mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-02-05 04:21:09 +00:00
added libraries: opus flac libsndfile updated: libvorbis libogg openal - Everything works as expected for now. Bare in mind libsndfile needed the check for whether or not it could find the xiph libraries removed in order for this to work.
172 lines
4.8 KiB
C++
172 lines
4.8 KiB
C++
|
|
#include "config.h"
|
|
|
|
#include "alcomplex.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <functional>
|
|
#include <utility>
|
|
|
|
#include "albit.h"
|
|
#include "alnumbers.h"
|
|
#include "alnumeric.h"
|
|
#include "opthelpers.h"
|
|
|
|
|
|
namespace {
|
|
|
|
using ushort = unsigned short;
|
|
using ushort2 = std::pair<ushort,ushort>;
|
|
|
|
constexpr size_t BitReverseCounter(size_t log2_size) noexcept
|
|
{
|
|
/* Some magic math that calculates the number of swaps needed for a
|
|
* sequence of bit-reversed indices when index < reversed_index.
|
|
*/
|
|
return (1u<<(log2_size-1)) - (1u<<((log2_size-1u)/2u));
|
|
}
|
|
|
|
|
|
template<size_t N>
|
|
struct BitReverser {
|
|
static_assert(N <= sizeof(ushort)*8, "Too many bits for the bit-reversal table.");
|
|
|
|
ushort2 mData[BitReverseCounter(N)]{};
|
|
|
|
constexpr BitReverser()
|
|
{
|
|
const size_t fftsize{1u << N};
|
|
size_t ret_i{0};
|
|
|
|
/* Bit-reversal permutation applied to a sequence of fftsize items. */
|
|
for(size_t idx{1u};idx < fftsize-1;++idx)
|
|
{
|
|
size_t revidx{0u}, imask{idx};
|
|
for(size_t i{0};i < N;++i)
|
|
{
|
|
revidx = (revidx<<1) | (imask&1);
|
|
imask >>= 1;
|
|
}
|
|
|
|
if(idx < revidx)
|
|
{
|
|
mData[ret_i].first = static_cast<ushort>(idx);
|
|
mData[ret_i].second = static_cast<ushort>(revidx);
|
|
++ret_i;
|
|
}
|
|
}
|
|
assert(ret_i == al::size(mData));
|
|
}
|
|
};
|
|
|
|
/* These bit-reversal swap tables support up to 10-bit indices (1024 elements),
|
|
* which is the largest used by OpenAL Soft's filters and effects. Larger FFT
|
|
* requests, used by some utilities where performance is less important, will
|
|
* use a slower table-less path.
|
|
*/
|
|
constexpr BitReverser<2> BitReverser2{};
|
|
constexpr BitReverser<3> BitReverser3{};
|
|
constexpr BitReverser<4> BitReverser4{};
|
|
constexpr BitReverser<5> BitReverser5{};
|
|
constexpr BitReverser<6> BitReverser6{};
|
|
constexpr BitReverser<7> BitReverser7{};
|
|
constexpr BitReverser<8> BitReverser8{};
|
|
constexpr BitReverser<9> BitReverser9{};
|
|
constexpr BitReverser<10> BitReverser10{};
|
|
constexpr std::array<al::span<const ushort2>,11> gBitReverses{{
|
|
{}, {},
|
|
BitReverser2.mData,
|
|
BitReverser3.mData,
|
|
BitReverser4.mData,
|
|
BitReverser5.mData,
|
|
BitReverser6.mData,
|
|
BitReverser7.mData,
|
|
BitReverser8.mData,
|
|
BitReverser9.mData,
|
|
BitReverser10.mData
|
|
}};
|
|
|
|
} // namespace
|
|
|
|
template<typename Real>
|
|
std::enable_if_t<std::is_floating_point<Real>::value>
|
|
complex_fft(const al::span<std::complex<Real>> buffer, const al::type_identity_t<Real> sign)
|
|
{
|
|
const size_t fftsize{buffer.size()};
|
|
/* Get the number of bits used for indexing. Simplifies bit-reversal and
|
|
* the main loop count.
|
|
*/
|
|
const size_t log2_size{static_cast<size_t>(al::countr_zero(fftsize))};
|
|
|
|
if(log2_size >= gBitReverses.size()) UNLIKELY
|
|
{
|
|
for(size_t idx{1u};idx < fftsize-1;++idx)
|
|
{
|
|
size_t revidx{0u}, imask{idx};
|
|
for(size_t i{0};i < log2_size;++i)
|
|
{
|
|
revidx = (revidx<<1) | (imask&1);
|
|
imask >>= 1;
|
|
}
|
|
|
|
if(idx < revidx)
|
|
std::swap(buffer[idx], buffer[revidx]);
|
|
}
|
|
}
|
|
else for(auto &rev : gBitReverses[log2_size])
|
|
std::swap(buffer[rev.first], buffer[rev.second]);
|
|
|
|
/* Iterative form of Danielson-Lanczos lemma */
|
|
const Real pi{al::numbers::pi_v<Real> * sign};
|
|
size_t step2{1u};
|
|
for(size_t i{0};i < log2_size;++i)
|
|
{
|
|
const Real arg{pi / static_cast<Real>(step2)};
|
|
|
|
/* TODO: Would std::polar(1.0, arg) be any better? */
|
|
const std::complex<Real> w{std::cos(arg), std::sin(arg)};
|
|
std::complex<Real> u{1.0, 0.0};
|
|
const size_t step{step2 << 1};
|
|
for(size_t j{0};j < step2;j++)
|
|
{
|
|
for(size_t k{j};k < fftsize;k+=step)
|
|
{
|
|
std::complex<Real> temp{buffer[k+step2] * u};
|
|
buffer[k+step2] = buffer[k] - temp;
|
|
buffer[k] += temp;
|
|
}
|
|
|
|
u *= w;
|
|
}
|
|
|
|
step2 <<= 1;
|
|
}
|
|
}
|
|
|
|
void complex_hilbert(const al::span<std::complex<double>> buffer)
|
|
{
|
|
using namespace std::placeholders;
|
|
|
|
inverse_fft(buffer);
|
|
|
|
const double inverse_size = 1.0/static_cast<double>(buffer.size());
|
|
auto bufiter = buffer.begin();
|
|
const auto halfiter = bufiter + (buffer.size()>>1);
|
|
|
|
*bufiter *= inverse_size; ++bufiter;
|
|
bufiter = std::transform(bufiter, halfiter, bufiter,
|
|
[scale=inverse_size*2.0](std::complex<double> d){ return d * scale; });
|
|
*bufiter *= inverse_size; ++bufiter;
|
|
|
|
std::fill(bufiter, buffer.end(), std::complex<double>{});
|
|
|
|
forward_fft(buffer);
|
|
}
|
|
|
|
|
|
template void complex_fft<>(const al::span<std::complex<float>> buffer, const float sign);
|
|
template void complex_fft<>(const al::span<std::complex<double>> buffer, const double sign);
|