Torque3D/Engine/source/math/mMathFn.h
2023-05-21 12:10:33 -05:00

521 lines
12 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#ifndef _MMATHFN_H_
#define _MMATHFN_H_
#include <math.h>
#include <stdlib.h>
#include <limits>
#ifndef _MCONSTANTS_H_
#include "math/mConstants.h"
#endif
#ifndef _PLATFORMASSERT_H_
#include "platform/platformAssert.h"
#endif
extern void MathConsoleInit();
//--------------------------------------
// Installable Library Prototypes
extern S32 (*m_mulDivS32)(S32 a, S32 b, S32 c);
extern U32 (*m_mulDivU32)(S32 a, S32 b, U32 c);
extern F32 (*m_catmullrom)(F32 t, F32 p0, F32 p1, F32 p2, F32 p3);
extern void (*m_sincos)( F32 angle, F32 *s, F32 *c );
extern void (*m_sincosD)( F64 angle, F64 *s, F64 *c );
extern void (*m_point2F_normalize)(F32 *p);
extern void (*m_point2F_normalize_f)(F32 *p, F32 len);
extern void (*m_point2D_normalize)(F64 *p);
extern void (*m_point2D_normalize_f)(F64 *p, F64 len);
extern void (*m_point3F_normalize)(F32 *p);
extern void (*m_point3F_normalize_f)(F32 *p, F32 len);
extern void (*m_point3F_interpolate)(const F32 *from, const F32 *to, F32 factor, F32 *result);
extern void (*m_point3D_normalize)(F64 *p);
extern void (*m_point3D_normalize_f)(F64 *p, F64 len);
extern void (*m_point3D_interpolate)(const F64 *from, const F64 *to, F64 factor, F64 *result);
extern void (*m_point3F_bulk_dot)(const F32* refVector,
const F32* dotPoints,
const U32 numPoints,
const U32 pointStride,
F32* output);
extern void (*m_point3F_bulk_dot_indexed)(const F32* refVector,
const F32* dotPoints,
const U32 numPoints,
const U32 pointStride,
const U32* pointIndices,
F32* output);
extern void (*m_quatF_set_matF)( F32 x, F32 y, F32 z, F32 w, F32* m );
extern void (*m_matF_set_euler)(const F32 *e, F32 *result);
extern void (*m_matF_set_euler_point)(const F32 *e, const F32 *p, F32 *result);
extern void (*m_matF_identity)(F32 *m);
extern void (*m_matF_inverse)(F32 *m);
extern void (*m_matF_invert_to)(const F32 *m, F32 *d);
extern void (*m_matF_affineInverse)(F32 *m);
extern void (*m_matF_transpose)(F32 *m);
extern void (*m_matF_scale)(F32 *m,const F32* p);
extern void (*m_matF_normalize)(F32 *m);
extern F32 (*m_matF_determinant)(const F32 *m);
extern void (*m_matF_x_matF)(const F32 *a, const F32 *b, F32 *mresult);
extern void (*m_matF_x_matF_aligned)(const F32 *a, const F32 *b, F32 *mresult);
// extern void (*m_matF_x_point3F)(const F32 *m, const F32 *p, F32 *presult);
// extern void (*m_matF_x_vectorF)(const F32 *m, const F32 *v, F32 *vresult);
extern void (*m_matF_x_point4F)(const F32 *m, const F32 *p, F32 *presult);
extern void (*m_matF_x_scale_x_planeF)(const F32 *m, const F32* s, const F32 *p, F32 *presult);
extern void (*m_matF_x_box3F)(const F32 *m, F32 *min, F32 *max);
// Note that x must point to at least 4 values for quartics, and 3 for cubics
extern U32 (*mSolveQuadratic)(F32 a, F32 b, F32 c, F32* x);
extern U32 (*mSolveCubic)(F32 a, F32 b, F32 c, F32 d, F32* x);
extern U32 (*mSolveQuartic)(F32 a, F32 b, F32 c, F32 d, F32 e, F32* x);
extern S32 mRandI(S32 i1, S32 i2); // random # from i1 to i2 inclusive
extern F32 mRandF(F32 f1, F32 f2); // random # from f1 to f2 inclusive
extern F32 mRandF(); // random # from 0.0 to 1.0 inclusive
inline void m_matF_x_point3F(const F32 *m, const F32 *p, F32 *presult)
{
AssertFatal(p != presult, "Error, aliasing matrix mul pointers not allowed here!");
#ifdef TORQUE_COMPILER_GCC
const F32 p0 = p[0], p1 = p[1], p2 = p[2];
const F32 m0 = m[0], m1 = m[1], m2 = m[2];
const F32 m3 = m[3], m4 = m[4], m5 = m[5];
const F32 m6 = m[6], m7 = m[7], m8 = m[8];
const F32 m9 = m[9], m10 = m[10], m11 = m[11];
presult[0] = m0*p0 + m1*p1 + m2*p2 + m3;
presult[1] = m4*p0 + m5*p1 + m6*p2 + m7;
presult[2] = m8*p0 + m9*p1 + m10*p2 + m11;
#else
presult[0] = m[0]*p[0] + m[1]*p[1] + m[2]*p[2] + m[3];
presult[1] = m[4]*p[0] + m[5]*p[1] + m[6]*p[2] + m[7];
presult[2] = m[8]*p[0] + m[9]*p[1] + m[10]*p[2] + m[11];
#endif
}
//--------------------------------------
inline void m_matF_x_vectorF(const F32 *m, const F32 *v, F32 *vresult)
{
AssertFatal(v != vresult, "Error, aliasing matrix mul pointers not allowed here!");
#ifdef TORQUE_COMPILER_GCC
const F32 v0 = v[0], v1 = v[1], v2 = v[2];
const F32 m0 = m[0], m1 = m[1], m2 = m[2];
const F32 m4 = m[4], m5 = m[5], m6 = m[6];
const F32 m8 = m[8], m9 = m[9], m10 = m[10];
vresult[0] = m0*v0 + m1*v1 + m2*v2;
vresult[1] = m4*v0 + m5*v1 + m6*v2;
vresult[2] = m8*v0 + m9*v1 + m10*v2;
#else
vresult[0] = m[0]*v[0] + m[1]*v[1] + m[2]*v[2];
vresult[1] = m[4]*v[0] + m[5]*v[1] + m[6]*v[2];
vresult[2] = m[8]*v[0] + m[9]*v[1] + m[10]*v[2];
#endif
}
//--------------------------------------
// Inlines
inline bool mIsEqual( F32 a, F32 b, const F32 epsilon = __EQUAL_CONST_F )
{
F32 diff = a - b;
return diff > -epsilon && diff < epsilon;
}
inline bool mIsZero(const F32 val, const F32 epsilon = __EQUAL_CONST_F )
{
return (val > -epsilon) && (val < epsilon);
}
inline F32 mClampToZero(F32& input)
{
if (input < __EQUAL_CONST_F && input > -__EQUAL_CONST_F)
input = 0.0f;
return input;
}
inline F32 mMax(const F32 x, const F32 y)
{
if (x > y)
return x;
return y;
}
inline F32 mMin(const F32 x, const F32 y)
{
if (x < y)
return x;
return y;
}
inline F32 mFloor(const F32 val)
{
return (F32) floor(val);
}
inline F32 mCeil(const F32 val)
{
return (F32) ceil(val);
}
inline F32 mFabs(const F32 val)
{
return (F32) fabs(val);
}
inline F64 mFabs(const F64 val)
{
return fabs(val);
}
inline F32 mFmod(const F32 val, const F32 mod)
{
return fmod(val, mod);
}
inline S32 mRound(const F32 val)
{
return (S32)floor(val + 0.5f);
}
inline F32 mRound(const F32 val, const S32 n)
{
S32 place = (S32) pow(10.0f, n);
return mFloor((val*place)+0.5)/place;
}
inline S32 mAbs(const S32 val)
{
return abs(val);
}
inline F32 mRoundToNearest( const F32 val )
{
return mFloor( val + .5f );
}
inline S32 mClamp(S32 val, S32 low, S32 high)
{
return getMax(getMin(val, high), low);
}
inline U32 mClampU(U32 val, U32 low, U32 high)
{
return getMax(getMin(val, high), low);
}
inline F32 mClampF(F32 val, F32 low, F32 high)
{
return (F32) getMax(getMin(val, high), low);
}
inline S32 mWrap(S32 val, S32 low, S32 high)
{
int len = high - low;
return low + (val >= 0 ? val % len : -val % len ? len - (-val % len) : 0);
}
inline F32 mWrapF(F32 val, F32 low, F32 high)
{
F32 t = fmod(val - low, high - low);
return t < 0 ? t + high : t + low;
}
/// Template function for doing a linear interpolation between any two
/// types which implement operators for scalar multiply and addition.
template <typename T>
inline T mLerp( const T &v1, const T &v2, F32 factor )
{
return ( v1 * ( 1.0f - factor ) ) + ( v2 * factor );
}
/// Template function for determining a percentage of interpolation between any two
/// types which implement operators for scalar multiply and addition.
template <typename T>
inline T mInvLerp(const T& v1, const T& v2, F32 point)
{
return (point - v1) / (v2 - v1);
}
inline S32 mMulDiv(S32 a, S32 b, S32 c)
{
return m_mulDivS32(a, b, c);
}
inline U32 mMulDiv(S32 a, S32 b, U32 c)
{
return m_mulDivU32(a, b, c);
}
inline F32 mSin(const F32 angle)
{
return (F32) sin(angle);
}
inline F32 mCos(const F32 angle)
{
return (F32) cos(angle);
}
inline F32 mTan(const F32 angle)
{
return (F32) tan(angle);
}
inline F32 mAsin(const F32 val)
{
return (F32) asin(val);
}
inline F32 mAcos(const F32 val)
{
return (F32) acos(val);
}
inline F32 mAtan( const F32 x )
{
return (F32) atan( x );
}
inline F32 mAtan2(const F32 y, const F32 x)
{
return (F32)atan2(y, x);
}
inline void mSinCos(const F32 angle, F32 &s, F32 &c)
{
m_sincos( angle, &s, &c );
}
inline F32 mTanh(const F32 angle)
{
return (F32) tanh(angle);
}
inline F32 mSqrt(const F32 val)
{
return (F32) sqrt(val);
}
inline F64 mSqrt(const F64 val)
{
return (F64) sqrt(val);
}
inline F32 mPow(const F32 x, const F32 y)
{
return (F32) pow(x, y);
}
inline F32 mLog(const F32 val)
{
return (F32) log(val);
}
inline F32 mLog2(const F32 val)
{
return (F32) log2(val);
}
inline F32 mExp(const F32 val)
{
return (F32) exp(val);
}
inline F64 mSin(const F64 angle)
{
return (F64) sin(angle);
}
inline F64 mCos(const F64 angle)
{
return (F64) cos(angle);
}
inline F64 mTan(const F64 angle)
{
return (F64) tan(angle);
}
inline F64 mAsin(const F64 val)
{
return (F64) asin(val);
}
inline F64 mAcos(const F64 val)
{
return (F64) acos(val);
}
inline F64 mAtan( const F64 x )
{
return (F64) atan( x );
}
inline F64 mAtan2(const F64 x, const F64 y)
{
return (F64) atan2(x, y);
}
inline void mSinCos(const F64 angle, F64 &s, F64 &c)
{
m_sincosD( angle, &s, &c );
}
inline F64 mTanh(const F64 angle)
{
return (F64) tanh(angle);
}
inline F64 mPow(const F64 x, const F64 y)
{
return (F64) pow(x, y);
}
inline F64 mLog(const F64 val)
{
return (F64) log(val);
}
inline F64 mLog2(const F64 val)
{
return (F64) log2(val);
}
inline F32 mCatmullrom(F32 t, F32 p0, F32 p1, F32 p2, F32 p3)
{
return m_catmullrom(t, p0, p1, p2, p3);
}
inline F64 mFabsD(const F64 val)
{
return (F64) fabs(val);
}
inline F64 mFmodD(const F64 val, const F64 mod)
{
return (F64) fmod(val, mod);
}
inline F64 mSqrtD(const F64 val)
{
return (F64) sqrt(val);
}
inline F64 mFloorD(const F64 val)
{
return (F64) floor(val);
}
inline F64 mCeilD(const F64 val)
{
return (F64) ceil(val);
}
///
template< typename A, typename B >
inline A mAlignToMultiple( A val, B mul )
{
A rem = val % mul;
return ( rem ? val + mul - rem : val );
}
//--------------------------------------
inline F32 mDegToRad(F32 d)
{
return((d * M_PI_F) / 180.0f);
}
inline F32 mRadToDeg(F32 r)
{
return((r * 180.0f) / M_PI_F);
}
inline F64 mDegToRad(F64 d)
{
return (d * M_PI) / 180.0;
}
inline F64 mRadToDeg(F64 r)
{
return (r * 180.0) / M_PI;
}
//------------------------------------------------------------------------------
inline bool mIsNaN_F( const F32 x )
{
// If x is a floating point variable, then (x != x) will be TRUE if x has the value NaN.
// This is only going to work if the compiler is IEEE 748 compliant.
//
// Tested and working on VC2k5
return ( x != x );
}
inline bool mIsInf_F( const F32 x )
{
return ( x == std::numeric_limits< F32 >::infinity() );
}
inline F32 mSign( const F32 n )
{
if ( n > 0.0f )
return 1.0f;
if ( n < 0.0f )
return -1.0f;
return 0.0f;
}
/// Returns the input value squared.
inline F32 mSquared( F32 n )
{
return n * n;
}
/// @copydoc mSquaredF
inline F64 mSquared( F64 n )
{
return n * n;
}
#endif //_MMATHFN_H_