Torque3D/Engine/source/lighting/advanced/glsl/gBufferConditionerGLSL.cpp
2012-09-19 11:15:01 -04:00

321 lines
13 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "lighting/advanced/glsl/gBufferConditionerGLSL.h"
#include "shaderGen/featureMgr.h"
#include "gfx/gfxStringEnumTranslate.h"
#include "materials/materialFeatureTypes.h"
#include "materials/materialFeatureData.h"
GBufferConditionerGLSL::GBufferConditionerGLSL( const GFXFormat bufferFormat ) :
Parent( bufferFormat )
{
// Figure out how we should store the normal data. These are the defaults.
mCanWriteNegativeValues = false;
mNormalStorageType = CartesianXYZ;
// Note: We clear to a depth 1 (the w component) so
// that the unrendered parts of the scene end up
// farthest to the camera.
switch(bufferFormat)
{
case GFXFormatR8G8B8A8:
// TODO: Some kind of logic here. Spherical is better, but is more
// expensive.
mNormalStorageType = Spherical;
mBitsPerChannel = 8;
break;
case GFXFormatR16G16B16A16F:
// Floating point buffers don't need to encode negative values
mCanWriteNegativeValues = true;
mNormalStorageType = Spherical;
mBitsPerChannel = 16;
break;
// Store a 32bit depth with a sperical normal in the
// integer 16 format. This gives us perfect depth
// precision and high quality normals within a 64bit
// buffer format.
case GFXFormatR16G16B16A16:
mNormalStorageType = Spherical;
mBitsPerChannel = 16;
break;
case GFXFormatR32G32B32A32F:
mCanWriteNegativeValues = true;
mNormalStorageType = CartesianXYZ;
mBitsPerChannel = 32;
break;
default:
AssertFatal(false, "Unsupported G-Buffer format");
}
}
GBufferConditionerGLSL::~GBufferConditionerGLSL()
{
}
void GBufferConditionerGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
output = NULL;
if( !fd.features[MFT_NormalMap] )
{
// grab incoming vert normal
Var *inNormal = (Var*) LangElement::find( "normal" );
AssertFatal( inNormal, "Something went bad with ShaderGen. The normal should be already defined." );
// grab output for gbuffer normal
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *outNormal = connectComp->getElement( RT_TEXCOORD );
outNormal->setName( "gbNormal" );
outNormal->setType( "vec3" );
// create objToWorld variable
Var *objToWorld = (Var*) LangElement::find( "objTrans" );
if( !objToWorld )
{
objToWorld = new Var;
objToWorld->setType( "mat4" );
objToWorld->setName( "objTrans" );
objToWorld->uniform = true;
objToWorld->constSortPos = cspPrimitive;
}
// Kick out the world-space normal
LangElement *statement = new GenOp( " @ = vec3(@ * vec4(normalize(@), 0.0));\r\n", outNormal, objToWorld, inNormal );
output = statement;
}
}
void GBufferConditionerGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// sanity
AssertFatal( fd.features[MFT_EyeSpaceDepthOut], "No depth-out feature enabled! Bad news!" );
MultiLine *meta = new MultiLine;
// grab connector normal
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *gbNormal = (Var*) LangElement::find( "gbNormal" );
if( !gbNormal )
{
gbNormal = connectComp->getElement( RT_TEXCOORD );
gbNormal->setName( "gbNormal" );
gbNormal->setType( "vec3" );
gbNormal->mapsToSampler = false;
gbNormal->uniform = false;
}
// find depth
ShaderFeature *depthFeat = FEATUREMGR->getByType( MFT_EyeSpaceDepthOut );
AssertFatal( depthFeat != NULL, "No eye space depth feature found!" );
Var *depth = (Var*) LangElement::find(depthFeat->getOutputVarName());
AssertFatal( depth, "Something went bad with ShaderGen. The depth should be already generated by the EyeSpaceDepthOut feature." );
Var *unconditionedOut = new Var;
unconditionedOut->setType("vec4");
unconditionedOut->setName("normal_depth");
LangElement *outputDecl = new DecOp( unconditionedOut );
// NOTE: We renormalize the normal here as they
// will not stay normalized during interpolation.
meta->addStatement( new GenOp(" @ = @;", outputDecl, new GenOp( "vec4(normalize(@), @)", gbNormal, depth ) ) );
meta->addStatement( assignOutput( unconditionedOut ) );
output = meta;
}
ShaderFeature::Resources GBufferConditionerGLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
// Passing from VS->PS:
// - world space normal (gbNormal)
res.numTexReg = 1;
return res;
}
Var* GBufferConditionerGLSL::printMethodHeader( MethodType methodType, const String &methodName, Stream &stream, MultiLine *meta )
{
const bool isCondition = ( methodType == ConditionerFeature::ConditionMethod );
Var *retVal = NULL;
// The uncondition method inputs are changed
if( isCondition )
retVal = Parent::printMethodHeader( methodType, methodName, stream, meta );
else
{
Var *methodVar = new Var;
methodVar->setName(methodName);
methodVar->setType("vec4");
DecOp *methodDecl = new DecOp(methodVar);
Var *prepassSampler = new Var;
prepassSampler->setName("prepassSamplerVar");
prepassSampler->setType("sampler2D");
DecOp *prepassSamplerDecl = new DecOp(prepassSampler);
Var *screenUV = new Var;
screenUV->setName("screenUVVar");
screenUV->setType("vec2");
DecOp *screenUVDecl = new DecOp(screenUV);
Var *bufferSample = new Var;
bufferSample->setName("bufferSample");
bufferSample->setType("vec4");
DecOp *bufferSampleDecl = new DecOp(bufferSample);
meta->addStatement( new GenOp( "@(@, @)\r\n", methodDecl, prepassSamplerDecl, screenUVDecl ) );
meta->addStatement( new GenOp( "{\r\n" ) );
meta->addStatement( new GenOp( " // Sampler g-buffer\r\n" ) );
// The gbuffer has no mipmaps, so use tex2dlod when
// so that the shader compiler can optimize.
meta->addStatement( new GenOp( " @ = texture2DLod(@, @, 0.0);\r\n", bufferSampleDecl, prepassSampler, screenUV ) );
// We don't use this way of passing var's around, so this should cause a crash
// if something uses this improperly
retVal = bufferSample;
}
return retVal;
}
GenOp* GBufferConditionerGLSL::_posnegEncode( GenOp *val )
{
return mCanWriteNegativeValues ? val : new GenOp("0.5 * (@ + 1.0)", val);
}
GenOp* GBufferConditionerGLSL::_posnegDecode( GenOp *val )
{
return mCanWriteNegativeValues ? val : new GenOp("@ * 2.0 - 1.0", val);
}
Var* GBufferConditionerGLSL::_conditionOutput( Var *unconditionedOutput, MultiLine *meta )
{
Var *retVar = new Var;
retVar->setType("vec4");
retVar->setName("_gbConditionedOutput");
LangElement *outputDecl = new DecOp( retVar );
switch(mNormalStorageType)
{
case CartesianXYZ:
meta->addStatement( new GenOp( " // g-buffer conditioner: vec4(normal.xyz, depth)\r\n" ) );
meta->addStatement( new GenOp( " @ = vec4(@, @.a);\r\n", outputDecl,
_posnegEncode(new GenOp("@.xyz", unconditionedOutput)), unconditionedOutput ) );
break;
case CartesianXY:
meta->addStatement( new GenOp( " // g-buffer conditioner: vec4(normal.xy, depth Hi + z-sign, depth Lo)\r\n" ) );
meta->addStatement( new GenOp( " @ = vec4(@, @.a);", outputDecl,
_posnegEncode(new GenOp("vec3(@.xy, sign(@.z))", unconditionedOutput, unconditionedOutput)), unconditionedOutput ) );
break;
case Spherical:
meta->addStatement( new GenOp( " // g-buffer conditioner: vec4(normal.theta, normal.phi, depth Hi, depth Lo)\r\n" ) );
meta->addStatement( new GenOp( " @ = vec4(@, 0.0, @.a);\r\n", outputDecl,
_posnegEncode(new GenOp("vec2(atan2(@.y, @.x) / 3.14159265358979323846f, @.z)", unconditionedOutput, unconditionedOutput, unconditionedOutput ) ),
unconditionedOutput ) );
break;
}
// Encode depth into two channels
if(mNormalStorageType != CartesianXYZ)
{
const U64 maxValPerChannel = 1 << mBitsPerChannel;
const U64 extraVal = (maxValPerChannel * maxValPerChannel - 1) - (maxValPerChannel - 1) * 2;
meta->addStatement( new GenOp( " \r\n // Encode depth into hi/lo\r\n" ) );
meta->addStatement( new GenOp( avar( " vec3 _tempDepth = fract(@.a * vec3(1.0, %llu.0, %llu.0));\r\n", maxValPerChannel - 1, extraVal ),
unconditionedOutput ) );
meta->addStatement( new GenOp( avar( " @.zw = _tempDepth.xy - _tempDepth.yz * vec2(1.0/%llu.0, 1.0/%llu.0);\r\n\r\n", maxValPerChannel - 1, maxValPerChannel - 1 ),
retVar ) );
}
AssertFatal( retVar != NULL, avar( "Cannot condition output to buffer format: %s", GFXStringTextureFormat[getBufferFormat()] ) );
return retVar;
}
Var* GBufferConditionerGLSL::_unconditionInput( Var *conditionedInput, MultiLine *meta )
{
Var *retVar = new Var;
retVar->setType("vec4");
retVar->setName("_gbUnconditionedInput");
LangElement *outputDecl = new DecOp( retVar );
switch(mNormalStorageType)
{
case CartesianXYZ:
meta->addStatement( new GenOp( " // g-buffer unconditioner: vec4(normal.xyz, depth)\r\n" ) );
meta->addStatement( new GenOp( " @ = vec4(@, @.a);\r\n", outputDecl,
_posnegDecode(new GenOp("@.xyz", conditionedInput)), conditionedInput ) );
break;
case CartesianXY:
meta->addStatement( new GenOp( " // g-buffer unconditioner: vec4(normal.xy, depth Hi + z-sign, depth Lo)\r\n" ) );
meta->addStatement( new GenOp( " @ = vec4(@, @.a);\r\n", outputDecl,
_posnegDecode(new GenOp("@.xyz", conditionedInput)), conditionedInput ) );
meta->addStatement( new GenOp( " @.z *= sqrt(1.0 - dot(@.xy, @.xy));\r\n", retVar, retVar, retVar ) );
break;
case Spherical:
meta->addStatement( new GenOp( " // g-buffer unconditioner: vec4(normal.theta, normal.phi, depth Hi, depth Lo)\r\n" ) );
meta->addStatement( new GenOp( " vec2 spGPUAngles = @;\r\n", _posnegDecode(new GenOp("@.xy", conditionedInput)) ) );
meta->addStatement( new GenOp( " vec2 sincosTheta;\r\n" ) );
meta->addStatement( new GenOp( " sincosTheta.x = sin(spGPUAngles.x * 3.14159265358979323846);\r\n" ) );
meta->addStatement( new GenOp( " sincosTheta.y = cos(spGPUAngles.x * 3.14159265358979323846);\r\n" ) );
meta->addStatement( new GenOp( " vec2 sincosPhi = vec2(sqrt(1.0 - spGPUAngles.y * spGPUAngles.y), spGPUAngles.y);\r\n" ) );
meta->addStatement( new GenOp( " @ = vec4(sincosTheta.y * sincosPhi.x, sincosTheta.x * sincosPhi.x, sincosPhi.y, @.a);\r\n", outputDecl, conditionedInput ) );
break;
}
// Recover depth from encoding
if(mNormalStorageType != CartesianXYZ)
{
const U64 maxValPerChannel = 1 << mBitsPerChannel;
meta->addStatement( new GenOp( " \r\n // Decode depth\r\n" ) );
meta->addStatement( new GenOp( avar( " @.w = dot( @.zw, vec2(1.0, 1.0/%llu.0));\r\n", maxValPerChannel - 1 ),
retVar, conditionedInput ) );
}
AssertFatal( retVar != NULL, avar( "Cannot uncondition input from buffer format: %s", GFXStringTextureFormat[getBufferFormat()] ) );
return retVar;
}