mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-20 04:34:48 +00:00
586 lines
19 KiB
C++
586 lines
19 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Copyright (c) 2012 GarageGames, LLC
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to
|
|
// deal in the Software without restriction, including without limitation the
|
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
// sell copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
// IN THE SOFTWARE.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "core/strings/stringFunctions.h"
|
|
#include "core/frameAllocator.h"
|
|
|
|
#include "math/mMatrix.h"
|
|
#include "console/console.h"
|
|
|
|
#include "console/enginePrimitives.h"
|
|
#include "console/engineTypes.h"
|
|
|
|
const MatrixF MatrixF::Identity( true );
|
|
|
|
// idx(i,j) is index to element in column i, row j
|
|
|
|
void MatrixF::transposeTo(F32 *matrix) const
|
|
{
|
|
matrix[idx(0,0)] = m[idx(0,0)];
|
|
matrix[idx(0,1)] = m[idx(1,0)];
|
|
matrix[idx(0,2)] = m[idx(2,0)];
|
|
matrix[idx(0,3)] = m[idx(3,0)];
|
|
matrix[idx(1,0)] = m[idx(0,1)];
|
|
matrix[idx(1,1)] = m[idx(1,1)];
|
|
matrix[idx(1,2)] = m[idx(2,1)];
|
|
matrix[idx(1,3)] = m[idx(3,1)];
|
|
matrix[idx(2,0)] = m[idx(0,2)];
|
|
matrix[idx(2,1)] = m[idx(1,2)];
|
|
matrix[idx(2,2)] = m[idx(2,2)];
|
|
matrix[idx(2,3)] = m[idx(3,2)];
|
|
matrix[idx(3,0)] = m[idx(0,3)];
|
|
matrix[idx(3,1)] = m[idx(1,3)];
|
|
matrix[idx(3,2)] = m[idx(2,3)];
|
|
matrix[idx(3,3)] = m[idx(3,3)];
|
|
}
|
|
|
|
bool MatrixF::isAffine() const
|
|
{
|
|
// An affine transform is defined by the following structure
|
|
//
|
|
// [ X X X P ]
|
|
// [ X X X P ]
|
|
// [ X X X P ]
|
|
// [ 0 0 0 1 ]
|
|
//
|
|
// Where X is an orthonormal 3x3 submatrix and P is an arbitrary translation
|
|
// We'll check in the following order:
|
|
// 1: [3][3] must be 1
|
|
// 2: Shear portion must be zero
|
|
// 3: Dot products of rows and columns must be zero
|
|
// 4: Length of rows and columns must be 1
|
|
//
|
|
if (m[idx(3,3)] != 1.0f)
|
|
return false;
|
|
|
|
if (m[idx(0,3)] != 0.0f ||
|
|
m[idx(1,3)] != 0.0f ||
|
|
m[idx(2,3)] != 0.0f)
|
|
return false;
|
|
|
|
Point3F one, two, three;
|
|
getColumn(0, &one);
|
|
getColumn(1, &two);
|
|
getColumn(2, &three);
|
|
if (mDot(one, two) > 0.0001f ||
|
|
mDot(one, three) > 0.0001f ||
|
|
mDot(two, three) > 0.0001f)
|
|
return false;
|
|
|
|
if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
|
|
mFabs(1.0f - two.lenSquared()) > 0.0001f ||
|
|
mFabs(1.0f - three.lenSquared()) > 0.0001f)
|
|
return false;
|
|
|
|
getRow(0, &one);
|
|
getRow(1, &two);
|
|
getRow(2, &three);
|
|
if (mDot(one, two) > 0.0001f ||
|
|
mDot(one, three) > 0.0001f ||
|
|
mDot(two, three) > 0.0001f)
|
|
return false;
|
|
|
|
if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
|
|
mFabs(1.0f - two.lenSquared()) > 0.0001f ||
|
|
mFabs(1.0f - three.lenSquared()) > 0.0001f)
|
|
return false;
|
|
|
|
// We're ok.
|
|
return true;
|
|
}
|
|
|
|
// Perform inverse on full 4x4 matrix. Used in special cases only, so not at all optimized.
|
|
bool MatrixF::fullInverse()
|
|
{
|
|
Point4F a,b,c,d;
|
|
getRow(0,&a);
|
|
getRow(1,&b);
|
|
getRow(2,&c);
|
|
getRow(3,&d);
|
|
|
|
// det = a0*b1*c2*d3 - a0*b1*c3*d2 - a0*c1*b2*d3 + a0*c1*b3*d2 + a0*d1*b2*c3 - a0*d1*b3*c2 -
|
|
// b0*a1*c2*d3 + b0*a1*c3*d2 + b0*c1*a2*d3 - b0*c1*a3*d2 - b0*d1*a2*c3 + b0*d1*a3*c2 +
|
|
// c0*a1*b2*d3 - c0*a1*b3*d2 - c0*b1*a2*d3 + c0*b1*a3*d2 + c0*d1*a2*b3 - c0*d1*a3*b2 -
|
|
// d0*a1*b2*c3 + d0*a1*b3*c2 + d0*b1*a2*c3 - d0*b1*a3*c2 - d0*c1*a2*b3 + d0*c1*a3*b2
|
|
F32 det = a.x*b.y*c.z*d.w - a.x*b.y*c.w*d.z - a.x*c.y*b.z*d.w + a.x*c.y*b.w*d.z + a.x*d.y*b.z*c.w - a.x*d.y*b.w*c.z
|
|
- b.x*a.y*c.z*d.w + b.x*a.y*c.w*d.z + b.x*c.y*a.z*d.w - b.x*c.y*a.w*d.z - b.x*d.y*a.z*c.w + b.x*d.y*a.w*c.z
|
|
+ c.x*a.y*b.z*d.w - c.x*a.y*b.w*d.z - c.x*b.y*a.z*d.w + c.x*b.y*a.w*d.z + c.x*d.y*a.z*b.w - c.x*d.y*a.w*b.z
|
|
- d.x*a.y*b.z*c.w + d.x*a.y*b.w*c.z + d.x*b.y*a.z*c.w - d.x*b.y*a.w*c.z - d.x*c.y*a.z*b.w + d.x*c.y*a.w*b.z;
|
|
|
|
if (mFabs(det)<0.00001f)
|
|
return false;
|
|
|
|
Point4F aa,bb,cc,dd;
|
|
aa.x = b.y*c.z*d.w - b.y*c.w*d.z - c.y*b.z*d.w + c.y*b.w*d.z + d.y*b.z*c.w - d.y*b.w*c.z;
|
|
aa.y = -a.y*c.z*d.w + a.y*c.w*d.z + c.y*a.z*d.w - c.y*a.w*d.z - d.y*a.z*c.w + d.y*a.w*c.z;
|
|
aa.z = a.y*b.z*d.w - a.y*b.w*d.z - b.y*a.z*d.w + b.y*a.w*d.z + d.y*a.z*b.w - d.y*a.w*b.z;
|
|
aa.w = -a.y*b.z*c.w + a.y*b.w*c.z + b.y*a.z*c.w - b.y*a.w*c.z - c.y*a.z*b.w + c.y*a.w*b.z;
|
|
|
|
bb.x = -b.x*c.z*d.w + b.x*c.w*d.z + c.x*b.z*d.w - c.x*b.w*d.z - d.x*b.z*c.w + d.x*b.w*c.z;
|
|
bb.y = a.x*c.z*d.w - a.x*c.w*d.z - c.x*a.z*d.w + c.x*a.w*d.z + d.x*a.z*c.w - d.x*a.w*c.z;
|
|
bb.z = -a.x*b.z*d.w + a.x*b.w*d.z + b.x*a.z*d.w - b.x*a.w*d.z - d.x*a.z*b.w + d.x*a.w*b.z;
|
|
bb.w = a.x*b.z*c.w - a.x*b.w*c.z - b.x*a.z*c.w + b.x*a.w*c.z + c.x*a.z*b.w - c.x*a.w*b.z;
|
|
|
|
cc.x = b.x*c.y*d.w - b.x*c.w*d.y - c.x*b.y*d.w + c.x*b.w*d.y + d.x*b.y*c.w - d.x*b.w*c.y;
|
|
cc.y = -a.x*c.y*d.w + a.x*c.w*d.y + c.x*a.y*d.w - c.x*a.w*d.y - d.x*a.y*c.w + d.x*a.w*c.y;
|
|
cc.z = a.x*b.y*d.w - a.x*b.w*d.y - b.x*a.y*d.w + b.x*a.w*d.y + d.x*a.y*b.w - d.x*a.w*b.y;
|
|
cc.w = -a.x*b.y*c.w + a.x*b.w*c.y + b.x*a.y*c.w - b.x*a.w*c.y - c.x*a.y*b.w + c.x*a.w*b.y;
|
|
|
|
dd.x = -b.x*c.y*d.z + b.x*c.z*d.y + c.x*b.y*d.z - c.x*b.z*d.y - d.x*b.y*c.z + d.x*b.z*c.y;
|
|
dd.y = a.x*c.y*d.z - a.x*c.z*d.y - c.x*a.y*d.z + c.x*a.z*d.y + d.x*a.y*c.z - d.x*a.z*c.y;
|
|
dd.z = -a.x*b.y*d.z + a.x*b.z*d.y + b.x*a.y*d.z - b.x*a.z*d.y - d.x*a.y*b.z + d.x*a.z*b.y;
|
|
dd.w = a.x*b.y*c.z - a.x*b.z*c.y - b.x*a.y*c.z + b.x*a.z*c.y + c.x*a.y*b.z - c.x*a.z*b.y;
|
|
|
|
setRow(0,aa);
|
|
setRow(1,bb);
|
|
setRow(2,cc);
|
|
setRow(3,dd);
|
|
|
|
mul(1.0f/det);
|
|
|
|
return true;
|
|
}
|
|
|
|
void MatrixF::reverseProjection()
|
|
{
|
|
m[idx(0, 2)] = m[idx(0, 3)] - m[idx(0, 2)];
|
|
m[idx(1, 2)] = m[idx(1, 3)] - m[idx(1, 2)];
|
|
m[idx(2, 2)] = m[idx(2, 3)] - m[idx(2, 2)];
|
|
m[idx(3, 2)] = m[idx(3, 3)] - m[idx(3, 2)];
|
|
}
|
|
|
|
EulerF MatrixF::toEuler() const
|
|
{
|
|
const F32 * mat = m;
|
|
|
|
EulerF r;
|
|
r.x = mAsin(mClampF(mat[MatrixF::idx(2,1)], -1.0, 1.0));
|
|
|
|
if(mCos(r.x) != 0.f)
|
|
{
|
|
r.y = mAtan2(-mat[MatrixF::idx(2,0)], mat[MatrixF::idx(2,2)]);
|
|
r.z = mAtan2(-mat[MatrixF::idx(0,1)], mat[MatrixF::idx(1,1)]);
|
|
}
|
|
else
|
|
{
|
|
r.y = 0.f;
|
|
r.z = mAtan2(mat[MatrixF::idx(1,0)], mat[MatrixF::idx(0,0)]);
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
void MatrixF::dumpMatrix(const char *caption /* =NULL */) const
|
|
{
|
|
U32 size = (caption == NULL)? 0 : dStrlen(caption);
|
|
FrameTemp<char> spacer(size+1);
|
|
char *spacerRef = spacer;
|
|
|
|
dMemset(spacerRef, ' ', size);
|
|
spacerRef[size] = 0;
|
|
|
|
Con::printf("%s = | %-8.4f %-8.4f %-8.4f %-8.4f |", caption, m[idx(0,0)], m[idx(0, 1)], m[idx(0, 2)], m[idx(0, 3)]);
|
|
Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(1,0)], m[idx(1, 1)], m[idx(1, 2)], m[idx(1, 3)]);
|
|
Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(2,0)], m[idx(2, 1)], m[idx(2, 2)], m[idx(2, 3)]);
|
|
Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(3,0)], m[idx(3, 1)], m[idx(3, 2)], m[idx(3, 3)]);
|
|
}
|
|
|
|
EngineFieldTable::Field MatrixFEngineExport::getMatrixField()
|
|
{
|
|
typedef MatrixF ThisType;
|
|
return _FIELD_AS(F32, m, m, 16, "");
|
|
}
|
|
|
|
//------------------------------------
|
|
// Templatized matrix class to replace MATRIXF above
|
|
// row-major for now, since torque says it uses that
|
|
// but in future could cut down on transpose calls if
|
|
// we switch to column major.
|
|
//------------------------------------
|
|
|
|
template<typename DATA_TYPE, U32 rows, U32 cols>
|
|
const Matrix<DATA_TYPE, rows, cols> Matrix<DATA_TYPE, rows, cols>::Identity = []() {
|
|
Matrix<DATA_TYPE, rows, cols> identity(true);
|
|
return identity;
|
|
}();
|
|
|
|
template<typename DATA_TYPE, U32 rows, U32 cols>
|
|
Matrix<DATA_TYPE, rows, cols>::Matrix(const EulerF& e)
|
|
{
|
|
set(e);
|
|
}
|
|
|
|
template<typename DATA_TYPE, U32 rows, U32 cols>
|
|
Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const EulerF& e)
|
|
{
|
|
// when the template refactor is done, euler will be able to be setup in different ways
|
|
AssertFatal(rows >= 3 && cols >= 3, "EulerF can only initialize 3x3 or more");
|
|
static_assert(std::is_same<DATA_TYPE, float>::value, "Can only initialize eulers with floats for now");
|
|
|
|
F32 cosPitch, sinPitch;
|
|
mSinCos(e.x, sinPitch, cosPitch);
|
|
|
|
F32 cosYaw, sinYaw;
|
|
mSinCos(e.y, sinYaw, cosYaw);
|
|
|
|
F32 cosRoll, sinRoll;
|
|
mSinCos(e.z, sinRoll, cosRoll);
|
|
|
|
enum {
|
|
AXIS_X = (1 << 0),
|
|
AXIS_Y = (1 << 1),
|
|
AXIS_Z = (1 << 2)
|
|
};
|
|
|
|
U32 axis = 0;
|
|
if (e.x != 0.0f) axis |= AXIS_X;
|
|
if (e.y != 0.0f) axis |= AXIS_Y;
|
|
if (e.z != 0.0f) axis |= AXIS_Z;
|
|
|
|
switch (axis) {
|
|
case 0:
|
|
(*this) = Matrix<DATA_TYPE, rows, cols>(true);
|
|
break;
|
|
case AXIS_X:
|
|
(*this)(0, 0) = 1.0f; (*this)(1, 0) = 0.0f; (*this)(2, 0) = 0.0f;
|
|
(*this)(0, 1) = 0.0f; (*this)(1, 1) = cosPitch; (*this)(2, 1) = -sinPitch;
|
|
(*this)(0, 2) = 0.0f; (*this)(1, 2) = sinPitch; (*this)(2, 2) = cosPitch;
|
|
break;
|
|
case AXIS_Y:
|
|
(*this)(0, 0) = cosYaw; (*this)(1, 0) = 0.0f; (*this)(2, 0) = sinYaw;
|
|
(*this)(0, 1) = 0.0f; (*this)(1, 1) = 1.0f; (*this)(2, 1) = 0.0f;
|
|
(*this)(0, 2) = -sinYaw; (*this)(1, 2) = 0.0f; (*this)(2, 2) = cosYaw;
|
|
break;
|
|
case AXIS_Z:
|
|
(*this)(0, 0) = cosRoll; (*this)(1, 0) = -sinRoll; (*this)(2, 0) = 0.0f;
|
|
(*this)(0, 1) = sinRoll; (*this)(1, 1) = cosRoll; (*this)(2, 1) = 0.0f;
|
|
(*this)(0, 2) = 0.0f; (*this)(1, 2) = 0.0f; (*this)(2, 2) = 0.0f;
|
|
break;
|
|
default:
|
|
F32 r1 = cosYaw * cosRoll;
|
|
F32 r2 = cosYaw * sinRoll;
|
|
F32 r3 = sinYaw * cosRoll;
|
|
F32 r4 = sinYaw * sinRoll;
|
|
|
|
// the matrix looks like this:
|
|
// r1 - (r4 * sin(x)) r2 + (r3 * sin(x)) -cos(x) * sin(y)
|
|
// -cos(x) * sin(z) cos(x) * cos(z) sin(x)
|
|
// r3 + (r2 * sin(x)) r4 - (r1 * sin(x)) cos(x) * cos(y)
|
|
//
|
|
// where:
|
|
// r1 = cos(y) * cos(z)
|
|
// r2 = cos(y) * sin(z)
|
|
// r3 = sin(y) * cos(z)
|
|
// r4 = sin(y) * sin(z)
|
|
|
|
// init the euler 3x3 rotation matrix.
|
|
(*this)(0, 0) = r1 - (r4 * sinPitch); (*this)(1, 0) = -cosPitch * sinRoll; (*this)(2, 0) = r3 + (r2 * sinPitch);
|
|
(*this)(0, 1) = r2 + (r3 * sinPitch); (*this)(1, 1) = cosPitch * cosRoll; (*this)(2, 1) = r4 - (r1 * sinPitch);
|
|
(*this)(0, 2) = -cosPitch * sinYaw; (*this)(1, 2) = sinPitch; (*this)(2, 2) = cosPitch * cosYaw;
|
|
break;
|
|
}
|
|
|
|
if (rows == 4) {
|
|
(*this)(3, 0) = 0.0f;
|
|
(*this)(3, 1) = 0.0f;
|
|
(*this)(3, 2) = 0.0f;
|
|
}
|
|
|
|
if (cols == 4) {
|
|
(*this)(0, 3) = 0.0f;
|
|
(*this)(1, 3) = 0.0f;
|
|
(*this)(2, 3) = 0.0f;
|
|
}
|
|
|
|
if (rows == 4 && cols == 4) {
|
|
(*this)(3, 3) = 1.0f;
|
|
}
|
|
|
|
return(*this);
|
|
}
|
|
|
|
template<typename DATA_TYPE, U32 rows, U32 cols>
|
|
Matrix<DATA_TYPE, rows, cols>::Matrix(const EulerF& e, const Point3F p)
|
|
{
|
|
set(e, p);
|
|
}
|
|
|
|
template<typename DATA_TYPE, U32 rows, U32 cols>
|
|
Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const EulerF& e, const Point3F p)
|
|
{
|
|
AssertFatal(rows >= 3 && cols >= 4, "Euler and Point can only initialize 3x4 or more");
|
|
// call set euler, this already sets the last row if it exists.
|
|
set(e);
|
|
|
|
// does this need to multiply with the result of the euler? or are we just setting position.
|
|
(*this)(0, 3) = p.x;
|
|
(*this)(1, 3) = p.y;
|
|
(*this)(2, 3) = p.z;
|
|
|
|
return (*this);
|
|
}
|
|
|
|
template<typename DATA_TYPE, U32 rows, U32 cols>
|
|
Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::inverse()
|
|
{
|
|
// TODO: insert return statement here
|
|
AssertFatal(rows == cols, "Can only perform inverse on square matrices.");
|
|
const U32 size = rows;
|
|
|
|
// Create augmented matrix [this | I]
|
|
Matrix<DATA_TYPE, size, 2 * size> augmentedMatrix;
|
|
Matrix<DATA_TYPE, size, size> resultMatrix;
|
|
|
|
for (U32 i = 0; i < size; i++) {
|
|
for (U32 j = 0; j < size; j++) {
|
|
augmentedMatrix(i, j) = (*this)(i, j);
|
|
augmentedMatrix(i, j + size) = (i == j) ? static_cast<DATA_TYPE>(1) : static_cast<DATA_TYPE>(0);
|
|
}
|
|
}
|
|
|
|
// Apply gauss-joran elimination
|
|
for (U32 i = 0; i < size; i++) {
|
|
U32 pivotRow = i;
|
|
|
|
for (U32 k = i + 1; k < size; k++) {
|
|
// use std::abs until the templated math functions are in place.
|
|
if (std::abs(augmentedMatrix(k, i)) > std::abs(augmentedMatrix(pivotRow, i))) {
|
|
pivotRow = k;
|
|
}
|
|
}
|
|
|
|
// Swap if needed.
|
|
if (i != pivotRow) {
|
|
for (U32 j = 0; j < 2 * size; j++) {
|
|
std::swap(augmentedMatrix(i, j), augmentedMatrix(pivotRow, j));
|
|
}
|
|
}
|
|
|
|
// Early out if pivot is 0, return a new empty matrix.
|
|
if (augmentedMatrix(i, i) == static_cast<DATA_TYPE>(0)) {
|
|
return Matrix<DATA_TYPE, rows, cols>();
|
|
}
|
|
|
|
DATA_TYPE pivotVal = augmentedMatrix(i, i);
|
|
|
|
// scale the pivot
|
|
for (U32 j = 0; j < 2 * size; ++j) {
|
|
augmentedMatrix(i, j) /= pivotVal;
|
|
}
|
|
|
|
// Eliminate the current column in all other rows
|
|
for (std::size_t k = 0; k < size; k++) {
|
|
if (k != i) {
|
|
DATA_TYPE factor = augmentedMatrix(k, i);
|
|
for (std::size_t j = 0; j < 2 * size; ++j) {
|
|
augmentedMatrix(k, j) -= factor * augmentedMatrix(i, j);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (U32 i = 0; i < size; i++) {
|
|
for (U32 j = 0; j < size; j++) {
|
|
resultMatrix(i, j) = augmentedMatrix(i, j + size);
|
|
}
|
|
}
|
|
|
|
return resultMatrix;
|
|
}
|
|
|
|
template<typename DATA_TYPE, U32 rows, U32 cols>
|
|
void Matrix<DATA_TYPE, rows, cols>::invert()
|
|
{
|
|
(*this) = inverse();
|
|
}
|
|
|
|
template<typename DATA_TYPE, U32 rows, U32 cols>
|
|
Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::setCrossProduct(const Point3F& p)
|
|
{
|
|
AssertFatal(rows == 4 && cols == 4, "Cross product only supported on 4x4 for now");
|
|
|
|
(*this)(0, 0) = 0;
|
|
(*this)(0, 1) = -p.z;
|
|
(*this)(0, 2) = p.y;
|
|
(*this)(0, 3) = 0;
|
|
|
|
(*this)(1, 0) = p.z;
|
|
(*this)(1, 1) = 0;
|
|
(*this)(1, 2) = -p.x;
|
|
(*this)(1, 3) = 0;
|
|
|
|
(*this)(2, 0) = -p.y;
|
|
(*this)(2, 1) = p.x;
|
|
(*this)(2, 2) = 0;
|
|
(*this)(2, 3) = 0;
|
|
|
|
(*this)(3, 0) = 0;
|
|
(*this)(3, 1) = 0;
|
|
(*this)(3, 2) = 0;
|
|
(*this)(3, 3) = 1;
|
|
|
|
return (*this);
|
|
}
|
|
|
|
template<typename DATA_TYPE, U32 rows, U32 cols>
|
|
Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::setTensorProduct(const Point3F& p, const Point3F& q)
|
|
{
|
|
AssertFatal(rows == 4 && cols == 4, "Tensor product only supported on 4x4 for now");
|
|
|
|
(*this)(0, 0) = p.x * q.x;
|
|
(*this)(0, 1) = p.x * q.y;
|
|
(*this)(0, 2) = p.x * q.z;
|
|
(*this)(0, 3) = 0;
|
|
|
|
(*this)(1, 0) = p.y * q.x;
|
|
(*this)(1, 1) = p.y * q.y;
|
|
(*this)(1, 2) = p.y * q.z;
|
|
(*this)(1, 3) = 0;
|
|
|
|
(*this)(2, 0) = p.z * q.x;
|
|
(*this)(2, 1) = p.z * q.y;
|
|
(*this)(2, 2) = p.z * q.z;
|
|
(*this)(2, 3) = 0;
|
|
|
|
(*this)(3, 0) = 0;
|
|
(*this)(3, 1) = 0;
|
|
(*this)(3, 2) = 0;
|
|
(*this)(3, 3) = 1;
|
|
|
|
return (*this);
|
|
}
|
|
|
|
template<typename DATA_TYPE, U32 rows, U32 cols>
|
|
bool Matrix<DATA_TYPE, rows, cols>::isAffine() const
|
|
{
|
|
if ((*this)(rows - 1, cols - 1) != 1.0f) {
|
|
return false;
|
|
}
|
|
|
|
for (U32 col = 0; col < cols - 1; ++col) {
|
|
if ((*this)(rows - 1, col) != 0.0f) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Point3F one, two, three;
|
|
getColumn(0, &one);
|
|
getColumn(1, &two);
|
|
getColumn(2, &three);
|
|
|
|
// check columns
|
|
{
|
|
if (mDot(one, two) > 0.0001f ||
|
|
mDot(one, three) > 0.0001f ||
|
|
mDot(two, three) > 0.0001f)
|
|
return false;
|
|
|
|
if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
|
|
mFabs(1.0f - two.lenSquared()) > 0.0001f ||
|
|
mFabs(1.0f - three.lenSquared()) > 0.0001f)
|
|
return false;
|
|
}
|
|
|
|
getRow(0, &one);
|
|
getRow(1, &two);
|
|
getRow(2, &three);
|
|
// check rows
|
|
{
|
|
if (mDot(one, two) > 0.0001f ||
|
|
mDot(one, three) > 0.0001f ||
|
|
mDot(two, three) > 0.0001f)
|
|
return false;
|
|
|
|
if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
|
|
mFabs(1.0f - two.lenSquared()) > 0.0001f ||
|
|
mFabs(1.0f - three.lenSquared()) > 0.0001f)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
template<typename DATA_TYPE, U32 rows, U32 cols>
|
|
EulerF Matrix<DATA_TYPE, rows, cols>::toEuler() const
|
|
{
|
|
AssertFatal(rows >= 3 && cols >= 3, "Euler rotations require at least a 3x3 matrix.");
|
|
// Extract rotation matrix components
|
|
const DATA_TYPE m00 = (*this)(0, 0);
|
|
const DATA_TYPE m01 = (*this)(0, 1);
|
|
const DATA_TYPE m02 = (*this)(0, 2);
|
|
const DATA_TYPE m10 = (*this)(1, 0);
|
|
const DATA_TYPE m11 = (*this)(1, 1);
|
|
const DATA_TYPE m21 = (*this)(2, 1);
|
|
const DATA_TYPE m22 = (*this)(2, 2);
|
|
|
|
// like all others assume float for now.
|
|
EulerF r;
|
|
|
|
r.x = mAsin(mClampF(m21, -1.0, 1.0));
|
|
if (mCos(r.x) != 0.0f) {
|
|
r.y = mAtan2(-m02, m22); // yaw
|
|
r.z = mAtan2(-m10, m11); // roll
|
|
}
|
|
else {
|
|
r.y = 0.0f;
|
|
r.z = mAtan2(m01, m00); // this rolls when pitch is +90 degrees
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
template<typename DATA_TYPE, U32 rows, U32 cols>
|
|
void Matrix<DATA_TYPE, rows, cols>::dumpMatrix(const char* caption) const
|
|
{
|
|
U32 size = (caption == NULL) ? 0 : dStrlen(caption);
|
|
FrameTemp<char> spacer(size + 1);
|
|
char* spacerRef = spacer;
|
|
|
|
// is_floating_point should return true for floats and doubles.
|
|
const char* formatSpec = std::is_floating_point_v<DATA_TYPE> ? " %-8.4f" : " %d";
|
|
|
|
dMemset(spacerRef, ' ', size);
|
|
// null terminate.
|
|
spacerRef[size] = '\0';
|
|
|
|
/*Con::printf("%s = | %-8.4f %-8.4f %-8.4f %-8.4f |", caption, m[idx(0, 0)], m[idx(0, 1)], m[idx(0, 2)], m[idx(0, 3)]);
|
|
Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(1, 0)], m[idx(1, 1)], m[idx(1, 2)], m[idx(1, 3)]);
|
|
Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(2, 0)], m[idx(2, 1)], m[idx(2, 2)], m[idx(2, 3)]);
|
|
Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(3, 0)], m[idx(3, 1)], m[idx(3, 2)], m[idx(3, 3)]);*/
|
|
|
|
StringBuilder str;
|
|
str.format("%s = |", caption);
|
|
for (U32 i = 0; i < rows; i++) {
|
|
if (i > 0) {
|
|
str.append(spacerRef);
|
|
}
|
|
|
|
for (U32 j = 0; j < cols; j++) {
|
|
str.format(formatSpec, (*this)(i, j));
|
|
}
|
|
str.append(" |\n");
|
|
}
|
|
|
|
Con::printf("%s", str.end().c_str());
|
|
}
|