Torque3D/Engine/source/ts/tsShape.h
AzaezelX cd5f897e55 dsqs area subset of dts data
ensure if an input file contains mesh data *and* an animation, thats a dts, if it's *just* an armature, that's dsq
also fix shapeanimation tooltip display
and for furutere utility,  TSShape::isShapeFileType(Torque::Path filePath); is now static since it only requires a path, not an object instance per-se
2025-09-14 15:18:03 -05:00

739 lines
26 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#ifndef _TSSHAPE_H_
#define _TSSHAPE_H_
#ifndef _TSMESH_H_
#include "ts/tsMesh.h"
#endif
#ifndef _TSINTEGERSET_H_
#include "ts/tsIntegerSet.h"
#endif
#ifndef _TSTRANSFORM_H_
#include "ts/tsTransform.h"
#endif
#ifndef _TSSHAPEALLOC_H_
#include "ts/tsShapeAlloc.h"
#endif
#define DTS_EXPORTER_CURRENT_VERSION 124
class TSMaterialList;
class TSLastDetail;
class PhysicsCollision;
//
struct CollisionShapeInfo
{
S32 colNode;
PhysicsCollision *colShape;
};
/// Data storage helper for main shape buffer
struct TSShapeVertexArray
{
U8 *base;
U32 size;
bool vertexDataReady;
TSShapeVertexArray() : base(NULL), size(0), vertexDataReady(false) {}
virtual ~TSShapeVertexArray() { set(NULL, 0); }
virtual void set(void *b, U32 s, bool autoFree = true)
{
if (base && autoFree)
dFree_aligned(base);
base = reinterpret_cast<U8 *>(b);
size = s;
}
};
/// TSShape stores generic data for a 3space model.
///
/// TSShape and TSShapeInstance act in conjunction to allow the rendering and
/// manipulation of a three dimensional model.
///
/// @note The material lists are the only thing that is not loaded in TSShape.
/// instead, they are loaded in TSShapeInstance because of a former restriction
/// on the resource manager where only one file could be opened at a time.
/// The resource manager restriction has been resolved, but the material
/// lists are still loaded in TSShapeInstance.
///
/// @see TSShapeInstance for a further discussion of the 3space system.
class TSShape
{
public:
enum
{
UniformScale = BIT(0),
AlignedScale = BIT(1),
ArbitraryScale = BIT(2),
Blend = BIT(3),
Cyclic = BIT(4),
MakePath = BIT(5),
HasTranslucency= BIT(6),
AnyScale = UniformScale | AlignedScale | ArbitraryScale
};
/// Nodes hold the transforms in the shape's tree. They are the bones of the skeleton.
struct Node
{
S32 nameIndex;
S32 parentIndex;
// computed at runtime
S32 firstObject;
S32 firstChild;
S32 nextSibling;
};
/// Objects hold renderable items (in particular meshes).
///
/// Each object has a number of meshes associated with it.
/// Each mesh corresponds to a different detail level.
///
/// meshIndicesIndex points to numMeshes consecutive indices
/// into the meshList and meshType vectors. It indexes the
/// meshIndexList vector (meshIndexList is merely a clearinghouse
/// for the object's mesh lists). Some indices may correspond to
/// no mesh -- which means no mesh will be drawn for the part for
/// the given detail level. See comments on the meshIndexList
/// for how null meshes are coded.
///
/// @note Things are stored this way so that there are no pointers.
/// This makes serialization to disk dramatically simpler.
struct Object
{
S32 nameIndex;
S32 numMeshes;
S32 startMeshIndex; ///< Index into meshes array.
S32 nodeIndex;
// computed at load
S32 nextSibling;
S32 firstDecal; // DEPRECATED
};
/// A Sequence holds all the information necessary to perform a particular animation (sequence).
///
/// Sequences index a range of keyframes. Keyframes are assumed to be equally spaced in time.
///
/// Each node and object is either a member of the sequence or not. If not, they are set to
/// default values when we switch to the sequence unless they are members of some other active sequence.
/// Blended sequences "add" a transform to the current transform of a node. Any object animation of
/// a blended sequence over-rides any existing object state. Blended sequences are always
/// applied after non-blended sequences.
struct Sequence
{
S32 nameIndex;
S32 numKeyframes;
F32 duration;
S32 baseRotation;
S32 baseTranslation;
S32 baseScale;
S32 baseObjectState;
S32 baseDecalState; // DEPRECATED
S32 firstGroundFrame;
S32 numGroundFrames;
S32 firstTrigger;
S32 numTriggers;
F32 toolBegin;
/// @name Bitsets
/// These bitsets code whether this sequence cares about certain aspects of animation
/// e.g., the rotation, translation, or scale of node transforms,
/// or the visibility, frame or material frame of objects.
/// @{
TSIntegerSet rotationMatters; ///< Set of nodes
TSIntegerSet translationMatters; ///< Set of nodes
TSIntegerSet scaleMatters; ///< Set of nodes
TSIntegerSet visMatters; ///< Set of objects
TSIntegerSet frameMatters; ///< Set of objects
TSIntegerSet matFrameMatters; ///< Set of objects
/// @}
S32 priority;
U32 flags;
U32 dirtyFlags; ///< determined at load time
/// @name Source Data
/// Store some information about where the sequence data came from (used by
/// TSShapeConstructor and the Shape Editor)
/// @{
struct SeqSourceData
{
String from; // The source sequence (ie. a DSQ file)
S32 start; // The first frame in the source sequence
S32 end; // The last frame in the source sequence
S32 total; // The total number of frames in the source sequence
String blendSeq; // The blend reference sequence
S32 blendFrame; // The blend reference frame
SeqSourceData() : from("\t"), start(0), end(0), total(0), blendSeq(""), blendFrame(0) { }
} sourceData;
/// @name Flag Tests
/// Each of these tests a different flag against the object's flag list
/// to determine the attributes of the given object.
/// @{
bool testFlags(U32 comp) const { return (flags&comp)!=0; }
bool animatesScale() const { return testFlags(AnyScale); }
bool animatesUniformScale() const { return testFlags(UniformScale); }
bool animatesAlignedScale() const { return testFlags(AlignedScale); }
bool animatesArbitraryScale() const { return testFlags(ArbitraryScale); }
bool isBlend() const { return testFlags(Blend); }
bool isCyclic() const { return testFlags(Cyclic); }
bool makePath() const { return testFlags(MakePath); }
/// @}
/// @name IO
/// @{
void read(Stream *, bool readNameIndex = true);
void write(Stream *, bool writeNameIndex = true) const;
/// @}
};
/// Describes state of an individual object. Includes everything in an object that can be
/// controlled by animation.
struct ObjectState
{
F32 vis;
S32 frameIndex;
S32 matFrameIndex;
};
/// When time on a sequence advances past a certain point, a trigger takes effect and changes
/// one of the state variables to on or off. (State variables found in TSShapeInstance::mTriggerStates)
struct Trigger
{
enum TriggerStates
{
StateOn = BIT(31),
InvertOnReverse = BIT(30),
StateMask = BIT(30)-1
};
U32 state; ///< One of TriggerStates
F32 pos;
};
/// Details are used for render detail selection.
///
/// As the projected size of the shape changes,
/// a different node structure can be used (subShape) and a different objectDetail can be selected
/// for each object drawn. Either of these two parameters can also stay constant, but presumably
/// not both. If size is negative then the detail level will never be selected by the standard
/// detail selection process. It will have to be selected by name. Such details are "utility
/// details" because they exist to hold data (node positions or collision information) but not
/// normally to be drawn. By default there will always be a "Ground" utility detail.
///
/// Note that this struct should always be 32bit aligned
/// as its required by assembleShape/disassembleShape.
struct Detail
{
S32 nameIndex;
S32 subShapeNum;
S32 objectDetailNum;
F32 size;
F32 averageError;
F32 maxError;
S32 polyCount;
/// These values are new autobillboard settings stored
/// as part of the Detail struct in version 26 and above.
/// @{
S32 bbDimension; ///< The size of the autobillboard image.
S32 bbDetailLevel; ///< The detail to render as the autobillboard.
U32 bbEquatorSteps; ///< The number of autobillboard images to capture around the equator.
U32 bbPolarSteps; ///< The number of autobillboard images to capture along the pole.
F32 bbPolarAngle; ///< The angle in radians at which the top/bottom autobillboard images should be displayed.
U32 bbIncludePoles; ///< If non-zero then top and bottom images are generated for the autobillboard.
/// @}
};
/// @name Collision Accelerators
///
/// For speeding up buildpolylist and support calls.
/// @{
struct ConvexHullAccelerator {
S32 numVerts;
Point3F* vertexList;
Point3F* normalList;
U8** emitStrings;
};
ConvexHullAccelerator* getAccelerator(S32 dl);
/// @}
/// @name Shape Vector Data
/// @{
Vector<Node> nodes;
Vector<Object> objects;
Vector<ObjectState> objectStates;
Vector<S32> subShapeFirstNode;
Vector<S32> subShapeFirstObject;
Vector<S32> detailFirstSkin;
Vector<S32> subShapeNumNodes;
Vector<S32> subShapeNumObjects;
Vector<Detail> details;
Vector<Quat16> defaultRotations;
Vector<Point3F> defaultTranslations;
/// @}
/// These are set up at load time, but memory is allocated along with loaded data
/// @{
Vector<S32> subShapeFirstTranslucentObject;
Vector<TSMesh*> meshes;
/// @}
/// @name Alpha Vectors
/// these vectors describe how to transition between detail
/// levels using alpha. "alpha-in" next detail as intraDL goes
/// from alphaIn+alphaOut to alphaOut. "alpha-out" current
/// detail level as intraDL goes from alphaOut to 0.
/// @note
/// - intraDL is at 1 when if shape were any closer to us we'd be at dl-1
/// - intraDL is at 0 when if shape were any farther away we'd be at dl+1
/// @{
Vector<F32> alphaIn;
Vector<F32> alphaOut
;
/// @}
/// @name Resizeable vectors
/// @{
Vector<Sequence> sequences;
Vector<Quat16> nodeRotations;
Vector<Point3F> nodeTranslations;
Vector<F32> nodeUniformScales;
Vector<Point3F> nodeAlignedScales;
Vector<Quat16> nodeArbitraryScaleRots;
Vector<Point3F> nodeArbitraryScaleFactors;
Vector<Quat16> groundRotations;
Vector<Point3F> groundTranslations;
Vector<Trigger> triggers;
Vector<TSLastDetail*> billboardDetails;
Vector<ConvexHullAccelerator*> detailCollisionAccelerators;
Vector<String> names;
/// @}
TSMaterialList * materialList;
/// @name Bounding
/// @{
F32 mRadius;
F32 tubeRadius;
Point3F center;
Box3F mBounds;
/// @}
// various...
U32 mExporterVersion;
F32 mSmallestVisibleSize; ///< Computed at load time from details vector.
S32 mSmallestVisibleDL; ///< @see mSmallestVisibleSize
S32 mReadVersion; ///< File version that this shape was read from.
U32 mFlags; ///< hasTranslucancy
U32 data; ///< User-defined data storage.
/// If enabled detail selection will use the
/// legacy screen error method for lod.
/// @see setDetailFromScreenError
bool mUseDetailFromScreenError;
// TODO: This would be nice as Tuple<>
struct LodPair
{
S8 level; // -1 to 128
U8 intra; // encoded 0 to 1
inline void set( S32 dl, F32 intraDL )
{
level = (S8)dl;
intra = (S8)( intraDL * 255.0f );
}
inline void get( S32 &dl, F32 &intraDL )
{
dl = level;
intraDL = (F32)intra / 255.0f;
}
};
/// The lod lookup table where we mark down the detail
/// level and intra-detail level for each pixel size.
Vector<LodPair> mDetailLevelLookup;
/// The GFX vertex format for all detail meshes in the shape.
/// @see initVertexFeatures()
GFXVertexFormat mVertexFormat;
TSBasicVertexFormat mBasicVertexFormat;
U32 mVertexSize;
S8* mShapeData;
U32 mShapeDataSize;
// Processed vertex data
TSShapeVertexArray mShapeVertexData;
TSVertexBufferHandle mShapeVertexBuffer;
GFXPrimitiveBufferHandle mShapeVertexIndices;
bool mSequencesConstructed;
bool mNeedReinit;
// shape class has few methods --
// just constructor/destructor, io, and lookup methods
// constructor/destructor
TSShape();
~TSShape();
void init();
void initMaterialList(); ///< you can swap in a new material list, but call this if you do
void finalizeEditable();
bool preloadMaterialList(const Torque::Path &path); ///< called to preload and validate the materials in the mat list
void setupBillboardDetails( const String &cachePath );
void setupBillboardDetails(const String& cachePath, const String& diffsePath, const String& normalPath);
/// Inits object list (no geometry buffers)
void initObjects();
/// Initializes the main vertex buffer
void initVertexBuffers();
/// Loads shape vertex data into specified buffer
void getVertexBuffer(TSVertexBufferHandle &vb, GFXBufferType bufferType);
/// Called from init() to calcuate the GFX vertex features for
/// all detail meshes in the shape.
void initVertexFeatures();
/// Inits basic buffer pointers on load
void initVertexBufferPointers();
bool getSequencesConstructed() const { return mSequencesConstructed; }
void setSequencesConstructed(const bool c) { mSequencesConstructed = c; }
/// @name Lookup Animation Info
/// indexed by keyframe number and offset (which object/node/decal
/// of the animated objects/nodes/decals you want information for).
/// @{
QuatF & getRotation(const Sequence & seq, S32 keyframeNum, S32 rotNum, QuatF *) const;
const Point3F & getTranslation(const Sequence & seq, S32 keyframeNum, S32 tranNum) const;
F32 getUniformScale(const Sequence & seq, S32 keyframeNum, S32 scaleNum) const;
const Point3F & getAlignedScale(const Sequence & seq, S32 keyframeNum, S32 scaleNum) const;
TSScale & getArbitraryScale(const Sequence & seq, S32 keyframeNum, S32 scaleNum, TSScale *) const;
const ObjectState & getObjectState(const Sequence & seq, S32 keyframeNum, S32 objectNum) const;
/// @}
/// build LOS collision detail
void computeAccelerator(S32 dl);
bool buildConvexHull(S32 dl) const;
void computeBounds(S32 dl, Box3F & bounds) const; // uses default transforms to compute bounding box around a detail level
// see like named method on shapeInstance if you want to use animated transforms
/// Used to find collision detail meshes in the DTS.
///
/// @param useVisibleMesh If true return the highest visible detail level.
/// @param outDetails The output detail index vector.
/// @param outLOSDetails The optional output LOS detail vector.
///
void findColDetails(bool useVisibleMesh, Vector<S32>* outDetails, Vector<S32>* outLOSDetails, S32 specifiedLOD = 0 ) const;
/// Builds a physics collision shape at the requested scale.
///
/// If using the visible mesh one or more triangle meshes are created
/// from the first visible detail level.
///
/// If using collision meshes we look for mesh names prefixed with the
/// following hints:
//
/// "colbox"
/// "colsphere"
/// "colcapsule"
/// "colmesh"
///
/// In the case of the primitives the mesh bounding box is used to generate
/// a box, sphere, or capsule collision shape. The "colmesh" will create a
/// concave triangle mesh for collision.
///
/// Any other named collision shape is interpreted as a regular convex hull.
///
/// @return The collision object or NULL if no collision data could be generated.
///
PhysicsCollision* buildColShape( bool useVisibleMesh, const Point3F &scale );
/// Like buildColShape except we build one PhysicsCollision object per
/// collision node.
///
/// Results are returned by filling in the CollisionShapeInfo Vector, which also
/// specifies the collision node index for each PhysicsCollision built.
///
void buildColShapes( bool useVisibleMesh, const Point3F &scale, Vector< CollisionShapeInfo > *list );
/// For internal use.
PhysicsCollision* _buildColShapes( bool useVisibleMesh, const Point3F &scale, Vector< CollisionShapeInfo > *list, bool perMesh );
/// @name Lookup Methods
/// @{
/// Returns index into the name vector that equals the passed name.
S32 findName( const String &name ) const;
/// Returns name string at the passed name vector index.
const String& getName( S32 nameIndex ) const;
/// Returns name string for mesh at the passed index.
const String& getMeshName( S32 meshIndex ) const;
/// Returns name string for node at the passed index.
const String& getNodeName( S32 nodeIndex ) const;
/// Returns name string for sequence at the passed index.
const String& getSequenceName( S32 seqIndex ) const;
S32 getTargetCount() const;
const String& getTargetName( S32 mapToNameIndex ) const;
S32 findNode(S32 nameIndex) const;
S32 findNode(const String &name) const { return findNode(findName(name)); }
S32 findObject(S32 nameIndex) const;
S32 findObject(const String &name) const { return findObject(findName(name)); }
S32 findDetail(S32 nameIndex) const;
S32 findDetail(const String &name) const { return findDetail(findName(name)); }
S32 findDetailBySize(S32 size) const;
S32 findSequence(S32 nameIndex) const;
S32 findSequence(const String &name) const { return findSequence(findName(name)); }
S32 getSubShapeForNode(S32 nodeIndex);
S32 getSubShapeForObject(S32 objIndex);
void getSubShapeDetails(S32 subShapeIndex, Vector<S32>& validDetails);
void getNodeWorldTransform(S32 nodeIndex, MatrixF* mat) const;
void getNodeKeyframe(S32 nodeIndex, const TSShape::Sequence& seq, S32 keyframe, MatrixF* mat) const;
void getNodeObjects(S32 nodeIndex, Vector<S32>& nodeObjects);
void getNodeChildren(S32 nodeIndex, Vector<S32>& nodeChildren);
void getObjectDetails(S32 objIndex, Vector<S32>& objDetails);
bool findMeshIndex(const String &meshName, S32& objIndex, S32& meshIndex);
TSMesh* findMesh(const String &meshName);
bool hasTranslucency() const { return (mFlags & HasTranslucency)!=0; }
const GFXVertexFormat* getVertexFormat() const { return &mVertexFormat; }
/// @}
/// @name Alpha Transitions
/// These control default values for alpha transitions between detail levels
/// @{
static F32 smAlphaOutLastDetail;
static F32 smAlphaInBillboard;
static F32 smAlphaOutBillboard;
static F32 smAlphaInDefault;
static F32 smAlphaOutDefault;
/// @}
/// don't load this many of the highest detail levels (although we always
/// load one renderable detail if there is one)
static S32 smNumSkipLoadDetails;
/// by default we initialize shape when we read...
static bool smInitOnRead;
/// Enables hardware skinning features
static bool smUseHardwareSkinning;
/// Determines maximum number of bones to use in hardware skinning shaders
static U32 smMaxSkinBones;
/// @name Version Info
/// @{
/// Most recent version...the one we write
static S32 smVersion;
/// Version currently being read, only valid during read
static S32 smReadVersion;
static const U32 smMostRecentExporterVersion;
///@}
/// @name Persist Methods
/// Methods for saving/loading shapes to/from streams
/// @{
bool canWriteOldFormat() const;
void write(Stream *, bool saveOldFormat=false);
bool read(Stream *);
void readOldShape(Stream * s, S32 * &, S16 * &, S8 * &, S32 &, S32 &, S32 &);
void writeName(Stream *, S32 nameIndex);
S32 readName(Stream *, bool addName);
/// Initializes our TSShape to be ready to receive put mesh data
void createEmptyShape();
void exportSequences(Stream *);
void exportSequence(Stream * s, const TSShape::Sequence& seq, bool saveOldFormat);
bool importSequences(Stream *, const String& sequencePath);
/// @}
/// @name Persist Helper Functions
/// @{
static TSShapeAlloc smTSAlloc;
void fixEndian(S32 *, S16 *, S8 *, S32, S32, S32);
/// @}
/// @name Memory Buffer Transfer Methods
/// uses TSShape::Alloc structure
/// @{
void assembleShape();
void disassembleShape();
///@}
/// mem buffer transfer helper (indicate when we don't want to include a particular mesh/decal)
bool checkSkip(S32 meshNum, S32 & curObject, S32 skipDL);
void fixupOldSkins(S32 numMeshes, S32 numSkins, S32 numDetails, S32 * detFirstSkin, S32 * detailNumSkins);
/// @name Shape Editing
/// @{
S32 addName(const String& name);
bool removeName(const String& name);
void updateSmallestVisibleDL();
S32 addDetail(const String& dname, S32 size, S32 subShapeNum);
S32 addImposter( const String& cachePath,
S32 size,
S32 numEquatorSteps,
S32 numPolarSteps,
S32 dl,
S32 dim,
bool includePoles,
F32 polarAngle );
bool removeImposter();
bool renameNode(const String& oldName, const String& newName);
bool renameObject(const String& oldName, const String& newName);
bool renameDetail(const String& oldName, const String& newName);
bool renameSequence(const String& oldName, const String& newName);
bool setNodeTransform(const String& name, const Point3F& pos, const QuatF& rot);
bool addNode(const String& name, const String& parentName, const Point3F& pos, const QuatF& rot);
bool removeNode(const String& name);
S32 addObject(const String& objName, S32 subShapeIndex);
void addMeshToObject(S32 objIndex, S32 meshIndex, TSMesh* mesh);
void removeMeshFromObject(S32 objIndex, S32 meshIndex);
bool setObjectNode(const String& objName, const String& nodeName);
bool removeObject(const String& objName);
TSMesh* copyMesh( const TSMesh* srcMesh ) const;
bool addMesh(TSShape* srcShape, const String& srcMeshName, const String& meshName);
bool addMesh(TSMesh* mesh, const String& meshName);
bool setMeshSize(const String& meshName, S32 size);
bool removeMesh(const String& meshName);
S32 setDetailSize(S32 oldSize, S32 newSize);
bool removeDetail(S32 size);
static bool isShapeFileType(Torque::Path filePath);
bool addSequence(const Torque::Path& path, const String& fromSeq, const String& name, S32 startFrame, S32 endFrame, bool padRotKeys, bool padTransKeys);
bool removeSequence(const String& name);
bool addTrigger(const String& seqName, S32 keyframe, S32 state);
bool removeTrigger(const String& seqName, S32 keyframe, S32 state);
bool setSequenceBlend(const String& seqName, bool blend, const String& blendRefSeqName, S32 blendRefFrame);
bool setSequenceGroundSpeed(const String& seqName, const Point3F& trans, const Point3F& rot);
void makeEditable();
bool needsReinit();
bool needsBufferUpdate();
/// @}
};
#define TSNode TSShape::Node
#define TSObject TSShape::Object
#define TSSequence TSShape::Sequence
#define TSDetail TSShape::Detail
inline QuatF & TSShape::getRotation(const Sequence & seq, S32 keyframeNum, S32 rotNum, QuatF * quat) const
{
return nodeRotations[seq.baseRotation + rotNum*seq.numKeyframes + keyframeNum].getQuatF(quat);
}
inline const Point3F & TSShape::getTranslation(const Sequence & seq, S32 keyframeNum, S32 tranNum) const
{
return nodeTranslations[seq.baseTranslation + tranNum*seq.numKeyframes + keyframeNum];
}
inline F32 TSShape::getUniformScale(const Sequence & seq, S32 keyframeNum, S32 scaleNum) const
{
return nodeUniformScales[seq.baseScale + scaleNum*seq.numKeyframes + keyframeNum];
}
inline const Point3F & TSShape::getAlignedScale(const Sequence & seq, S32 keyframeNum, S32 scaleNum) const
{
return nodeAlignedScales[seq.baseScale + scaleNum*seq.numKeyframes + keyframeNum];
}
inline TSScale & TSShape::getArbitraryScale(const Sequence & seq, S32 keyframeNum, S32 scaleNum, TSScale * scale) const
{
nodeArbitraryScaleRots[seq.baseScale + scaleNum*seq.numKeyframes + keyframeNum].getQuatF(&scale->mRotate);
scale->mScale = nodeArbitraryScaleFactors[seq.baseScale + scaleNum*seq.numKeyframes + keyframeNum];
return *scale;
}
inline const TSShape::ObjectState & TSShape::getObjectState(const Sequence & seq, S32 keyframeNum, S32 objectNum) const
{
return objectStates[seq.baseObjectState + objectNum*seq.numKeyframes + keyframeNum];
}
#endif