Torque3D/Engine/source/math/mEase.h
2012-09-19 11:15:01 -04:00

593 lines
19 KiB
C++

/*
ROBERT PENNER'S MOST EXCELLENT EASING METHODS - ported to Torque C++ by Paul Dana
Easing Equations v1.5
May 1, 2003
(c) 2003 Robert Penner, all rights reserved.
This work is subject to the terms in http://www.robertpenner.com/easing_terms_of_use.html.
These tweening functions provide different flavors of
math-based motion under a consistent API.
Types of easing:
Linear
Quadratic
Cubic
Quartic
Quintic
Sinusoidal
Exponential
Circular
Elastic
Back
Bounce
Changes:
1.5 - added bounce easing
1.4 - added elastic and back easing
1.3 - tweaked the exponential easing functions to make endpoints exact
1.2 - inline optimizations (changing t and multiplying in one step)--thanks to Tatsuo Kato for the idea
Discussed in Chapter 7 of
Robert Penner's Programming Macromedia Flash MX
(including graphs of the easing equations)
http://www.robertpenner.com/profmx
http://www.amazon.com/exec/obidos/ASIN/0072223561/robertpennerc-20
*/
#ifndef _MEASE_H_
#define _MEASE_H_
// the ease methods below all are static and take atomic types as params
// so they are the most generally useful. for convenience, define here
// a type that can contain all the params needed for below to make
// data structures that use these methods cleaner...
//------------------------------------------------------------------------------
class Ease
{
//-------------------------------------- Public data
public:
enum enumDirection
{
InOut=0,
In,
Out
};
enum enumType
{
Linear=0,
Quadratic,
Cubic,
Quartic,
Quintic,
Sinusoidal,
Exponential,
Circular,
Elastic,
Back,
Bounce,
};
};
class EaseF : public Ease
{
//-------------------------------------- Public data
public:
S32 dir; // inout, in, out
S32 type; // linear, etc...
F32 param[2]; // optional params
//-------------------------------------- Public interface
public:
EaseF();
EaseF(const EaseF &ease);
EaseF(const S32 dir, const S32 type);
EaseF(const S32 dir, const S32 type, F32 param[2]);
//-------------------------------------- Non-math mutators and misc functions
void set(const S32 dir, const S32 type);
void set(const S32 dir, const S32 type, F32 param[2]);
void set(const S32 dir, const S32 type, F32 param0, F32 param1);
void set(const char *s);
F32 getValue(F32 t, F32 b, F32 c, F32 d) const;
F32 getUnitValue(F32 t, bool noExtrapolation) const
{
F32 v = getValue(t,0.0f,1.0f,1.0f);
if (noExtrapolation)
v = mClampF(v,0.0f,1.0f);
return v;
}
F32 getUnitValue(F32 t) const
{
return getValue(t,0.0f,1.0f,1.0f);
}
};
// simple linear tweening - no easing
// t: current time, b: beginning value, c: change in value, d: duration
inline F32 mLinearTween(F32 t, F32 b, F32 c, F32 d) {
return c*t/d + b;
}
///////////// QUADRATIC EASING: t^2 ///////////////////
// quadratic easing in - accelerating from zero velocity
// t: current time, b: beginning value, c: change in value, d: duration
// t and d can be in frames or seconds/milliseconds
inline F32 mEaseInQuad(F32 t, F32 b, F32 c, F32 d) {
return c*(t/=d)*t + b;
};
// quadratic easing out - decelerating to zero velocity
inline F32 mEaseOutQuad(F32 t, F32 b, F32 c, F32 d) {
return -c *(t/=d)*(t-2) + b;
};
// quadratic easing in/out - acceleration until halfway, then deceleration
inline F32 mEaseInOutQuad(F32 t, F32 b, F32 c, F32 d) {
if ((t/=d/2) < 1) return c/2*t*t + b;
return -c/2 * ((--t)*(t-2) - 1) + b;
};
///////////// CUBIC EASING: t^3 ///////////////////////
// cubic easing in - accelerating from zero velocity
// t: current time, b: beginning value, c: change in value, d: duration
// t and d can be frames or seconds/milliseconds
inline F32 mEaseInCubic(F32 t, F32 b, F32 c, F32 d) {
return c*(t/=d)*t*t + b;
};
// cubic easing out - decelerating to zero velocity
inline F32 mEaseOutCubic(F32 t, F32 b, F32 c, F32 d) {
return c*((t=t/d-1)*t*t + 1) + b;
};
// cubic easing in/out - acceleration until halfway, then deceleration
inline F32 mEaseInOutCubic(F32 t, F32 b, F32 c, F32 d) {
if ((t/=d/2) < 1) return c/2*t*t*t + b;
return c/2*((t-=2)*t*t + 2) + b;
};
///////////// QUARTIC EASING: t^4 /////////////////////
// quartic easing in - accelerating from zero velocity
// t: current time, b: beginning value, c: change in value, d: duration
// t and d can be frames or seconds/milliseconds
inline F32 mEaseInQuart(F32 t, F32 b, F32 c, F32 d) {
return c*(t/=d)*t*t*t + b;
};
// quartic easing out - decelerating to zero velocity
inline F32 mEaseOutQuart(F32 t, F32 b, F32 c, F32 d) {
return -c * ((t=t/d-1)*t*t*t - 1) + b;
};
// quartic easing in/out - acceleration until halfway, then deceleration
inline F32 mEaseInOutQuart(F32 t, F32 b, F32 c, F32 d) {
if ((t/=d/2) < 1) return c/2*t*t*t*t + b;
return -c/2 * ((t-=2)*t*t*t - 2) + b;
};
///////////// QUINTIC EASING: t^5 ////////////////////
// quintic easing in - accelerating from zero velocity
// t: current time, b: beginning value, c: change in value, d: duration
// t and d can be frames or seconds/milliseconds
inline F32 mEaseInQuint(F32 t, F32 b, F32 c, F32 d) {
return c*(t/=d)*t*t*t*t + b;
};
// quintic easing out - decelerating to zero velocity
inline F32 mEaseOutQuint(F32 t, F32 b, F32 c, F32 d) {
return c*((t=t/d-1)*t*t*t*t + 1) + b;
};
// quintic easing in/out - acceleration until halfway, then deceleration
inline F32 mEaseInOutQuint(F32 t, F32 b, F32 c, F32 d) {
if ((t/=d/2) < 1) return c/2*t*t*t*t*t + b;
return c/2*((t-=2)*t*t*t*t + 2) + b;
};
///////////// SINUSOIDAL EASING: sin(t) ///////////////
// sinusoidal easing in - accelerating from zero velocity
// t: current time, b: beginning value, c: change in position, d: duration
inline F32 mEaseInSine(F32 t, F32 b, F32 c, F32 d) {
return -c * mCos(t/d * (M_PI_F/2)) + c + b;
};
// sinusoidal easing out - decelerating to zero velocity
inline F32 mEaseOutSine(F32 t, F32 b, F32 c, F32 d) {
return c * mSin(t/d * (M_PI_F/2)) + b;
};
// sinusoidal easing in/out - accelerating until halfway, then decelerating
inline F32 mEaseInOutSine(F32 t, F32 b, F32 c, F32 d) {
return -c/2 * (mCos(M_PI_F*t/d) - 1) + b;
};
///////////// EXPONENTIAL EASING: 2^t /////////////////
// exponential easing in - accelerating from zero velocity
// t: current time, b: beginning value, c: change in position, d: duration
inline F32 mEaseInExpo(F32 t, F32 b, F32 c, F32 d) {
return (t==0) ? b : c * mPow(2, 10 * (t/d - 1)) + b;
};
// exponential easing out - decelerating to zero velocity
inline F32 mEaseOutExpo(F32 t, F32 b, F32 c, F32 d) {
return (t==d) ? b+c : c * (-mPow(2, -10 * t/d) + 1) + b;
};
// exponential easing in/out - accelerating until halfway, then decelerating
inline F32 mEaseInOutExpo(F32 t, F32 b, F32 c, F32 d) {
if (t==0) return b;
if (t==d) return b+c;
if ((t/=d/2) < 1) return c/2 * mPow(2, 10 * (t - 1)) + b;
return c/2 * (-mPow(2, -10 * --t) + 2) + b;
};
/////////// CIRCULAR EASING: sqrt(1-t^2) //////////////
// circular easing in - accelerating from zero velocity
// t: current time, b: beginning value, c: change in position, d: duration
inline F32 mEaseInCirc (F32 t, F32 b, F32 c, F32 d) {
return -c * (mSqrt(1 - (t/=d)*t) - 1) + b;
};
// circular easing out - decelerating to zero velocity
inline F32 mEaseOutCirc (F32 t, F32 b, F32 c, F32 d) {
return c * mSqrt(1 - (t=t/d-1)*t) + b;
};
// circular easing in/out - acceleration until halfway, then deceleration
inline F32 mEaseInOutCirc(F32 t, F32 b, F32 c, F32 d) {
if ((t/=d/2) < 1) return -c/2 * (mSqrt(1 - t*t) - 1) + b;
return c/2 * (mSqrt(1 - (t-=2)*t) + 1) + b;
};
/////////// ELASTIC EASING: exponentially decaying sine wave //////////////
// t: current time, b: beginning value, c: change in value, d: duration, a: amplitude (optional), p: period (optional)
// t and d can be in frames or seconds/milliseconds
inline F32 mEaseInElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p) {
if (t==0) return b; if ((t/=d)==1) return b+c; if (p<=0) p=d*.3f;
F32 s;
if (a < mFabs(c)) { a=c; s=p/4; }
else s = p/(2*M_PI_F) * mAsin (c/a);
return -(a*mPow(2,10*(t-=1)) * mSin( (t*d-s)*(2*M_PI_F)/p )) + b;
};
inline F32 mEaseOutElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p) {
if (t==0) return b; if ((t/=d)==1) return b+c; if (p<=0) p=d*.3f;
F32 s;
if (a < mFabs(c)) { a=c; s=p/4; }
else s = p/(2*M_PI_F) * mAsin (c/a);
return a*mPow(2,-10*t) * mAsin( (t*d-s)*(2*M_PI_F)/p ) + c + b;
};
inline F32 mEaseInOutElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p) {
if (t==0) return b; if ((t/=d/2)==2) return b+c; if (p<=0) p=d*(.3f*1.5f);
F32 s;
if (a < mFabs(c)) { a=c; s=p/4; }
else s = p/(2*M_PI_F) * mAsin (c/a);
if (t < 1) return -.5f*(a*mPow(2,10*(t-=1)) * mSin( (t*d-s)*(2*M_PI_F)/p )) + b;
return a*mPow(2,-10*(t-=1)) * mSin( (t*d-s)*(2*M_PI_F)/p )*.5f + c + b;
};
/////////// BACK EASING: overshooting cubic easing: (s+1)*t^3 - s*t^2 //////////////
// back easing in - backtracking slightly, then reversing direction and moving to target
// t: current time, b: beginning value, c: change in value, d: duration, s: overshoot amount (optional)
// t and d can be in frames or seconds/milliseconds
// s controls the amount of overshoot: higher s means greater overshoot
// s has a default value of 1.70158, which produces an overshoot of 10 percent
// s==0 produces cubic easing with no overshoot
inline F32 mEaseInBack(F32 t, F32 b, F32 c, F32 d, F32 s) {
if (s < 0) s = 1.70158f;
return c*(t/=d)*t*((s+1)*t - s) + b;
};
// back easing out - moving towards target, overshooting it slightly, then reversing and coming back to target
inline F32 mEaseOutBack(F32 t, F32 b, F32 c, F32 d, F32 s) {
if (s < 0) s = 1.70158f;
return c*((t=t/d-1)*t*((s+1)*t + s) + 1) + b;
};
// back easing in/out - backtracking slightly, then reversing direction and moving to target,
// then overshooting target, reversing, and finally coming back to target
inline F32 mEaseInOutBack(F32 t, F32 b, F32 c, F32 d, F32 s) {
if (s < 0) s = 1.70158f;
if ((t/=d/2) < 1) return c/2*(t*t*(((s*=(1.525f))+1)*t - s)) + b;
return c/2*((t-=2)*t*(((s*=(1.525f))+1)*t + s) + 2) + b;
};
/////////// BOUNCE EASING: exponentially decaying parabolic bounce //////////////
// bounce easing out
inline F32 mEaseOutBounce(F32 t, F32 b, F32 c, F32 d) {
if ((t/=d) < (1/2.75f)) {
return c*(7.5625f*t*t) + b;
} else if (t < (2/2.75)) {
return c*(7.5625f*(t-=(1.5f/2.75f))*t + .75f) + b;
} else if (t < (2.5/2.75)) {
return c*(7.5625f*(t-=(2.25f/2.75f))*t + .9375f) + b;
} else {
return c*(7.5625f*(t-=(2.625f/2.75f))*t + .984375f) + b;
}
};
// bounce easing in
// t: current time, b: beginning value, c: change in position, d: duration
inline F32 mEaseInBounce(F32 t, F32 b, F32 c, F32 d) {
return c - mEaseOutBounce (d-t, 0, c, d) + b;
};
// bounce easing in/out
inline F32 mEaseInOutBounce(F32 t, F32 b, F32 c, F32 d) {
if (t < d/2) return mEaseInBounce (t*2, 0, c, d) * .5f + b;
return mEaseOutBounce (t*2-d, 0, c, d) * .5f + c*.5f + b;
};
#if 0
// ORIGINAL ACTION SCRIPT CODE:
// simple linear tweening - no easing
// t: current time, b: beginning value, c: change in value, d: duration
Math.linearTween = function (t, b, c, d) {
return c*t/d + b;
};
///////////// QUADRATIC EASING: t^2 ///////////////////
// quadratic easing in - accelerating from zero velocity
// t: current time, b: beginning value, c: change in value, d: duration
// t and d can be in frames or seconds/milliseconds
Math.easeInQuad = function (t, b, c, d) {
return c*(t/=d)*t + b;
};
// quadratic easing out - decelerating to zero velocity
Math.easeOutQuad = function (t, b, c, d) {
return -c *(t/=d)*(t-2) + b;
};
// quadratic easing in/out - acceleration until halfway, then deceleration
Math.easeInOutQuad = function (t, b, c, d) {
if ((t/=d/2) < 1) return c/2*t*t + b;
return -c/2 * ((--t)*(t-2) - 1) + b;
};
///////////// CUBIC EASING: t^3 ///////////////////////
// cubic easing in - accelerating from zero velocity
// t: current time, b: beginning value, c: change in value, d: duration
// t and d can be frames or seconds/milliseconds
Math.easeInCubic = function (t, b, c, d) {
return c*(t/=d)*t*t + b;
};
// cubic easing out - decelerating to zero velocity
Math.easeOutCubic = function (t, b, c, d) {
return c*((t=t/d-1)*t*t + 1) + b;
};
// cubic easing in/out - acceleration until halfway, then deceleration
Math.easeInOutCubic = function (t, b, c, d) {
if ((t/=d/2) < 1) return c/2*t*t*t + b;
return c/2*((t-=2)*t*t + 2) + b;
};
///////////// QUARTIC EASING: t^4 /////////////////////
// quartic easing in - accelerating from zero velocity
// t: current time, b: beginning value, c: change in value, d: duration
// t and d can be frames or seconds/milliseconds
Math.easeInQuart = function (t, b, c, d) {
return c*(t/=d)*t*t*t + b;
};
// quartic easing out - decelerating to zero velocity
Math.easeOutQuart = function (t, b, c, d) {
return -c * ((t=t/d-1)*t*t*t - 1) + b;
};
// quartic easing in/out - acceleration until halfway, then deceleration
Math.easeInOutQuart = function (t, b, c, d) {
if ((t/=d/2) < 1) return c/2*t*t*t*t + b;
return -c/2 * ((t-=2)*t*t*t - 2) + b;
};
///////////// QUINTIC EASING: t^5 ////////////////////
// quintic easing in - accelerating from zero velocity
// t: current time, b: beginning value, c: change in value, d: duration
// t and d can be frames or seconds/milliseconds
Math.easeInQuint = function (t, b, c, d) {
return c*(t/=d)*t*t*t*t + b;
};
// quintic easing out - decelerating to zero velocity
Math.easeOutQuint = function (t, b, c, d) {
return c*((t=t/d-1)*t*t*t*t + 1) + b;
};
// quintic easing in/out - acceleration until halfway, then deceleration
Math.easeInOutQuint = function (t, b, c, d) {
if ((t/=d/2) < 1) return c/2*t*t*t*t*t + b;
return c/2*((t-=2)*t*t*t*t + 2) + b;
};
///////////// SINUSOIDAL EASING: sin(t) ///////////////
// sinusoidal easing in - accelerating from zero velocity
// t: current time, b: beginning value, c: change in position, d: duration
Math.easeInSine = function (t, b, c, d) {
return -c * Math.cos(t/d * (Math.PI/2)) + c + b;
};
// sinusoidal easing out - decelerating to zero velocity
Math.easeOutSine = function (t, b, c, d) {
return c * Math.sin(t/d * (Math.PI/2)) + b;
};
// sinusoidal easing in/out - accelerating until halfway, then decelerating
Math.easeInOutSine = function (t, b, c, d) {
return -c/2 * (Math.cos(Math.PI*t/d) - 1) + b;
};
///////////// EXPONENTIAL EASING: 2^t /////////////////
// exponential easing in - accelerating from zero velocity
// t: current time, b: beginning value, c: change in position, d: duration
Math.easeInExpo = function (t, b, c, d) {
return (t==0) ? b : c * Math.pow(2, 10 * (t/d - 1)) + b;
};
// exponential easing out - decelerating to zero velocity
Math.easeOutExpo = function (t, b, c, d) {
return (t==d) ? b+c : c * (-Math.pow(2, -10 * t/d) + 1) + b;
};
// exponential easing in/out - accelerating until halfway, then decelerating
Math.easeInOutExpo = function (t, b, c, d) {
if (t==0) return b;
if (t==d) return b+c;
if ((t/=d/2) < 1) return c/2 * Math.pow(2, 10 * (t - 1)) + b;
return c/2 * (-Math.pow(2, -10 * --t) + 2) + b;
};
/////////// CIRCULAR EASING: sqrt(1-t^2) //////////////
// circular easing in - accelerating from zero velocity
// t: current time, b: beginning value, c: change in position, d: duration
Math.easeInCirc = function (t, b, c, d) {
return -c * (Math.sqrt(1 - (t/=d)*t) - 1) + b;
};
// circular easing out - decelerating to zero velocity
Math.easeOutCirc = function (t, b, c, d) {
return c * Math.sqrt(1 - (t=t/d-1)*t) + b;
};
// circular easing in/out - acceleration until halfway, then deceleration
Math.easeInOutCirc = function (t, b, c, d) {
if ((t/=d/2) < 1) return -c/2 * (Math.sqrt(1 - t*t) - 1) + b;
return c/2 * (Math.sqrt(1 - (t-=2)*t) + 1) + b;
};
/////////// ELASTIC EASING: exponentially decaying sine wave //////////////
// t: current time, b: beginning value, c: change in value, d: duration, a: amplitude (optional), p: period (optional)
// t and d can be in frames or seconds/milliseconds
Math.easeInElastic = function (t, b, c, d, a, p) {
if (t==0) return b; if ((t/=d)==1) return b+c; if (!p) p=d*.3;
if (a < Math.abs(c)) { a=c; var s=p/4; }
else var s = p/(2*Math.PI) * Math.asin (c/a);
return -(a*Math.pow(2,10*(t-=1)) * Math.sin( (t*d-s)*(2*Math.PI)/p )) + b;
};
Math.easeOutElastic = function (t, b, c, d, a, p) {
if (t==0) return b; if ((t/=d)==1) return b+c; if (!p) p=d*.3;
if (a < Math.abs(c)) { a=c; var s=p/4; }
else var s = p/(2*Math.PI) * Math.asin (c/a);
return a*Math.pow(2,-10*t) * Math.sin( (t*d-s)*(2*Math.PI)/p ) + c + b;
};
Math.easeInOutElastic = function (t, b, c, d, a, p) {
if (t==0) return b; if ((t/=d/2)==2) return b+c; if (!p) p=d*(.3*1.5);
if (a < Math.abs(c)) { a=c; var s=p/4; }
else var s = p/(2*Math.PI) * Math.asin (c/a);
if (t < 1) return -.5*(a*Math.pow(2,10*(t-=1)) * Math.sin( (t*d-s)*(2*Math.PI)/p )) + b;
return a*Math.pow(2,-10*(t-=1)) * Math.sin( (t*d-s)*(2*Math.PI)/p )*.5 + c + b;
};
/////////// BACK EASING: overshooting cubic easing: (s+1)*t^3 - s*t^2 //////////////
// back easing in - backtracking slightly, then reversing direction and moving to target
// t: current time, b: beginning value, c: change in value, d: duration, s: overshoot amount (optional)
// t and d can be in frames or seconds/milliseconds
// s controls the amount of overshoot: higher s means greater overshoot
// s has a default value of 1.70158, which produces an overshoot of 10 percent
// s==0 produces cubic easing with no overshoot
Math.easeInBack = function (t, b, c, d, s) {
if (s == undefined) s = 1.70158;
return c*(t/=d)*t*((s+1)*t - s) + b;
};
// back easing out - moving towards target, overshooting it slightly, then reversing and coming back to target
Math.easeOutBack = function (t, b, c, d, s) {
if (s == undefined) s = 1.70158;
return c*((t=t/d-1)*t*((s+1)*t + s) + 1) + b;
};
// back easing in/out - backtracking slightly, then reversing direction and moving to target,
// then overshooting target, reversing, and finally coming back to target
Math.easeInOutBack = function (t, b, c, d, s) {
if (s == undefined) s = 1.70158;
if ((t/=d/2) < 1) return c/2*(t*t*(((s*=(1.525))+1)*t - s)) + b;
return c/2*((t-=2)*t*(((s*=(1.525))+1)*t + s) + 2) + b;
};
/////////// BOUNCE EASING: exponentially decaying parabolic bounce //////////////
// bounce easing in
// t: current time, b: beginning value, c: change in position, d: duration
Math.easeInBounce = function (t, b, c, d) {
return c - Math.easeOutBounce (d-t, 0, c, d) + b;
};
// bounce easing out
Math.easeOutBounce = function (t, b, c, d) {
if ((t/=d) < (1/2.75)) {
return c*(7.5625*t*t) + b;
} else if (t < (2/2.75)) {
return c*(7.5625*(t-=(1.5/2.75))*t + .75) + b;
} else if (t < (2.5/2.75)) {
return c*(7.5625*(t-=(2.25/2.75))*t + .9375) + b;
} else {
return c*(7.5625*(t-=(2.625/2.75))*t + .984375) + b;
}
};
// bounce easing in/out
Math.easeInOutBounce = function (t, b, c, d) {
if (t < d/2) return Math.easeInBounce (t*2, 0, c, d) * .5 + b;
return Math.easeOutBounce (t*2-d, 0, c, d) * .5 + c*.5 + b;
};
#endif
#endif // _MEASE_H_