenOp(" @ = lerp(@, id_NL_Att, 0.5);\r\n", d_NL_Att, d_NL_Att ) );
|
|
meta->addStatement( new GenOp(" @ = lerp(@, id_specular, 0.5);\r\n", d_specular, d_specular ) );
|
|
}
|
|
|
|
// This is kind of weak sauce
|
|
if( !fd.features[MFT_VertLit] && !fd.features[MFT_ToneMap] && !fd.features[MFT_LightMap] && !fd.features[MFT_SubSurface] )
|
|
meta->addStatement( new GenOp( " @;\r\n", assignColor( new GenOp( "vec4(@, 1.0)", d_lightcolor ), Material::Mul ) ) );
|
|
|
|
output = meta;
|
|
}
|
|
|
|
ShaderFeature::Resources DeferredRTLightingFeatGLSL::getResources( const MaterialFeatureData &fd )
|
|
{
|
|
// Skip deferred features, and use forward shading instead
|
|
if ( fd.features[MFT_ForwardShading] )
|
|
return Parent::getResources( fd );
|
|
|
|
// HACK: See DeferredRTLightingFeatGLSL::setTexData.
|
|
mLastTexIndex = 0;
|
|
|
|
Resources res;
|
|
res.numTex = 1;
|
|
res.numTexReg = 1;
|
|
return res;
|
|
}
|
|
|
|
void DeferredRTLightingFeatGLSL::setTexData( Material::StageData &stageDat,
|
|
const MaterialFeatureData &fd,
|
|
RenderPassData &passData,
|
|
U32 &texIndex )
|
|
{
|
|
// Skip deferred features, and use forward shading instead
|
|
if ( fd.features[MFT_ForwardShading] )
|
|
{
|
|
Parent::setTexData( stageDat, fd, passData, texIndex );
|
|
return;
|
|
}
|
|
|
|
NamedTexTarget *texTarget = NamedTexTarget::find( AdvancedLightBinManager::smBufferName );
|
|
if( texTarget )
|
|
{
|
|
// HACK: We store this for use in DeferredRTLightingFeatGLSL::processPix()
|
|
// which cannot deduce the texture unit itself.
|
|
mLastTexIndex = texIndex;
|
|
|
|
passData.mTexType[ texIndex ] = Material::TexTarget;
|
|
passData.mSamplerNames[ texIndex ]= "lightInfoBuffer";
|
|
passData.mTexSlot[ texIndex++ ].texTarget = texTarget;
|
|
}
|
|
}
|
|
|
|
|
|
void DeferredBumpFeatGLSL::processVert( Vector<ShaderComponent*> &componentList,
|
|
const MaterialFeatureData &fd )
|
|
{
|
|
if( fd.features[MFT_DeferredConditioner] )
|
|
{
|
|
// There is an output conditioner active, so we need to supply a transform
|
|
// to the pixel shader.
|
|
MultiLine *meta = new MultiLine;
|
|
|
|
// We need the view to tangent space transform in the pixel shader.
|
|
getOutViewToTangent( componentList, meta, fd );
|
|
|
|
const bool useTexAnim = fd.features[MFT_TexAnim];
|
|
// Make sure there are texcoords
|
|
if( !fd.features[MFT_Parallax] && !fd.features[MFT_DiffuseMap] )
|
|
{
|
|
|
|
getOutTexCoord( "texCoord",
|
|
"vec2",
|
|
useTexAnim,
|
|
meta,
|
|
componentList );
|
|
}
|
|
|
|
if ( fd.features.hasFeature( MFT_DetailNormalMap ) )
|
|
addOutDetailTexCoord( componentList,
|
|
meta,
|
|
useTexAnim );
|
|
|
|
output = meta;
|
|
}
|
|
else if ( fd.materialFeatures[MFT_NormalsOut] ||
|
|
fd.features[MFT_ForwardShading] ||
|
|
!fd.features[MFT_RTLighting] )
|
|
{
|
|
Parent::processVert( componentList, fd );
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
output = NULL;
|
|
}
|
|
}
|
|
|
|
void DeferredBumpFeatGLSL::processPix( Vector<ShaderComponent*> &componentList,
|
|
const MaterialFeatureData &fd )
|
|
{
|
|
// NULL output in case nothing gets handled
|
|
output = NULL;
|
|
|
|
if( fd.features[MFT_DeferredConditioner] )
|
|
{
|
|
MultiLine *meta = new MultiLine;
|
|
|
|
Var *viewToTangent = getInViewToTangent( componentList );
|
|
|
|
// create texture var
|
|
Var *bumpMap = getNormalMapTex();
|
|
Var *texCoord = getInTexCoord( "texCoord", "vec2", componentList );
|
|
LangElement *texOp = new GenOp( "tex2D(@, @)", bumpMap, texCoord );
|
|
|
|
// create bump normal
|
|
Var *bumpNorm = new Var;
|
|
bumpNorm->setName( "bumpNormal" );
|
|
bumpNorm->setType( "vec4" );
|
|
|
|
LangElement *bumpNormDecl = new DecOp( bumpNorm );
|
|
meta->addStatement( expandNormalMap( texOp, bumpNormDecl, bumpNorm, fd ) );
|
|
|
|
// If we have a detail normal map we add the xy coords of
|
|
// it to the base normal map. This gives us the effect we
|
|
// want with few instructions and minial artifacts.
|
|
if ( fd.features.hasFeature( MFT_DetailNormalMap ) )
|
|
{
|
|
bumpMap = new Var;
|
|
bumpMap->setType( "sampler2D" );
|
|
bumpMap->setName( "detailBumpMap" );
|
|
bumpMap->uniform = true;
|
|
bumpMap->sampler = true;
|
|
bumpMap->constNum = Var::getTexUnitNum();
|
|
|
|
texCoord = getInTexCoord( "detCoord", "vec2", componentList );
|
|
texOp = new GenOp( "tex2D(@, @)", bumpMap, texCoord );
|
|
|
|
Var *detailBump = new Var;
|
|
detailBump->setName( "detailBump" );
|
|
detailBump->setType( "vec4" );
|
|
meta->addStatement( expandNormalMap( texOp, new DecOp( detailBump ), detailBump, fd ) );
|
|
|
|
Var *detailBumpScale = new Var;
|
|
detailBumpScale->setType( "float" );
|
|
detailBumpScale->setName( "detailBumpStrength" );
|
|
detailBumpScale->uniform = true;
|
|
detailBumpScale->constSortPos = cspPass;
|
|
meta->addStatement( new GenOp( " @.xy += @.xy * @;\r\n", bumpNorm, detailBump, detailBumpScale ) );
|
|
}
|
|
|
|
// This var is read from GBufferConditionerGLSL and
|
|
// used in the deferred output.
|
|
//
|
|
// By using the 'half' type here we get a bunch of partial
|
|
// precision optimized code on further operations on the normal
|
|
// which helps alot on older Geforce cards.
|
|
//
|
|
Var *gbNormal = new Var;
|
|
gbNormal->setName( "gbNormal" );
|
|
gbNormal->setType( "half3" );
|
|
LangElement *gbNormalDecl = new DecOp( gbNormal );
|
|
|
|
// Normalize is done later...
|
|
// Note: The reverse mul order is intentional. Affine matrix.
|
|
meta->addStatement( new GenOp( " @ = half3(tMul( @.xyz, @ ));\r\n", gbNormalDecl, bumpNorm, viewToTangent ) );
|
|
|
|
output = meta;
|
|
return;
|
|
}
|
|
|
|
else if (fd.features[MFT_AccuMap])
|
|
{
|
|
Var *bumpSample = (Var *)LangElement::find("bumpSample");
|
|
if (bumpSample == NULL)
|
|
{
|
|
MultiLine *meta = new MultiLine;
|
|
|
|
Var *texCoord = getInTexCoord("texCoord", "vec2", componentList);
|
|
|
|
Var *bumpMap = getNormalMapTex();
|
|
|
|
bumpSample = new Var;
|
|
bumpSample->setType("vec4");
|
|
bumpSample->setName("bumpSample");
|
|
LangElement *bumpSampleDecl = new DecOp(bumpSample);
|
|
|
|
meta->addStatement(new GenOp(" @ = tex2D(@, @);\r\n", bumpSampleDecl, bumpMap, texCoord));
|
|
|
|
if (fd.features.hasFeature(MFT_DetailNormalMap))
|
|
{
|
|
Var *bumpMap = (Var*)LangElement::find("detailBumpMap");
|
|
if (!bumpMap) {
|
|
bumpMap = new Var;
|
|
bumpMap->setType("sampler2D");
|
|
bumpMap->setName("detailBumpMap");
|
|
bumpMap->uniform = true;
|
|
bumpMap->sampler = true;
|
|
bumpMap->constNum = Var::getTexUnitNum();
|
|
}
|
|
|
|
texCoord = getInTexCoord("detCoord", "vec2", componentList);
|
|
LangElement *texOp = new GenOp("tex2D(@, @)", bumpMap, texCoord);
|
|
|
|
Var *detailBump = new Var;
|
|
detailBump->setName("detailBump");
|
|
detailBump->setType("vec4");
|
|
meta->addStatement(expandNormalMap(texOp, new DecOp(detailBump), detailBump, fd));
|
|
|
|
Var *detailBumpScale = new Var;
|
|
detailBumpScale->setType("float");
|
|
detailBumpScale->setName("detailBumpStrength");
|
|
detailBumpScale->uniform = true;
|
|
detailBumpScale->constSortPos = cspPass;
|
|
meta->addStatement(new GenOp(" @.xy += @.xy * @;\r\n", bumpSample, detailBump, detailBumpScale));
|
|
}
|
|
|
|
output = meta;
|
|
|
|
return;
|
|
}
|
|
}
|
|
else if ( fd.materialFeatures[MFT_NormalsOut] ||
|
|
fd.features[MFT_ForwardShading] ||
|
|
!fd.features[MFT_RTLighting] )
|
|
{
|
|
Parent::processPix( componentList, fd );
|
|
return;
|
|
}
|
|
else if ( fd.features[MFT_PixSpecular] && !fd.features[MFT_SpecularMap] )
|
|
{
|
|
Var *bumpSample = (Var *)LangElement::find( "bumpSample" );
|
|
if( bumpSample == NULL )
|
|
{
|
|
Var *texCoord = getInTexCoord( "texCoord", "vec2", componentList );
|
|
|
|
Var *bumpMap = getNormalMapTex();
|
|
|
|
bumpSample = new Var;
|
|
bumpSample->setType( "vec4" );
|
|
bumpSample->setName( "bumpSample" );
|
|
LangElement *bumpSampleDecl = new DecOp( bumpSample );
|
|
|
|
output = new GenOp( " @ = tex2D(@, @);\r\n", bumpSampleDecl, bumpMap, texCoord );
|
|
return;
|
|
}
|
|
}
|
|
|
|
output = NULL;
|
|
}
|
|
|
|
ShaderFeature::Resources DeferredBumpFeatGLSL::getResources( const MaterialFeatureData &fd )
|
|
{
|
|
if ( fd.materialFeatures[MFT_NormalsOut] ||
|
|
fd.features[MFT_ForwardShading] ||
|
|
fd.features[MFT_Parallax] ||
|
|
!fd.features[MFT_RTLighting] )
|
|
return Parent::getResources( fd );
|
|
|
|
Resources res;
|
|
if(!fd.features[MFT_SpecularMap])
|
|
{
|
|
res.numTex = 1;
|
|
res.numTexReg = 1;
|
|
|
|
if ( fd.features[MFT_DeferredConditioner] &&
|
|
fd.features.hasFeature( MFT_DetailNormalMap ) )
|
|
{
|
|
res.numTex += 1;
|
|
if ( !fd.features.hasFeature( MFT_DetailMap ) )
|
|
res.numTexReg += 1;
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
void DeferredBumpFeatGLSL::setTexData( Material::StageData &stageDat,
|
|
const MaterialFeatureData &fd,
|
|
RenderPassData &passData,
|
|
U32 &texIndex )
|
|
{
|
|
if ( fd.materialFeatures[MFT_NormalsOut] ||
|
|
fd.features[MFT_ForwardShading] ||
|
|
!fd.features[MFT_RTLighting] )
|
|
{
|
|
Parent::setTexData( stageDat, fd, passData, texIndex );
|
|
return;
|
|
}
|
|
|
|
if (!fd.features[MFT_DeferredConditioner] && fd.features[MFT_AccuMap])
|
|
{
|
|
passData.mTexType[texIndex] = Material::Bump;
|
|
passData.mSamplerNames[texIndex] = "bumpMap";
|
|
passData.mTexSlot[texIndex++].texObject = stageDat.getTex(MFT_NormalMap);
|
|
|
|
if (fd.features.hasFeature(MFT_DetailNormalMap))
|
|
{
|
|
passData.mTexType[texIndex] = Material::DetailBump;
|
|
passData.mSamplerNames[texIndex] = "detailBumpMap";
|
|
passData.mTexSlot[texIndex++].texObject = stageDat.getTex(MFT_DetailNormalMap);
|
|
}
|
|
}
|
|
else if (!fd.features[MFT_Parallax] && !fd.features[MFT_SpecularMap] &&
|
|
( fd.features[MFT_DeferredConditioner] ||
|
|
fd.features[MFT_PixSpecular] ) )
|
|
{
|
|
passData.mTexType[ texIndex ] = Material::Bump;
|
|
passData.mSamplerNames[ texIndex ] = "bumpMap";
|
|
passData.mTexSlot[ texIndex++ ].texObject = stageDat.getTex( MFT_NormalMap );
|
|
|
|
if ( fd.features[MFT_DeferredConditioner] &&
|
|
fd.features.hasFeature( MFT_DetailNormalMap ) )
|
|
{
|
|
passData.mTexType[ texIndex ] = Material::DetailBump;
|
|
passData.mSamplerNames[ texIndex ] = "detailBumpMap";
|
|
passData.mTexSlot[ texIndex++ ].texObject = stageDat.getTex( MFT_DetailNormalMap );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void DeferredPixelSpecularGLSL::processVert( Vector<ShaderComponent*> &componentList,
|
|
const MaterialFeatureData &fd )
|
|
{
|
|
if( fd.features[MFT_ForwardShading] || !fd.features[MFT_RTLighting] )
|
|
{
|
|
Parent::processVert( componentList, fd );
|
|
return;
|
|
}
|
|
output = NULL;
|
|
}
|
|
|
|
void DeferredPixelSpecularGLSL::processPix( Vector<ShaderComponent*> &componentList,
|
|
const MaterialFeatureData &fd )
|
|
{
|
|
if( fd.features[MFT_ForwardShading] || !fd.features[MFT_RTLighting] )
|
|
{
|
|
Parent::processPix( componentList, fd );
|
|
return;
|
|
}
|
|
|
|
MultiLine *meta = new MultiLine;
|
|
|
|
Var *specular = new Var;
|
|
specular->setType( "float" );
|
|
specular->setName( "specular" );
|
|
LangElement * specDecl = new DecOp( specular );
|
|
|
|
Var *specCol = (Var*)LangElement::find( "specularColor" );
|
|
if(specCol == NULL)
|
|
{
|
|
specCol = new Var;
|
|
specCol->setType( "vec4" );
|
|
specCol->setName( "specularColor" );
|
|
specCol->uniform = true;
|
|
specCol->constSortPos = cspPotentialPrimitive;
|
|
}
|
|
|
|
Var *specPow = new Var;
|
|
specPow->setType( "float" );
|
|
specPow->setName( "specularPower" );
|
|
|
|
// If the gloss map flag is set, than the specular power is in the alpha
|
|
// channel of the specular map
|
|
if( fd.features[ MFT_GlossMap ] )
|
|
meta->addStatement( new GenOp( " @ = @.a * 255;\r\n", new DecOp( specPow ), specCol ) );
|
|
else
|
|
{
|
|
specPow->uniform = true;
|
|
specPow->constSortPos = cspPotentialPrimitive;
|
|
}
|
|
|
|
Var *specStrength = (Var*)LangElement::find( "specularStrength" );
|
|
if (!specStrength)
|
|
{
|
|
specStrength = new Var( "specularStrength", "float" );
|
|
specStrength->uniform = true;
|
|
specStrength->constSortPos = cspPotentialPrimitive;
|
|
}
|
|
|
|
Var *lightInfoSamp = (Var *)LangElement::find( "lightInfoSample" );
|
|
Var *d_specular = (Var*)LangElement::find( "d_specular" );
|
|
Var *d_NL_Att = (Var*)LangElement::find( "d_NL_Att" );
|
|
|
|
AssertFatal( lightInfoSamp && d_specular && d_NL_Att,
|
|
"DeferredPixelSpecularGLSL::processPix - Something hosed the deferred features!" );
|
|
|
|
if (fd.features[MFT_AccuMap]) {
|
|
// change specularity where the accu texture is applied
|
|
Var *accuPlc = (Var*)LangElement::find("plc");
|
|
Var *accuSpecular = (Var*)LangElement::find("accuSpecular");
|
|
if (accuPlc != NULL && accuSpecular != NULL)
|
|
//d_specular = clamp(lerp( d_specular, accuSpecular * d_specular, plc.a), 0, 1)
|
|
meta->addStatement(new GenOp(" @ = clamp( lerp( @, @ * @, @.a), 0, 1);\r\n", d_specular, d_specular, accuSpecular, d_specular, accuPlc));
|
|
}
|
|
// (a^m)^n = a^(m*n)
|
|
meta->addStatement( new GenOp( " @ = pow( abs(@), max((@ / AL_ConstantSpecularPower),1.0f)) * @;\r\n",
|
|
specDecl, d_specular, specPow, specStrength ) );
|
|
|
|
LangElement *specMul = new GenOp( "vec4( @.rgb, 0 ) * @", specCol, specular );
|
|
LangElement *final = specMul;
|
|
|
|
// We we have a normal map then mask the specular
|
|
if( !fd.features[MFT_SpecularMap] && fd.features[MFT_NormalMap] )
|
|
{
|
|
Var *bumpSample = (Var*)LangElement::find( "bumpSample" );
|
|
final = new GenOp( "@ * @.a", final, bumpSample );
|
|
}
|
|
|
|
// add to color
|
|
meta->addStatement( new GenOp( " @;\r\n", assignColor( final, Material::Add ) ) );
|
|
|
|
output = meta;
|
|
}
|
|
|
|
ShaderFeature::Resources DeferredPixelSpecularGLSL::getResources( const MaterialFeatureData &fd )
|
|
{
|
|
if( fd.features[MFT_ForwardShading] || !fd.features[MFT_RTLighting] )
|
|
return Parent::getResources( fd );
|
|
|
|
Resources res;
|
|
return res;
|
|
}
|
|
|
|
|
|
ShaderFeature::Resources DeferredMinnaertGLSL::getResources( const MaterialFeatureData &fd )
|
|
{
|
|
Resources res;
|
|
if( !fd.features[MFT_ForwardShading] && fd.features[MFT_RTLighting] )
|
|
{
|
|
res.numTex = 1;
|
|
res.numTexReg = 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void DeferredMinnaertGLSL::setTexData( Material::StageData &stageDat,
|
|
const MaterialFeatureData &fd,
|
|
RenderPassData &passData,
|
|
U32 &texIndex )
|
|
{
|
|
if( !fd.features[MFT_ForwardShading] && fd.features[MFT_RTLighting] )
|
|
{
|
|
NamedTexTarget *texTarget = NamedTexTarget::find(RenderDeferredMgr::BufferName);
|
|
if ( texTarget )
|
|
{
|
|
passData.mTexType[texIndex] = Material::TexTarget;
|
|
passData.mSamplerNames[texIndex] = "deferredBuffer";
|
|
passData.mTexSlot[ texIndex++ ].texTarget = texTarget;
|
|
}
|
|
}
|
|
}
|
|
|
|
void DeferredMinnaertGLSL::processPixMacros( Vector<GFXShaderMacro> ¯os,
|
|
const MaterialFeatureData &fd )
|
|
{
|
|
if( !fd.features[MFT_ForwardShading] && fd.features[MFT_RTLighting] )
|
|
{
|
|
// Pull in the uncondition method for the g buffer
|
|
NamedTexTarget *texTarget = NamedTexTarget::find( RenderDeferredMgr::BufferName );
|
|
if ( texTarget && texTarget->getConditioner() )
|
|
{
|
|
ConditionerMethodDependency *unconditionMethod = texTarget->getConditioner()->getConditionerMethodDependency(ConditionerFeature::UnconditionMethod);
|
|
unconditionMethod->createMethodMacro( String::ToLower(RenderDeferredMgr::BufferName) + "Uncondition", macros );
|
|
addDependency(unconditionMethod);
|
|
}
|
|
}
|
|
}
|
|
|
|
void DeferredMinnaertGLSL::processVert( Vector<ShaderComponent*> &componentList,
|
|
const MaterialFeatureData &fd )
|
|
{
|
|
// If there is no deferred information, bail on this feature
|
|
if( fd.features[MFT_ForwardShading] || !fd.features[MFT_RTLighting] )
|
|
{
|
|
output = NULL;
|
|
return;
|
|
}
|
|
|
|
// Make sure we pass the world space position to the
|
|
// pixel shader so we can calculate a view vector.
|
|
MultiLine *meta = new MultiLine;
|
|
addOutWsPosition( componentList, fd.features[MFT_UseInstancing], meta );
|
|
output = meta;
|
|
}
|
|
|
|
void DeferredMinnaertGLSL::processPix( Vector<ShaderComponent*> &componentList,
|
|
const MaterialFeatureData &fd )
|
|
{
|
|
// If there is no deferred information, bail on this feature
|
|
if( fd.features[MFT_ForwardShading] || !fd.features[MFT_RTLighting] )
|
|
{
|
|
output = NULL;
|
|
return;
|
|
}
|
|
|
|
Var *minnaertConstant = new Var;
|
|
minnaertConstant->setType( "float" );
|
|
minnaertConstant->setName( "minnaertConstant" );
|
|
minnaertConstant->uniform = true;
|
|
minnaertConstant->constSortPos = cspPotentialPrimitive;
|
|
|
|
// create texture var
|
|
Var *deferredBuffer = new Var;
|
|
deferredBuffer->setType( "sampler2D" );
|
|
deferredBuffer->setName( "deferredBuffer" );
|
|
deferredBuffer->uniform = true;
|
|
deferredBuffer->sampler = true;
|
|
deferredBuffer->constNum = Var::getTexUnitNum(); // used as texture unit num here
|
|
|
|
// Texture coord
|
|
Var *uvScene = (Var*) LangElement::find( "uvScene" );
|
|
AssertFatal(uvScene != NULL, "Unable to find UVScene, no RTLighting feature?");
|
|
|
|
MultiLine *meta = new MultiLine;
|
|
|
|
// Get the world space view vector.
|
|
Var *wsViewVec = getWsView( getInWsPosition( componentList ), meta );
|
|
|
|
String unconditionDeferredMethod = String::ToLower(RenderDeferredMgr::BufferName) + "Uncondition";
|
|
|
|
Var *d_NL_Att = (Var*)LangElement::find( "d_NL_Att" );
|
|
|
|
meta->addStatement( new GenOp( avar( " vec4 normalDepth = %s(@, @);\r\n", unconditionDeferredMethod.c_str() ), deferredBuffer, uvScene ) );
|
|
meta->addStatement( new GenOp( " float vDotN = dot(normalDepth.xyz, @);\r\n", wsViewVec ) );
|
|
meta->addStatement( new GenOp( " float Minnaert = pow( @, @) * pow(vDotN, 1.0 - @);\r\n", d_NL_Att, minnaertConstant, minnaertConstant ) );
|
|
meta->addStatement( new GenOp( " @;\r\n", assignColor( new GenOp( "vec4(Minnaert, Minnaert, Minnaert, 1.0)" ), Material::Mul ) ) );
|
|
|
|
output = meta;
|
|
}
|
|
|
|
|
|
void DeferredSubSurfaceGLSL::processPix( Vector<ShaderComponent*> &componentList,
|
|
const MaterialFeatureData &fd )
|
|
{
|
|
// If there is no deferred information, bail on this feature
|
|
if( fd.features[MFT_ForwardShading] || !fd.features[MFT_RTLighting] )
|
|
{
|
|
output = NULL;
|
|
return;
|
|
}
|
|
|
|
Var *subSurfaceParams = new Var;
|
|
subSurfaceParams->setType( "vec4" );
|
|
subSurfaceParams->setName( "subSurfaceParams" );
|
|
subSurfaceParams->uniform = true;
|
|
subSurfaceParams->constSortPos = cspPotentialPrimitive;
|
|
|
|
Var *d_lightcolor = (Var*)LangElement::find( "d_lightcolor" );
|
|
Var *d_NL_Att = (Var*)LangElement::find( "d_NL_Att" );
|
|
|
|
MultiLine *meta = new MultiLine;
|
|
meta->addStatement( new GenOp( " float subLamb = smoothstep(-@.a, 1.0, @) - smoothstep(0.0, 1.0, @);\r\n", subSurfaceParams, d_NL_Att, d_NL_Att ) );
|
|
meta->addStatement( new GenOp( " subLamb = max(0.0, subLamb);\r\n" ) );
|
|
meta->addStatement( new GenOp( " @;\r\n", assignColor( new GenOp( "vec4(@ + (subLamb * @.rgb), 1.0)", d_lightcolor, subSurfaceParams ), Material::Mul ) ) );
|
|
|
|
output = meta;
|
|
}
|