mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-20 12:44:46 +00:00
1381 lines
48 KiB
C++
1381 lines
48 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Copyright (c) 2012 GarageGames, LLC
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to
|
|
// deal in the Software without restriction, including without limitation the
|
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
// sell copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
// IN THE SOFTWARE.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "platform/platform.h"
|
|
#include "materials/processedShaderMaterial.h"
|
|
|
|
#include "core/util/safeDelete.h"
|
|
#include "gfx/sim/cubemapData.h"
|
|
#include "gfx/gfxShader.h"
|
|
#include "gfx/genericConstBuffer.h"
|
|
#include "gfx/gfxPrimitiveBuffer.h"
|
|
#include "scene/sceneRenderState.h"
|
|
#include "shaderGen/shaderFeature.h"
|
|
#include "shaderGen/shaderGenVars.h"
|
|
#include "shaderGen/featureMgr.h"
|
|
#include "shaderGen/shaderGen.h"
|
|
#include "materials/sceneData.h"
|
|
#include "materials/materialFeatureTypes.h"
|
|
#include "materials/materialManager.h"
|
|
#include "materials/shaderMaterialParameters.h"
|
|
#include "materials/matTextureTarget.h"
|
|
#include "gfx/util/screenspace.h"
|
|
#include "math/util/matrixSet.h"
|
|
|
|
// We need to include customMaterialDefinition for ShaderConstHandles::init
|
|
#include "materials/customMaterialDefinition.h"
|
|
|
|
///
|
|
/// ShaderConstHandles
|
|
///
|
|
void ShaderConstHandles::init( GFXShader *shader, CustomMaterial* mat /*=NULL*/ )
|
|
{
|
|
mDiffuseColorSC = shader->getShaderConstHandle("$diffuseMaterialColor");
|
|
mTexMatSC = shader->getShaderConstHandle(ShaderGenVars::texMat);
|
|
mToneMapTexSC = shader->getShaderConstHandle(ShaderGenVars::toneMap);
|
|
mSpecularColorSC = shader->getShaderConstHandle(ShaderGenVars::specularColor);
|
|
mSpecularPowerSC = shader->getShaderConstHandle(ShaderGenVars::specularPower);
|
|
mSpecularStrengthSC = shader->getShaderConstHandle(ShaderGenVars::specularStrength);
|
|
mAccuScaleSC = shader->getShaderConstHandle("$accuScale");
|
|
mAccuDirectionSC = shader->getShaderConstHandle("$accuDirection");
|
|
mAccuStrengthSC = shader->getShaderConstHandle("$accuStrength");
|
|
mAccuCoverageSC = shader->getShaderConstHandle("$accuCoverage");
|
|
mAccuSpecularSC = shader->getShaderConstHandle("$accuSpecular");
|
|
mParallaxInfoSC = shader->getShaderConstHandle("$parallaxInfo");
|
|
mFogDataSC = shader->getShaderConstHandle(ShaderGenVars::fogData);
|
|
mFogColorSC = shader->getShaderConstHandle(ShaderGenVars::fogColor);
|
|
mDetailScaleSC = shader->getShaderConstHandle(ShaderGenVars::detailScale);
|
|
mVisiblitySC = shader->getShaderConstHandle(ShaderGenVars::visibility);
|
|
mColorMultiplySC = shader->getShaderConstHandle(ShaderGenVars::colorMultiply);
|
|
mAlphaTestValueSC = shader->getShaderConstHandle(ShaderGenVars::alphaTestValue);
|
|
mModelViewProjSC = shader->getShaderConstHandle(ShaderGenVars::modelview);
|
|
mWorldViewOnlySC = shader->getShaderConstHandle(ShaderGenVars::worldViewOnly);
|
|
mWorldToCameraSC = shader->getShaderConstHandle(ShaderGenVars::worldToCamera);
|
|
mWorldToObjSC = shader->getShaderConstHandle(ShaderGenVars::worldToObj);
|
|
mViewToObjSC = shader->getShaderConstHandle(ShaderGenVars::viewToObj);
|
|
mCubeTransSC = shader->getShaderConstHandle(ShaderGenVars::cubeTrans);
|
|
mObjTransSC = shader->getShaderConstHandle(ShaderGenVars::objTrans);
|
|
mCubeEyePosSC = shader->getShaderConstHandle(ShaderGenVars::cubeEyePos);
|
|
mEyePosSC = shader->getShaderConstHandle(ShaderGenVars::eyePos);
|
|
mEyePosWorldSC = shader->getShaderConstHandle(ShaderGenVars::eyePosWorld);
|
|
m_vEyeSC = shader->getShaderConstHandle(ShaderGenVars::vEye);
|
|
mEyeMatSC = shader->getShaderConstHandle(ShaderGenVars::eyeMat);
|
|
mOneOverFarplane = shader->getShaderConstHandle(ShaderGenVars::oneOverFarplane);
|
|
mAccumTimeSC = shader->getShaderConstHandle(ShaderGenVars::accumTime);
|
|
mMinnaertConstantSC = shader->getShaderConstHandle(ShaderGenVars::minnaertConstant);
|
|
mSubSurfaceParamsSC = shader->getShaderConstHandle(ShaderGenVars::subSurfaceParams);
|
|
mDiffuseAtlasParamsSC = shader->getShaderConstHandle(ShaderGenVars::diffuseAtlasParams);
|
|
mDiffuseAtlasTileSC = shader->getShaderConstHandle(ShaderGenVars::diffuseAtlasTileParams);
|
|
mBumpAtlasParamsSC = shader->getShaderConstHandle(ShaderGenVars::bumpAtlasParams);
|
|
mBumpAtlasTileSC = shader->getShaderConstHandle(ShaderGenVars::bumpAtlasTileParams);
|
|
mRTSizeSC = shader->getShaderConstHandle( "$targetSize" );
|
|
mOneOverRTSizeSC = shader->getShaderConstHandle( "$oneOverTargetSize" );
|
|
mDetailBumpStrength = shader->getShaderConstHandle( "$detailBumpStrength" );
|
|
mViewProjSC = shader->getShaderConstHandle( "$viewProj" );
|
|
|
|
// MFT_ImposterVert
|
|
mImposterUVs = shader->getShaderConstHandle( "$imposterUVs" );
|
|
mImposterLimits = shader->getShaderConstHandle( "$imposterLimits" );
|
|
|
|
for (S32 i = 0; i < TEXTURE_STAGE_COUNT; ++i)
|
|
mRTParamsSC[i] = shader->getShaderConstHandle( String::ToString( "$rtParams%d", i ) );
|
|
|
|
// Clear any existing texture handles.
|
|
dMemset( mTexHandlesSC, 0, sizeof( mTexHandlesSC ) );
|
|
if(mat)
|
|
{
|
|
for (S32 i = 0; i < Material::MAX_TEX_PER_PASS; ++i)
|
|
mTexHandlesSC[i] = shader->getShaderConstHandle(mat->mSamplerNames[i]);
|
|
}
|
|
|
|
// Deferred Shading
|
|
mMatInfoFlagsSC = shader->getShaderConstHandle(ShaderGenVars::matInfoFlags);
|
|
}
|
|
|
|
///
|
|
/// ShaderRenderPassData
|
|
///
|
|
void ShaderRenderPassData::reset()
|
|
{
|
|
Parent::reset();
|
|
|
|
shader = NULL;
|
|
|
|
for ( U32 i=0; i < featureShaderHandles.size(); i++ )
|
|
delete featureShaderHandles[i];
|
|
|
|
featureShaderHandles.clear();
|
|
}
|
|
|
|
String ShaderRenderPassData::describeSelf() const
|
|
{
|
|
// First write the shader identification.
|
|
String desc = String::ToString( "%s\n", shader->describeSelf().c_str() );
|
|
|
|
// Let the parent get the rest.
|
|
desc += Parent::describeSelf();
|
|
|
|
return desc;
|
|
}
|
|
|
|
///
|
|
/// ProcessedShaderMaterial
|
|
///
|
|
ProcessedShaderMaterial::ProcessedShaderMaterial()
|
|
: mDefaultParameters( NULL ),
|
|
mInstancingState( NULL )
|
|
{
|
|
VECTOR_SET_ASSOCIATION( mShaderConstDesc );
|
|
VECTOR_SET_ASSOCIATION( mParameterHandles );
|
|
}
|
|
|
|
ProcessedShaderMaterial::ProcessedShaderMaterial(Material &mat)
|
|
: mDefaultParameters( NULL ),
|
|
mInstancingState( NULL )
|
|
{
|
|
VECTOR_SET_ASSOCIATION( mShaderConstDesc );
|
|
VECTOR_SET_ASSOCIATION( mParameterHandles );
|
|
mMaterial = &mat;
|
|
}
|
|
|
|
ProcessedShaderMaterial::~ProcessedShaderMaterial()
|
|
{
|
|
SAFE_DELETE(mInstancingState);
|
|
SAFE_DELETE(mDefaultParameters);
|
|
for (U32 i = 0; i < mParameterHandles.size(); i++)
|
|
SAFE_DELETE(mParameterHandles[i]);
|
|
}
|
|
|
|
//
|
|
// Material init
|
|
//
|
|
bool ProcessedShaderMaterial::init( const FeatureSet &features,
|
|
const GFXVertexFormat *vertexFormat,
|
|
const MatFeaturesDelegate &featuresDelegate )
|
|
{
|
|
// Load our textures
|
|
_setStageData();
|
|
|
|
// Determine how many stages we use
|
|
mMaxStages = getNumStages();
|
|
mVertexFormat = vertexFormat;
|
|
mFeatures.clear();
|
|
mStateHint.clear();
|
|
SAFE_DELETE(mInstancingState);
|
|
|
|
for( U32 i=0; i<mMaxStages; i++ )
|
|
{
|
|
MaterialFeatureData fd;
|
|
|
|
// Determine the features of this stage
|
|
_determineFeatures( i, fd, features );
|
|
|
|
// Let the delegate poke at the features.
|
|
if ( featuresDelegate )
|
|
featuresDelegate( this, i, fd, features );
|
|
|
|
// Create the passes for this stage
|
|
if ( fd.features.isNotEmpty() )
|
|
if( !_createPasses( fd, i, features ) )
|
|
return false;
|
|
}
|
|
|
|
_initRenderPassDataStateBlocks();
|
|
_initMaterialParameters();
|
|
mDefaultParameters = allocMaterialParameters();
|
|
setMaterialParameters( mDefaultParameters, 0 );
|
|
mStateHint.init( this );
|
|
|
|
// Enable instancing if we have it.
|
|
if ( mFeatures.hasFeature( MFT_UseInstancing ) )
|
|
{
|
|
mInstancingState = new InstancingState();
|
|
mInstancingState->setFormat( _getRPD( 0 )->shader->getInstancingFormat(), mVertexFormat );
|
|
}
|
|
return true;
|
|
}
|
|
|
|
U32 ProcessedShaderMaterial::getNumStages()
|
|
{
|
|
// Loops through all stages to determine how many
|
|
// stages we actually use.
|
|
//
|
|
// The first stage is always active else we shouldn't be
|
|
// creating the material to begin with.
|
|
U32 numStages = 1;
|
|
|
|
U32 i;
|
|
for( i=1; i<Material::MAX_STAGES; i++ )
|
|
{
|
|
// Assume stage is inactive
|
|
bool stageActive = false;
|
|
|
|
// Cubemaps only on first stage
|
|
if( i == 0 )
|
|
{
|
|
// If we have a cubemap the stage is active
|
|
if( mMaterial->mCubemapData || mMaterial->mDynamicCubemap )
|
|
{
|
|
numStages++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If we have a texture for the a feature the
|
|
// stage is active.
|
|
if ( mStages[i].hasValidTex() )
|
|
stageActive = true;
|
|
|
|
// If this stage has specular lighting, it's active
|
|
if ( mMaterial->mPixelSpecular[i] )
|
|
stageActive = true;
|
|
|
|
// If this stage has diffuse color, it's active
|
|
if ( mMaterial->mDiffuse[i].alpha > 0 &&
|
|
mMaterial->mDiffuse[i] != ColorF::WHITE )
|
|
stageActive = true;
|
|
|
|
// If we have a Material that is vertex lit
|
|
// then it may not have a texture
|
|
if( mMaterial->mVertLit[i] )
|
|
stageActive = true;
|
|
|
|
// Increment the number of active stages
|
|
numStages += stageActive;
|
|
}
|
|
|
|
return numStages;
|
|
}
|
|
|
|
void ProcessedShaderMaterial::_determineFeatures( U32 stageNum,
|
|
MaterialFeatureData &fd,
|
|
const FeatureSet &features )
|
|
{
|
|
PROFILE_SCOPE( ProcessedShaderMaterial_DetermineFeatures );
|
|
|
|
const F32 shaderVersion = GFX->getPixelShaderVersion();
|
|
AssertFatal(shaderVersion > 0.0 , "Cannot create a shader material if we don't support shaders");
|
|
|
|
bool lastStage = stageNum == (mMaxStages-1);
|
|
|
|
// First we add all the features which the
|
|
// material has defined.
|
|
|
|
if ( mMaterial->isTranslucent() )
|
|
{
|
|
// Note: This is for decal blending into the prepass
|
|
// for AL... it probably needs to be made clearer.
|
|
if ( mMaterial->mTranslucentBlendOp == Material::LerpAlpha &&
|
|
mMaterial->mTranslucentZWrite )
|
|
fd.features.addFeature( MFT_IsTranslucentZWrite );
|
|
else
|
|
{
|
|
fd.features.addFeature( MFT_IsTranslucent );
|
|
fd.features.addFeature( MFT_ForwardShading );
|
|
}
|
|
}
|
|
|
|
// TODO: This sort of sucks... BL should somehow force this
|
|
// feature on from the outside and not this way.
|
|
if ( dStrcmp( LIGHTMGR->getId(), "BLM" ) == 0 )
|
|
fd.features.addFeature( MFT_ForwardShading );
|
|
|
|
// Disabling the InterlacedPrePass feature for now. It is not ready for prime-time
|
|
// and it should not be triggered off of the DoubleSided parameter. [2/5/2010 Pat]
|
|
/*if ( mMaterial->isDoubleSided() )
|
|
{
|
|
fd.features.addFeature( MFT_InterlacedPrePass );
|
|
}*/
|
|
|
|
// Allow instancing if it was requested and the card supports
|
|
// SM 3.0 or above.
|
|
//
|
|
// We also disable instancing for non-single pass materials
|
|
// and glowing materials because its untested/unimplemented.
|
|
//
|
|
if ( features.hasFeature( MFT_UseInstancing ) &&
|
|
mMaxStages == 1 &&
|
|
!mMaterial->mGlow[0] &&
|
|
!mMaterial->mDynamicCubemap &&
|
|
shaderVersion >= 3.0f )
|
|
fd.features.addFeature( MFT_UseInstancing );
|
|
|
|
if ( mMaterial->mAlphaTest )
|
|
fd.features.addFeature( MFT_AlphaTest );
|
|
|
|
if ( mMaterial->mEmissive[stageNum] )
|
|
fd.features.addFeature( MFT_IsEmissive );
|
|
else
|
|
fd.features.addFeature( MFT_RTLighting );
|
|
|
|
if ( mMaterial->mAnimFlags[stageNum] )
|
|
fd.features.addFeature( MFT_TexAnim );
|
|
|
|
if ( mMaterial->mVertLit[stageNum] )
|
|
fd.features.addFeature( MFT_VertLit );
|
|
|
|
// cubemaps only available on stage 0 for now - bramage
|
|
if ( stageNum < 1 && mMaterial->isTranslucent() &&
|
|
( ( mMaterial->mCubemapData && mMaterial->mCubemapData->mCubemap ) ||
|
|
mMaterial->mDynamicCubemap ) )
|
|
{
|
|
fd.features.addFeature( MFT_CubeMap );
|
|
}
|
|
|
|
if (features.hasFeature(MFT_SkyBox))
|
|
{
|
|
fd.features.addFeature(MFT_CubeMap);
|
|
fd.features.addFeature(MFT_SkyBox);
|
|
}
|
|
fd.features.addFeature( MFT_Visibility );
|
|
|
|
if ( lastStage &&
|
|
( !gClientSceneGraph->usePostEffectFog() ||
|
|
fd.features.hasFeature( MFT_IsTranslucent ) ||
|
|
fd.features.hasFeature( MFT_ForwardShading )) )
|
|
fd.features.addFeature( MFT_Fog );
|
|
|
|
if ( mMaterial->mMinnaertConstant[stageNum] > 0.0f )
|
|
fd.features.addFeature( MFT_MinnaertShading );
|
|
|
|
if ( mMaterial->mSubSurface[stageNum] )
|
|
fd.features.addFeature( MFT_SubSurface );
|
|
|
|
if ( !mMaterial->mCellLayout[stageNum].isZero() )
|
|
{
|
|
fd.features.addFeature( MFT_DiffuseMapAtlas );
|
|
|
|
if ( mMaterial->mNormalMapAtlas )
|
|
fd.features.addFeature( MFT_NormalMapAtlas );
|
|
}
|
|
|
|
// Grab other features like normal maps, base texture, etc.
|
|
FeatureSet mergeFeatures;
|
|
mStages[stageNum].getFeatureSet( &mergeFeatures );
|
|
fd.features.merge( mergeFeatures );
|
|
|
|
if ( fd.features[ MFT_NormalMap ] )
|
|
{
|
|
if ( mStages[stageNum].getTex( MFT_NormalMap )->mFormat == GFXFormatDXT5 &&
|
|
!mStages[stageNum].getTex( MFT_NormalMap )->mHasTransparency )
|
|
fd.features.addFeature( MFT_IsDXTnm );
|
|
}
|
|
|
|
// Now for some more advanced features that we
|
|
// cannot do on SM 2.0 and below.
|
|
if ( shaderVersion > 2.0f )
|
|
{
|
|
|
|
if ( mMaterial->mParallaxScale[stageNum] > 0.0f &&
|
|
fd.features[ MFT_NormalMap ] )
|
|
fd.features.addFeature( MFT_Parallax );
|
|
|
|
// If not parallax then allow per-pixel specular if
|
|
// we have real time lighting enabled.
|
|
else if ( fd.features[MFT_RTLighting] &&
|
|
mMaterial->mPixelSpecular[stageNum] )
|
|
fd.features.addFeature( MFT_PixSpecular );
|
|
}
|
|
|
|
// Without realtime lighting and on lower end
|
|
// shader models disable the specular map.
|
|
if ( !fd.features[ MFT_RTLighting ] || shaderVersion == 2.0 )
|
|
fd.features.removeFeature( MFT_SpecularMap );
|
|
|
|
// If we have a specular map then make sure we
|
|
// have per-pixel specular enabled.
|
|
if( fd.features[ MFT_SpecularMap ] )
|
|
{
|
|
fd.features.addFeature( MFT_PixSpecular );
|
|
|
|
// Check for an alpha channel on the specular map. If it has one (and it
|
|
// has values less than 255) than the artist has put the gloss map into
|
|
// the alpha channel.
|
|
if( mStages[stageNum].getTex( MFT_SpecularMap )->mHasTransparency )
|
|
fd.features.addFeature( MFT_GlossMap );
|
|
}
|
|
|
|
if ( mMaterial->mAccuEnabled[stageNum] )
|
|
{
|
|
mHasAccumulation = true;
|
|
}
|
|
|
|
// we need both diffuse and normal maps + sm3 to have an accu map
|
|
if( fd.features[ MFT_AccuMap ] &&
|
|
( !fd.features[ MFT_DiffuseMap ] ||
|
|
!fd.features[ MFT_NormalMap ] ||
|
|
GFX->getPixelShaderVersion() < 3.0f ) ) {
|
|
AssertWarn(false, "SAHARA: Using an Accu Map requires SM 3.0 and a normal map.");
|
|
fd.features.removeFeature( MFT_AccuMap );
|
|
mHasAccumulation = false;
|
|
}
|
|
|
|
// Without a base texture use the diffuse color
|
|
// feature to ensure some sort of output.
|
|
if (!fd.features[MFT_DiffuseMap])
|
|
{
|
|
fd.features.addFeature( MFT_DiffuseColor );
|
|
|
|
// No texture coords... no overlay.
|
|
fd.features.removeFeature( MFT_OverlayMap );
|
|
}
|
|
|
|
// If we have a diffuse map and the alpha on the diffuse isn't
|
|
// zero and the color isn't pure white then multiply the color.
|
|
else if ( mMaterial->mDiffuse[stageNum].alpha > 0.0f &&
|
|
mMaterial->mDiffuse[stageNum] != ColorF::WHITE )
|
|
fd.features.addFeature( MFT_DiffuseColor );
|
|
|
|
// If lightmaps or tonemaps are enabled or we
|
|
// don't have a second UV set then we cannot
|
|
// use the overlay texture.
|
|
if ( fd.features[MFT_LightMap] ||
|
|
fd.features[MFT_ToneMap] ||
|
|
mVertexFormat->getTexCoordCount() < 2 )
|
|
fd.features.removeFeature( MFT_OverlayMap );
|
|
|
|
// If tonemaps are enabled don't use lightmap
|
|
if ( fd.features[MFT_ToneMap] || mVertexFormat->getTexCoordCount() < 2 )
|
|
fd.features.removeFeature( MFT_LightMap );
|
|
|
|
// Don't allow tonemaps if we don't have a second UV set
|
|
if ( mVertexFormat->getTexCoordCount() < 2 )
|
|
fd.features.removeFeature( MFT_ToneMap );
|
|
|
|
// Always add the HDR output feature.
|
|
//
|
|
// It will be filtered out if it was disabled
|
|
// for this material creation below.
|
|
//
|
|
// Also the shader code will evaluate to a nop
|
|
// if HDR is not enabled in the scene.
|
|
//
|
|
fd.features.addFeature( MFT_HDROut );
|
|
|
|
// If vertex color is enabled on the material's stage and
|
|
// color is present in vertex format, add diffuse vertex
|
|
// color feature.
|
|
|
|
if ( mMaterial->mVertColor[ stageNum ] &&
|
|
mVertexFormat->hasColor() )
|
|
fd.features.addFeature( MFT_DiffuseVertColor );
|
|
|
|
// Allow features to add themselves.
|
|
for ( U32 i = 0; i < FEATUREMGR->getFeatureCount(); i++ )
|
|
{
|
|
const FeatureInfo &info = FEATUREMGR->getAt( i );
|
|
info.feature->determineFeature( mMaterial,
|
|
mVertexFormat,
|
|
stageNum,
|
|
*info.type,
|
|
features,
|
|
&fd );
|
|
}
|
|
|
|
// Now disable any features that were
|
|
// not part of the input feature handle.
|
|
fd.features.filter( features );
|
|
}
|
|
|
|
bool ProcessedShaderMaterial::_createPasses( MaterialFeatureData &stageFeatures, U32 stageNum, const FeatureSet &features )
|
|
{
|
|
// Creates passes for the given stage
|
|
ShaderRenderPassData passData;
|
|
U32 texIndex = 0;
|
|
|
|
for( U32 i=0; i < FEATUREMGR->getFeatureCount(); i++ )
|
|
{
|
|
const FeatureInfo &info = FEATUREMGR->getAt( i );
|
|
if ( !stageFeatures.features.hasFeature( *info.type ) )
|
|
continue;
|
|
|
|
U32 numTexReg = info.feature->getResources( stageFeatures ).numTexReg;
|
|
|
|
// adds pass if blend op changes for feature
|
|
_setPassBlendOp( info.feature, passData, texIndex, stageFeatures, stageNum, features );
|
|
|
|
// Add pass if num tex reg is going to be too high
|
|
if( passData.mNumTexReg + numTexReg > GFX->getNumSamplers() )
|
|
{
|
|
if( !_addPass( passData, texIndex, stageFeatures, stageNum, features ) )
|
|
return false;
|
|
_setPassBlendOp( info.feature, passData, texIndex, stageFeatures, stageNum, features );
|
|
}
|
|
|
|
passData.mNumTexReg += numTexReg;
|
|
passData.mFeatureData.features.addFeature( *info.type );
|
|
|
|
#if defined(TORQUE_DEBUG) && defined( TORQUE_OPENGL)
|
|
U32 oldTexNumber = texIndex;
|
|
#endif
|
|
|
|
info.feature->setTexData( mStages[stageNum], stageFeatures, passData, texIndex );
|
|
|
|
#if defined(TORQUE_DEBUG) && defined( TORQUE_OPENGL)
|
|
if(oldTexNumber != texIndex)
|
|
{
|
|
for(int i = oldTexNumber; i < texIndex; i++)
|
|
{
|
|
AssertFatal(passData.mSamplerNames[ oldTexNumber ].isNotEmpty(), avar( "ERROR: ShaderGen feature %s don't set used sampler name", info.feature->getName().c_str()) );
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Add pass if tex units are maxed out
|
|
if( texIndex > GFX->getNumSamplers() )
|
|
{
|
|
if( !_addPass( passData, texIndex, stageFeatures, stageNum, features ) )
|
|
return false;
|
|
_setPassBlendOp( info.feature, passData, texIndex, stageFeatures, stageNum, features );
|
|
}
|
|
}
|
|
|
|
#if defined(TORQUE_DEBUG) && defined( TORQUE_OPENGL)
|
|
for(int i = 0; i < texIndex; i++)
|
|
{
|
|
AssertFatal(passData.mSamplerNames[ i ].isNotEmpty(),"");
|
|
}
|
|
#endif
|
|
|
|
const FeatureSet &passFeatures = passData.mFeatureData.codify();
|
|
if ( passFeatures.isNotEmpty() )
|
|
{
|
|
mFeatures.merge( passFeatures );
|
|
if( !_addPass( passData, texIndex, stageFeatures, stageNum, features ) )
|
|
{
|
|
mFeatures.clear();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void ProcessedShaderMaterial::_initMaterialParameters()
|
|
{
|
|
// Cleanup anything left first.
|
|
SAFE_DELETE( mDefaultParameters );
|
|
for ( U32 i = 0; i < mParameterHandles.size(); i++ )
|
|
SAFE_DELETE( mParameterHandles[i] );
|
|
|
|
// Gather the shaders as they all need to be
|
|
// passed to the ShaderMaterialParameterHandles.
|
|
Vector<GFXShader*> shaders;
|
|
shaders.setSize( mPasses.size() );
|
|
for ( U32 i = 0; i < mPasses.size(); i++ )
|
|
shaders[i] = _getRPD(i)->shader;
|
|
|
|
// Run through each shader and prepare its constants.
|
|
for ( U32 i = 0; i < mPasses.size(); i++ )
|
|
{
|
|
const Vector<GFXShaderConstDesc>& desc = shaders[i]->getShaderConstDesc();
|
|
|
|
Vector<GFXShaderConstDesc>::const_iterator p = desc.begin();
|
|
for ( ; p != desc.end(); p++ )
|
|
{
|
|
// Add this to our list of shader constants
|
|
GFXShaderConstDesc d(*p);
|
|
mShaderConstDesc.push_back(d);
|
|
|
|
ShaderMaterialParameterHandle* smph = new ShaderMaterialParameterHandle(d.name, shaders);
|
|
mParameterHandles.push_back(smph);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ProcessedShaderMaterial::_addPass( ShaderRenderPassData &rpd,
|
|
U32 &texIndex,
|
|
MaterialFeatureData &fd,
|
|
U32 stageNum,
|
|
const FeatureSet &features )
|
|
{
|
|
// Set number of textures, stage, glow, etc.
|
|
rpd.mNumTex = texIndex;
|
|
rpd.mStageNum = stageNum;
|
|
rpd.mGlow |= mMaterial->mGlow[stageNum];
|
|
|
|
// Copy over features
|
|
rpd.mFeatureData.materialFeatures = fd.features;
|
|
|
|
Vector<String> samplers;
|
|
samplers.setSize(Material::MAX_TEX_PER_PASS);
|
|
for(int i = 0; i < Material::MAX_TEX_PER_PASS; ++i)
|
|
{
|
|
samplers[i] = (rpd.mSamplerNames[i].isEmpty() || rpd.mSamplerNames[i][0] == '$') ? rpd.mSamplerNames[i] : "$" + rpd.mSamplerNames[i];
|
|
}
|
|
|
|
// Generate shader
|
|
GFXShader::setLogging( true, true );
|
|
rpd.shader = SHADERGEN->getShader( rpd.mFeatureData, mVertexFormat, &mUserMacros, samplers );
|
|
if( !rpd.shader )
|
|
return false;
|
|
rpd.shaderHandles.init( rpd.shader );
|
|
|
|
// If a pass glows, we glow
|
|
if( rpd.mGlow )
|
|
mHasGlow = true;
|
|
|
|
ShaderRenderPassData *newPass = new ShaderRenderPassData( rpd );
|
|
mPasses.push_back( newPass );
|
|
|
|
//initSamplerHandles
|
|
ShaderConstHandles *handles = _getShaderConstHandles( mPasses.size()-1 );
|
|
AssertFatal(handles,"");
|
|
for(int i = 0; i < rpd.mNumTex; i++)
|
|
{
|
|
if(rpd.mSamplerNames[i].isEmpty())
|
|
{
|
|
handles->mTexHandlesSC[i] = newPass->shader->getShaderConstHandle( String::EmptyString );
|
|
handles->mRTParamsSC[i] = newPass->shader->getShaderConstHandle( String::EmptyString );
|
|
continue;
|
|
}
|
|
|
|
String samplerName = rpd.mSamplerNames[i];
|
|
if( !samplerName.startsWith("$"))
|
|
samplerName.insert(0, "$");
|
|
|
|
GFXShaderConstHandle *handle = newPass->shader->getShaderConstHandle( samplerName );
|
|
|
|
handles->mTexHandlesSC[i] = handle;
|
|
handles->mRTParamsSC[i] = newPass->shader->getShaderConstHandle( String::ToString( "$rtParams%s", samplerName.c_str()+1 ) );
|
|
|
|
AssertFatal( handle,"");
|
|
}
|
|
|
|
// Give each active feature a chance to create specialized shader consts.
|
|
for( U32 i=0; i < FEATUREMGR->getFeatureCount(); i++ )
|
|
{
|
|
const FeatureInfo &info = FEATUREMGR->getAt( i );
|
|
if ( !fd.features.hasFeature( *info.type ) )
|
|
continue;
|
|
|
|
ShaderFeatureConstHandles *fh = info.feature->createConstHandles( rpd.shader, mUserObject );
|
|
if ( fh )
|
|
newPass->featureShaderHandles.push_back( fh );
|
|
}
|
|
|
|
rpd.reset();
|
|
texIndex = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
void ProcessedShaderMaterial::_setPassBlendOp( ShaderFeature *sf,
|
|
ShaderRenderPassData &passData,
|
|
U32 &texIndex,
|
|
MaterialFeatureData &stageFeatures,
|
|
U32 stageNum,
|
|
const FeatureSet &features )
|
|
{
|
|
if( sf->getBlendOp() == Material::None )
|
|
{
|
|
return;
|
|
}
|
|
|
|
// set up the current blend operation for multi-pass materials
|
|
if( mPasses.size() > 0)
|
|
{
|
|
// If passData.numTexReg is 0, this is a brand new pass, so set the
|
|
// blend operation to the first feature.
|
|
if( passData.mNumTexReg == 0 )
|
|
{
|
|
passData.mBlendOp = sf->getBlendOp();
|
|
}
|
|
else
|
|
{
|
|
// numTegReg is more than zero, if this feature
|
|
// doesn't have the same blend operation, then
|
|
// we need to create yet another pass
|
|
if( sf->getBlendOp() != passData.mBlendOp && mPasses[mPasses.size()-1]->mStageNum == stageNum)
|
|
{
|
|
_addPass( passData, texIndex, stageFeatures, stageNum, features );
|
|
passData.mBlendOp = sf->getBlendOp();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Runtime / rendering
|
|
//
|
|
bool ProcessedShaderMaterial::setupPass( SceneRenderState *state, const SceneData &sgData, U32 pass )
|
|
{
|
|
PROFILE_SCOPE( ProcessedShaderMaterial_SetupPass );
|
|
|
|
// Make sure we have the pass
|
|
if(pass >= mPasses.size())
|
|
{
|
|
// If we were rendering instanced data tell
|
|
// the device to reset that vb stream.
|
|
if ( mInstancingState )
|
|
GFX->setVertexBuffer( NULL, 1 );
|
|
|
|
return false;
|
|
}
|
|
|
|
_setRenderState( state, sgData, pass );
|
|
|
|
// Set shaders
|
|
ShaderRenderPassData* rpd = _getRPD(pass);
|
|
if( rpd->shader )
|
|
{
|
|
GFX->setShader( rpd->shader );
|
|
GFX->setShaderConstBuffer(_getShaderConstBuffer(pass));
|
|
_setShaderConstants(state, sgData, pass);
|
|
|
|
// If we're instancing then do the initial step to get
|
|
// set the vb pointer to the const buffer.
|
|
if ( mInstancingState )
|
|
stepInstance();
|
|
}
|
|
else
|
|
{
|
|
GFX->setupGenericShaders();
|
|
GFX->setShaderConstBuffer(NULL);
|
|
}
|
|
|
|
// Set our textures
|
|
setTextureStages( state, sgData, pass );
|
|
_setTextureTransforms(pass);
|
|
|
|
return true;
|
|
}
|
|
|
|
void ProcessedShaderMaterial::setTextureStages( SceneRenderState *state, const SceneData &sgData, U32 pass )
|
|
{
|
|
PROFILE_SCOPE( ProcessedShaderMaterial_SetTextureStages );
|
|
|
|
ShaderConstHandles *handles = _getShaderConstHandles(pass);
|
|
AssertFatal(handles,"");
|
|
|
|
// Set all of the textures we need to render the give pass.
|
|
#ifdef TORQUE_DEBUG
|
|
AssertFatal( pass<mPasses.size(), "Pass out of bounds" );
|
|
#endif
|
|
|
|
RenderPassData *rpd = mPasses[pass];
|
|
GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
|
|
NamedTexTarget *texTarget;
|
|
GFXTextureObject *texObject;
|
|
|
|
for( U32 i=0; i<rpd->mNumTex; i++ )
|
|
{
|
|
U32 currTexFlag = rpd->mTexType[i];
|
|
if (!LIGHTMGR || !LIGHTMGR->setTextureStage(sgData, currTexFlag, i, shaderConsts, handles))
|
|
{
|
|
switch( currTexFlag )
|
|
{
|
|
// If the flag is unset then assume its just
|
|
// a regular texture to set... nothing special.
|
|
case 0:
|
|
default:
|
|
GFX->setTexture(i, rpd->mTexSlot[i].texObject);
|
|
break;
|
|
|
|
case Material::NormalizeCube:
|
|
GFX->setCubeTexture(i, Material::GetNormalizeCube());
|
|
break;
|
|
|
|
case Material::Lightmap:
|
|
GFX->setTexture( i, sgData.lightmap );
|
|
break;
|
|
|
|
case Material::ToneMapTex:
|
|
shaderConsts->setSafe(handles->mToneMapTexSC, (S32)i);
|
|
GFX->setTexture(i, rpd->mTexSlot[i].texObject);
|
|
break;
|
|
|
|
case Material::Cube:
|
|
GFX->setCubeTexture( i, rpd->mCubeMap );
|
|
break;
|
|
|
|
case Material::SGCube:
|
|
GFX->setCubeTexture( i, sgData.cubemap );
|
|
break;
|
|
|
|
case Material::BackBuff:
|
|
GFX->setTexture( i, sgData.backBuffTex );
|
|
break;
|
|
|
|
case Material::AccuMap:
|
|
if ( sgData.accuTex )
|
|
GFX->setTexture( i, sgData.accuTex );
|
|
else
|
|
GFX->setTexture( i, GFXTexHandle::ZERO );
|
|
break;
|
|
|
|
case Material::TexTarget:
|
|
{
|
|
texTarget = rpd->mTexSlot[i].texTarget;
|
|
if ( !texTarget )
|
|
{
|
|
GFX->setTexture( i, NULL );
|
|
break;
|
|
}
|
|
|
|
texObject = texTarget->getTexture();
|
|
|
|
// If no texture is available then map the default 2x2
|
|
// black texture to it. This at least will ensure that
|
|
// we get consistant behavior across GPUs and platforms.
|
|
if ( !texObject )
|
|
texObject = GFXTexHandle::ZERO;
|
|
|
|
if ( handles->mRTParamsSC[i]->isValid() && texObject )
|
|
{
|
|
const Point3I &targetSz = texObject->getSize();
|
|
const RectI &targetVp = texTarget->getViewport();
|
|
Point4F rtParams;
|
|
|
|
ScreenSpace::RenderTargetParameters(targetSz, targetVp, rtParams);
|
|
|
|
shaderConsts->set(handles->mRTParamsSC[i], rtParams);
|
|
}
|
|
|
|
GFX->setTexture( i, texObject );
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ProcessedShaderMaterial::_setTextureTransforms(const U32 pass)
|
|
{
|
|
PROFILE_SCOPE( ProcessedShaderMaterial_SetTextureTransforms );
|
|
|
|
ShaderConstHandles* handles = _getShaderConstHandles(pass);
|
|
if (handles->mTexMatSC->isValid())
|
|
{
|
|
MatrixF texMat( true );
|
|
|
|
mMaterial->updateTimeBasedParams();
|
|
F32 waveOffset = _getWaveOffset( pass ); // offset is between 0.0 and 1.0
|
|
|
|
// handle scroll anim type
|
|
if( mMaterial->mAnimFlags[pass] & Material::Scroll )
|
|
{
|
|
if( mMaterial->mAnimFlags[pass] & Material::Wave )
|
|
{
|
|
Point3F scrollOffset;
|
|
scrollOffset.x = mMaterial->mScrollDir[pass].x * waveOffset;
|
|
scrollOffset.y = mMaterial->mScrollDir[pass].y * waveOffset;
|
|
scrollOffset.z = 1.0;
|
|
|
|
texMat.setColumn( 3, scrollOffset );
|
|
}
|
|
else
|
|
{
|
|
Point3F offset( mMaterial->mScrollOffset[pass].x,
|
|
mMaterial->mScrollOffset[pass].y,
|
|
1.0 );
|
|
|
|
texMat.setColumn( 3, offset );
|
|
}
|
|
|
|
}
|
|
|
|
// handle rotation
|
|
if( mMaterial->mAnimFlags[pass] & Material::Rotate )
|
|
{
|
|
if( mMaterial->mAnimFlags[pass] & Material::Wave )
|
|
{
|
|
F32 rotPos = waveOffset * M_2PI;
|
|
texMat.set( EulerF( 0.0, 0.0, rotPos ) );
|
|
texMat.setColumn( 3, Point3F( 0.5, 0.5, 0.0 ) );
|
|
|
|
MatrixF test( true );
|
|
test.setColumn( 3, Point3F( mMaterial->mRotPivotOffset[pass].x,
|
|
mMaterial->mRotPivotOffset[pass].y,
|
|
0.0 ) );
|
|
texMat.mul( test );
|
|
}
|
|
else
|
|
{
|
|
texMat.set( EulerF( 0.0, 0.0, mMaterial->mRotPos[pass] ) );
|
|
|
|
texMat.setColumn( 3, Point3F( 0.5, 0.5, 0.0 ) );
|
|
|
|
MatrixF test( true );
|
|
test.setColumn( 3, Point3F( mMaterial->mRotPivotOffset[pass].x,
|
|
mMaterial->mRotPivotOffset[pass].y,
|
|
0.0 ) );
|
|
texMat.mul( test );
|
|
}
|
|
}
|
|
|
|
// Handle scale + wave offset
|
|
if( mMaterial->mAnimFlags[pass] & Material::Scale &&
|
|
mMaterial->mAnimFlags[pass] & Material::Wave )
|
|
{
|
|
F32 wOffset = fabs( waveOffset );
|
|
|
|
texMat.setColumn( 3, Point3F( 0.5, 0.5, 0.0 ) );
|
|
|
|
MatrixF temp( true );
|
|
temp.setRow( 0, Point3F( wOffset, 0.0, 0.0 ) );
|
|
temp.setRow( 1, Point3F( 0.0, wOffset, 0.0 ) );
|
|
temp.setRow( 2, Point3F( 0.0, 0.0, wOffset ) );
|
|
temp.setColumn( 3, Point3F( -wOffset * 0.5, -wOffset * 0.5, 0.0 ) );
|
|
texMat.mul( temp );
|
|
}
|
|
|
|
// handle sequence
|
|
if( mMaterial->mAnimFlags[pass] & Material::Sequence )
|
|
{
|
|
U32 frameNum = (U32)(MATMGR->getTotalTime() * mMaterial->mSeqFramePerSec[pass]);
|
|
F32 offset = frameNum * mMaterial->mSeqSegSize[pass];
|
|
|
|
if ( mMaterial->mAnimFlags[pass] & Material::Scale )
|
|
texMat.scale( Point3F( mMaterial->mSeqSegSize[pass], 1.0f, 1.0f ) );
|
|
|
|
Point3F texOffset = texMat.getPosition();
|
|
texOffset.x += offset;
|
|
texMat.setPosition( texOffset );
|
|
}
|
|
|
|
GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
|
|
shaderConsts->setSafe(handles->mTexMatSC, texMat);
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------
|
|
// Get wave offset for texture animations using a wave transform
|
|
//--------------------------------------------------------------------------
|
|
F32 ProcessedShaderMaterial::_getWaveOffset( U32 stage )
|
|
{
|
|
switch( mMaterial->mWaveType[stage] )
|
|
{
|
|
case Material::Sin:
|
|
{
|
|
return mMaterial->mWaveAmp[stage] * mSin( M_2PI * mMaterial->mWavePos[stage] );
|
|
break;
|
|
}
|
|
|
|
case Material::Triangle:
|
|
{
|
|
F32 frac = mMaterial->mWavePos[stage] - mFloor( mMaterial->mWavePos[stage] );
|
|
if( frac > 0.0 && frac <= 0.25 )
|
|
{
|
|
return mMaterial->mWaveAmp[stage] * frac * 4.0;
|
|
}
|
|
|
|
if( frac > 0.25 && frac <= 0.5 )
|
|
{
|
|
return mMaterial->mWaveAmp[stage] * ( 1.0 - ((frac-0.25)*4.0) );
|
|
}
|
|
|
|
if( frac > 0.5 && frac <= 0.75 )
|
|
{
|
|
return mMaterial->mWaveAmp[stage] * (frac-0.5) * -4.0;
|
|
}
|
|
|
|
if( frac > 0.75 && frac <= 1.0 )
|
|
{
|
|
return -mMaterial->mWaveAmp[stage] * ( 1.0 - ((frac-0.75)*4.0) );
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Material::Square:
|
|
{
|
|
F32 frac = mMaterial->mWavePos[stage] - mFloor( mMaterial->mWavePos[stage] );
|
|
if( frac > 0.0 && frac <= 0.5 )
|
|
{
|
|
return 0.0;
|
|
}
|
|
else
|
|
{
|
|
return mMaterial->mWaveAmp[stage];
|
|
}
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
void ProcessedShaderMaterial::_setShaderConstants(SceneRenderState * state, const SceneData &sgData, U32 pass)
|
|
{
|
|
PROFILE_SCOPE( ProcessedShaderMaterial_SetShaderConstants );
|
|
|
|
GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
|
|
ShaderConstHandles* handles = _getShaderConstHandles(pass);
|
|
U32 stageNum = getStageFromPass(pass);
|
|
|
|
// First we do all the constants which are not
|
|
// controlled via the material... we have to
|
|
// set these all the time as they could change.
|
|
|
|
if ( handles->mFogDataSC->isValid() )
|
|
{
|
|
Point3F fogData;
|
|
fogData.x = sgData.fogDensity;
|
|
fogData.y = sgData.fogDensityOffset;
|
|
fogData.z = sgData.fogHeightFalloff;
|
|
shaderConsts->set( handles->mFogDataSC, fogData );
|
|
}
|
|
|
|
shaderConsts->setSafe(handles->mFogColorSC, sgData.fogColor);
|
|
|
|
if( handles->mOneOverFarplane->isValid() )
|
|
{
|
|
const F32 &invfp = 1.0f / state->getFarPlane();
|
|
Point4F oneOverFP(invfp, invfp, invfp, invfp);
|
|
shaderConsts->set( handles->mOneOverFarplane, oneOverFP );
|
|
}
|
|
|
|
shaderConsts->setSafe( handles->mAccumTimeSC, MATMGR->getTotalTime() );
|
|
|
|
// If the shader constants have not been lost then
|
|
// they contain the content from a previous render pass.
|
|
//
|
|
// In this case we can skip updating the material constants
|
|
// which do not change frame to frame.
|
|
//
|
|
// NOTE: This assumes we're not animating material parameters
|
|
// in a way that doesn't cause a shader reload... this isn't
|
|
// being done now, but it could change in the future.
|
|
//
|
|
if ( !shaderConsts->wasLost() )
|
|
return;
|
|
|
|
shaderConsts->setSafe(handles->mSpecularColorSC, mMaterial->mSpecular[stageNum]);
|
|
shaderConsts->setSafe(handles->mSpecularPowerSC, mMaterial->mSpecularPower[stageNum]);
|
|
shaderConsts->setSafe(handles->mSpecularStrengthSC, mMaterial->mSpecularStrength[stageNum]);
|
|
|
|
shaderConsts->setSafe(handles->mParallaxInfoSC, mMaterial->mParallaxScale[stageNum]);
|
|
shaderConsts->setSafe(handles->mMinnaertConstantSC, mMaterial->mMinnaertConstant[stageNum]);
|
|
|
|
if ( handles->mSubSurfaceParamsSC->isValid() )
|
|
{
|
|
Point4F subSurfParams;
|
|
dMemcpy( &subSurfParams, &mMaterial->mSubSurfaceColor[stageNum], sizeof(ColorF) );
|
|
subSurfParams.w = mMaterial->mSubSurfaceRolloff[stageNum];
|
|
shaderConsts->set(handles->mSubSurfaceParamsSC, subSurfParams);
|
|
}
|
|
|
|
if ( handles->mRTSizeSC->isValid() )
|
|
{
|
|
const Point2I &resolution = GFX->getActiveRenderTarget()->getSize();
|
|
Point2F pixelShaderConstantData;
|
|
|
|
pixelShaderConstantData.x = resolution.x;
|
|
pixelShaderConstantData.y = resolution.y;
|
|
|
|
shaderConsts->set( handles->mRTSizeSC, pixelShaderConstantData );
|
|
}
|
|
|
|
if ( handles->mOneOverRTSizeSC->isValid() )
|
|
{
|
|
const Point2I &resolution = GFX->getActiveRenderTarget()->getSize();
|
|
Point2F oneOverTargetSize( 1.0f / (F32)resolution.x, 1.0f / (F32)resolution.y );
|
|
|
|
shaderConsts->set( handles->mOneOverRTSizeSC, oneOverTargetSize );
|
|
}
|
|
|
|
// set detail scale
|
|
shaderConsts->setSafe(handles->mDetailScaleSC, mMaterial->mDetailScale[stageNum]);
|
|
shaderConsts->setSafe(handles->mDetailBumpStrength, mMaterial->mDetailNormalMapStrength[stageNum]);
|
|
|
|
// MFT_ImposterVert
|
|
if ( handles->mImposterUVs->isValid() )
|
|
{
|
|
U32 uvCount = getMin( mMaterial->mImposterUVs.size(), 64 ); // See imposter.hlsl
|
|
AlignedArray<Point4F> imposterUVs( uvCount, sizeof( Point4F ), (U8*)mMaterial->mImposterUVs.address(), false );
|
|
shaderConsts->set( handles->mImposterUVs, imposterUVs );
|
|
}
|
|
shaderConsts->setSafe( handles->mImposterLimits, mMaterial->mImposterLimits );
|
|
|
|
// Diffuse
|
|
shaderConsts->setSafe(handles->mDiffuseColorSC, mMaterial->mDiffuse[stageNum]);
|
|
|
|
shaderConsts->setSafe( handles->mAlphaTestValueSC, mClampF( (F32)mMaterial->mAlphaRef / 255.0f, 0.0f, 1.0f ) );
|
|
|
|
if(handles->mDiffuseAtlasParamsSC)
|
|
{
|
|
Point4F atlasParams(1.0f / mMaterial->mCellLayout[stageNum].x, // 1 / num_horizontal
|
|
1.0f / mMaterial->mCellLayout[stageNum].y, // 1 / num_vertical
|
|
mMaterial->mCellSize[stageNum], // tile size in pixels
|
|
getBinLog2(mMaterial->mCellSize[stageNum]) ); // pow of 2 of tile size in pixels 2^9 = 512, 2^10=1024 etc
|
|
shaderConsts->setSafe(handles->mDiffuseAtlasParamsSC, atlasParams);
|
|
}
|
|
|
|
if(handles->mBumpAtlasParamsSC)
|
|
{
|
|
Point4F atlasParams(1.0f / mMaterial->mCellLayout[stageNum].x, // 1 / num_horizontal
|
|
1.0f / mMaterial->mCellLayout[stageNum].y, // 1 / num_vertical
|
|
mMaterial->mCellSize[stageNum], // tile size in pixels
|
|
getBinLog2(mMaterial->mCellSize[stageNum]) ); // pow of 2 of tile size in pixels 2^9 = 512, 2^10=1024 etc
|
|
shaderConsts->setSafe(handles->mBumpAtlasParamsSC, atlasParams);
|
|
}
|
|
|
|
if(handles->mDiffuseAtlasTileSC)
|
|
{
|
|
// Sanity check the wrap flags
|
|
//AssertWarn(mMaterial->mTextureAddressModeU == mMaterial->mTextureAddressModeV, "Addresing mode mismatch, texture atlasing will be confused");
|
|
Point4F atlasTileParams( mMaterial->mCellIndex[stageNum].x, // Tile co-ordinate, ie: [0, 3]
|
|
mMaterial->mCellIndex[stageNum].y,
|
|
0.0f, 0.0f ); // TODO: Wrap mode flags?
|
|
shaderConsts->setSafe(handles->mDiffuseAtlasTileSC, atlasTileParams);
|
|
}
|
|
|
|
if(handles->mBumpAtlasTileSC)
|
|
{
|
|
// Sanity check the wrap flags
|
|
//AssertWarn(mMaterial->mTextureAddressModeU == mMaterial->mTextureAddressModeV, "Addresing mode mismatch, texture atlasing will be confused");
|
|
Point4F atlasTileParams( mMaterial->mCellIndex[stageNum].x, // Tile co-ordinate, ie: [0, 3]
|
|
mMaterial->mCellIndex[stageNum].y,
|
|
0.0f, 0.0f ); // TODO: Wrap mode flags?
|
|
shaderConsts->setSafe(handles->mBumpAtlasTileSC, atlasTileParams);
|
|
}
|
|
|
|
// Deferred Shading: Determine Material Info Flags
|
|
S32 matInfoFlags =
|
|
(mMaterial->mEmissive[stageNum] ? 1 : 0) | //emissive
|
|
(mMaterial->mSubSurface[stageNum] ? 2 : 0); //subsurface
|
|
mMaterial->mMatInfoFlags[stageNum] = matInfoFlags / 255.0f;
|
|
shaderConsts->setSafe(handles->mMatInfoFlagsSC, mMaterial->mMatInfoFlags[stageNum]);
|
|
if( handles->mAccuScaleSC->isValid() )
|
|
shaderConsts->set( handles->mAccuScaleSC, mMaterial->mAccuScale[stageNum] );
|
|
if( handles->mAccuDirectionSC->isValid() )
|
|
shaderConsts->set( handles->mAccuDirectionSC, mMaterial->mAccuDirection[stageNum] );
|
|
if( handles->mAccuStrengthSC->isValid() )
|
|
shaderConsts->set( handles->mAccuStrengthSC, mMaterial->mAccuStrength[stageNum] );
|
|
if( handles->mAccuCoverageSC->isValid() )
|
|
shaderConsts->set( handles->mAccuCoverageSC, mMaterial->mAccuCoverage[stageNum] );
|
|
if( handles->mAccuSpecularSC->isValid() )
|
|
shaderConsts->set( handles->mAccuSpecularSC, mMaterial->mAccuSpecular[stageNum] );
|
|
}
|
|
|
|
bool ProcessedShaderMaterial::_hasCubemap(U32 pass)
|
|
{
|
|
// Only support cubemap on the first stage
|
|
if( mPasses[pass]->mStageNum > 0 )
|
|
return false;
|
|
|
|
if( mPasses[pass]->mCubeMap )
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void ProcessedShaderMaterial::setTransforms(const MatrixSet &matrixSet, SceneRenderState *state, const U32 pass)
|
|
{
|
|
PROFILE_SCOPE( ProcessedShaderMaterial_setTransforms );
|
|
|
|
GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
|
|
ShaderConstHandles* handles = _getShaderConstHandles(pass);
|
|
|
|
// The MatrixSet will lazily generate a matrix under the
|
|
// various 'get' methods, so inline the test for a valid
|
|
// shader constant handle to avoid that work when we can.
|
|
if ( handles->mModelViewProjSC->isValid() )
|
|
shaderConsts->set( handles->mModelViewProjSC, matrixSet.getWorldViewProjection() );
|
|
if ( handles->mObjTransSC->isValid() )
|
|
shaderConsts->set( handles->mObjTransSC, matrixSet.getObjectToWorld() );
|
|
if ( handles->mWorldToObjSC->isValid() )
|
|
shaderConsts->set( handles->mWorldToObjSC, matrixSet.getWorldToObject() );
|
|
if ( handles->mWorldToCameraSC->isValid() )
|
|
shaderConsts->set( handles->mWorldToCameraSC, matrixSet.getWorldToCamera() );
|
|
if ( handles->mWorldViewOnlySC->isValid() )
|
|
shaderConsts->set( handles->mWorldViewOnlySC, matrixSet.getObjectToCamera() );
|
|
if ( handles->mViewToObjSC->isValid() )
|
|
shaderConsts->set( handles->mViewToObjSC, matrixSet.getCameraToObject() );
|
|
if ( handles->mViewProjSC->isValid() )
|
|
shaderConsts->set( handles->mViewProjSC, matrixSet.getWorldToScreen() );
|
|
|
|
if ( handles->mCubeTransSC->isValid() &&
|
|
( _hasCubemap(pass) || mMaterial->mDynamicCubemap ) )
|
|
{
|
|
// TODO: Could we not remove this constant? Use mObjTransSC and cast to float3x3 instead?
|
|
shaderConsts->set(handles->mCubeTransSC, matrixSet.getObjectToWorld(), GFXSCT_Float3x3);
|
|
}
|
|
|
|
if ( handles->m_vEyeSC->isValid() )
|
|
shaderConsts->set( handles->m_vEyeSC, state->getVectorEye() );
|
|
}
|
|
|
|
void ProcessedShaderMaterial::setSceneInfo(SceneRenderState * state, const SceneData& sgData, U32 pass)
|
|
{
|
|
PROFILE_SCOPE( ProcessedShaderMaterial_setSceneInfo );
|
|
|
|
GFXShaderConstBuffer* shaderConsts = _getShaderConstBuffer(pass);
|
|
ShaderConstHandles* handles = _getShaderConstHandles(pass);
|
|
|
|
// Set cubemap stuff here (it's convenient!)
|
|
const Point3F &eyePosWorld = state->getCameraPosition();
|
|
if ( handles->mCubeEyePosSC->isValid() )
|
|
{
|
|
if(_hasCubemap(pass) || mMaterial->mDynamicCubemap)
|
|
{
|
|
Point3F cubeEyePos = eyePosWorld - sgData.objTrans->getPosition();
|
|
shaderConsts->set(handles->mCubeEyePosSC, cubeEyePos);
|
|
}
|
|
}
|
|
|
|
shaderConsts->setSafe(handles->mVisiblitySC, sgData.visibility);
|
|
|
|
shaderConsts->setSafe(handles->mEyePosWorldSC, eyePosWorld);
|
|
|
|
if ( handles->mEyePosSC->isValid() )
|
|
{
|
|
MatrixF tempMat( *sgData.objTrans );
|
|
tempMat.inverse();
|
|
Point3F eyepos;
|
|
tempMat.mulP( eyePosWorld, &eyepos );
|
|
shaderConsts->set(handles->mEyePosSC, eyepos);
|
|
}
|
|
|
|
shaderConsts->setSafe(handles->mEyeMatSC, state->getCameraTransform());
|
|
|
|
ShaderRenderPassData *rpd = _getRPD( pass );
|
|
for ( U32 i=0; i < rpd->featureShaderHandles.size(); i++ )
|
|
rpd->featureShaderHandles[i]->setConsts( state, sgData, shaderConsts );
|
|
|
|
LIGHTMGR->setLightInfo( this, mMaterial, sgData, state, pass, shaderConsts );
|
|
}
|
|
|
|
void ProcessedShaderMaterial::setBuffers( GFXVertexBufferHandleBase *vertBuffer, GFXPrimitiveBufferHandle *primBuffer )
|
|
{
|
|
PROFILE_SCOPE(ProcessedShaderMaterial_setBuffers);
|
|
|
|
// If we're not instanced then just call the parent.
|
|
if ( !mInstancingState )
|
|
{
|
|
Parent::setBuffers( vertBuffer, primBuffer );
|
|
return;
|
|
}
|
|
|
|
PROFILE_SCOPE(ProcessedShaderMaterial_setBuffers_instancing);
|
|
|
|
const S32 instCount = mInstancingState->getCount();
|
|
AssertFatal( instCount > 0,
|
|
"ProcessedShaderMaterial::setBuffers - No instances rendered!" );
|
|
|
|
// Nothing special here.
|
|
GFX->setPrimitiveBuffer( *primBuffer );
|
|
|
|
// Set the first stream the the normal VB and set the
|
|
// correct frequency for the number of instances to render.
|
|
GFX->setVertexBuffer( *vertBuffer, 0, instCount );
|
|
|
|
// Get a volatile VB and fill it with the vertex data.
|
|
const GFXVertexFormat *instFormat = mInstancingState->getFormat();
|
|
GFXVertexBufferDataHandle instVB;
|
|
instVB.set( GFX, instFormat->getSizeInBytes(), instFormat, instCount, GFXBufferTypeVolatile );
|
|
U8 *dest = instVB.lock();
|
|
if(!dest) return;
|
|
dMemcpy( dest, mInstancingState->getBuffer(), instFormat->getSizeInBytes() * instCount );
|
|
instVB.unlock();
|
|
|
|
// Set the instance vb for streaming.
|
|
GFX->setVertexBuffer( instVB, 1, 1 );
|
|
|
|
// Finally set the vertex format which defines
|
|
// both of the streams.
|
|
GFX->setVertexFormat( mInstancingState->getDeclFormat() );
|
|
|
|
// Done... reset the count.
|
|
mInstancingState->resetStep();
|
|
}
|
|
|
|
bool ProcessedShaderMaterial::stepInstance()
|
|
{
|
|
PROFILE_SCOPE(ProcessedShaderMaterial_stepInstance);
|
|
AssertFatal( mInstancingState, "ProcessedShaderMaterial::stepInstance - This material isn't instanced!" );
|
|
return mInstancingState->step( &_getShaderConstBuffer( 0 )->mInstPtr );
|
|
}
|
|
|
|
MaterialParameters* ProcessedShaderMaterial::allocMaterialParameters()
|
|
{
|
|
ShaderMaterialParameters* smp = new ShaderMaterialParameters();
|
|
Vector<GFXShaderConstBufferRef> buffers( __FILE__, __LINE__ );
|
|
buffers.setSize(mPasses.size());
|
|
for (U32 i = 0; i < mPasses.size(); i++)
|
|
buffers[i] = _getRPD(i)->shader->allocConstBuffer();
|
|
// smp now owns these buffers.
|
|
smp->setBuffers(mShaderConstDesc, buffers);
|
|
return smp;
|
|
}
|
|
|
|
MaterialParameterHandle* ProcessedShaderMaterial::getMaterialParameterHandle(const String& name)
|
|
{
|
|
// Search our list
|
|
for (U32 i = 0; i < mParameterHandles.size(); i++)
|
|
{
|
|
if (mParameterHandles[i]->getName().equal(name))
|
|
return mParameterHandles[i];
|
|
}
|
|
|
|
// If we didn't find it, we have to add it to support shader reloading.
|
|
|
|
Vector<GFXShader*> shaders;
|
|
shaders.setSize(mPasses.size());
|
|
for (U32 i = 0; i < mPasses.size(); i++)
|
|
shaders[i] = _getRPD(i)->shader;
|
|
|
|
ShaderMaterialParameterHandle* smph = new ShaderMaterialParameterHandle( name, shaders );
|
|
mParameterHandles.push_back(smph);
|
|
|
|
return smph;
|
|
}
|
|
|
|
/// This is here to deal with the differences between ProcessedCustomMaterials and ProcessedShaderMaterials.
|
|
GFXShaderConstBuffer* ProcessedShaderMaterial::_getShaderConstBuffer( const U32 pass )
|
|
{
|
|
if (mCurrentParams && pass < mPasses.size())
|
|
{
|
|
return static_cast<ShaderMaterialParameters*>(mCurrentParams)->getBuffer(pass);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
ShaderConstHandles* ProcessedShaderMaterial::_getShaderConstHandles(const U32 pass)
|
|
{
|
|
if (pass < mPasses.size())
|
|
{
|
|
return &_getRPD(pass)->shaderHandles;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void ProcessedShaderMaterial::dumpMaterialInfo()
|
|
{
|
|
for ( U32 i = 0; i < getNumPasses(); i++ )
|
|
{
|
|
const ShaderRenderPassData *passData = _getRPD( i );
|
|
|
|
if ( passData == NULL )
|
|
continue;
|
|
|
|
const GFXShader *shader = passData->shader;
|
|
|
|
if ( shader == NULL )
|
|
Con::printf( " [%i] [NULL shader]", i );
|
|
else
|
|
Con::printf( " [%i] %s", i, shader->describeSelf().c_str() );
|
|
}
|
|
}
|