Torque3D/Engine/source/environment/river.cpp

2541 lines
70 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "environment/river.h"
#include "console/consoleTypes.h"
#include "console/engineAPI.h"
#include "util/catmullRom.h"
#include "math/util/quadTransforms.h"
#include "scene/simPath.h"
#include "scene/sceneRenderState.h"
#include "scene/sceneManager.h"
#include "materials/sceneData.h"
#include "materials/baseMatInstance.h"
#include "scene/sgUtil.h"
#include "T3D/gameBase/gameConnection.h"
#include "core/stream/bitStream.h"
#include "gfx/gfxDrawUtil.h"
#include "gfx/gfxTransformSaver.h"
#include "gfx/primBuilder.h"
#include "gfx/gfxDebugEvent.h"
#include "gfx/gfxOcclusionQuery.h"
#include "math/mathIO.h"
#include "math/mathUtils.h"
#include "math/util/frustum.h"
#include "math/util/quadTransforms.h"
#include "gui/3d/guiTSControl.h"
#include "gfx/sim/debugDraw.h"
#include "T3D/fx/particleEmitter.h"
#include "scene/reflectionManager.h"
#include "ts/tsShapeInstance.h"
#include "postFx/postEffect.h"
#include "math/util/matrixSet.h"
#include "environment/nodeListManager.h"
ConsoleDocClass( River,
"@brief A water volume defined by a 3D spline.\n\n"
"User may control width and depth per node and overall spline shape in three "
"dimensions.\n\n"
"%River supports dynamic planar reflections (fullReflect) like all WaterObject "
"classes, but keep in mind it is not necessarily a planar surface. For best "
"visual quality a %River should be less reflective the more it twists and "
"bends. This caution only applies to %Rivers with fullReflect on.\n\n"
"@see WaterObject for inherited functionality.\n\n"
"@ingroup Water"
);
#define MIN_METERS_PER_SEGMENT 1.0f
#define MIN_NODE_DEPTH 0.25f
#define MAX_NODE_DEPTH 500.0f
#define MIN_NODE_WIDTH 0.25f
#define MAX_NODE_WIDTH 1000.0f
#define NODE_RADIUS 15.0f
static U32 gIdxArray[6][2][3] = {
{ { 0, 4, 5 }, { 0, 5, 1 }, }, // Top Face
{ { 2, 6, 4 }, { 2, 4, 0 }, }, // Left Face
{ { 1, 5, 7 }, { 1, 7, 3 }, }, // Right Face
{ { 2, 3, 7 }, { 2, 7, 6 }, }, // Bottom Face
{ { 0, 1, 3 }, { 0, 3, 2 }, }, // Front Face
{ { 4, 6, 7 }, { 4, 7, 5 }, }, // Back Face
};
struct RiverHitSegment
{
U32 idx;
F32 t;
};
static S32 QSORT_CALLBACK compareHitSegments(const void* a,const void* b)
{
const RiverHitSegment *fa = (RiverHitSegment*)a;
const RiverHitSegment *fb = (RiverHitSegment*)b;
return mSign(fb->t - fa->t);
}
static Point3F sSegmentPointComparePoints[4];
//-----------------------------------------------------------------------------
// DecalRoadNodeList Struct
//-----------------------------------------------------------------------------
struct RiverNodeList : public NodeListManager::NodeList
{
Vector<Point3F> mPositions;
Vector<F32> mWidths;
Vector<F32> mDepths;
Vector<VectorF> mNormals;
RiverNodeList() { }
virtual ~RiverNodeList() { }
};
//-----------------------------------------------------------------------------
// RiverNodeEvent Class
//-----------------------------------------------------------------------------
class RiverNodeEvent : public NodeListEvent
{
typedef NodeListEvent Parent;
public:
Vector<Point3F> mPositions;
Vector<F32> mWidths;
Vector<F32> mDepths;
Vector<VectorF> mNormals;
public:
RiverNodeEvent() { mNodeList = NULL; }
virtual ~RiverNodeEvent() { }
virtual void pack(NetConnection*, BitStream*);
virtual void unpack(NetConnection*, BitStream*);
virtual void copyIntoList(NodeListManager::NodeList* copyInto);
virtual void padListToSize();
DECLARE_CONOBJECT(RiverNodeEvent);
};
void RiverNodeEvent::pack(NetConnection* conn, BitStream* stream)
{
Parent::pack( conn, stream );
stream->writeInt( mPositions.size(), 16 );
for (U32 i=0; i<mPositions.size(); ++i)
{
mathWrite( *stream, mPositions[i] );
stream->write( mWidths[i] );
stream->write( mDepths[i] );
mathWrite( *stream, mNormals[i] );
}
}
void RiverNodeEvent::unpack(NetConnection* conn, BitStream* stream)
{
mNodeList = new RiverNodeList();
Parent::unpack( conn, stream );
U32 count = stream->readInt( 16 );
Point3F pos;
F32 width, depth;
VectorF normal;
RiverNodeList* list = static_cast<RiverNodeList*>(mNodeList);
for (U32 i=0; i<count; ++i)
{
mathRead( *stream, &pos );
stream->read( &width );
stream->read( &depth );
mathRead( *stream, &normal );
list->mPositions.push_back( pos );
list->mWidths.push_back( width );
list->mDepths.push_back( depth );
list->mNormals.push_back( normal );
}
list->mTotalValidNodes = count;
// Do we have a complete list?
if (list->mPositions.size() >= mTotalNodes)
list->mListComplete = true;
}
void RiverNodeEvent::copyIntoList(NodeListManager::NodeList* copyInto)
{
RiverNodeList* prevList = dynamic_cast<RiverNodeList*>(copyInto);
RiverNodeList* list = static_cast<RiverNodeList*>(mNodeList);
// Merge our list with the old list.
for (U32 i=mLocalListStart, index=0; i<mLocalListStart+list->mPositions.size(); ++i, ++index)
{
prevList->mPositions[i] = list->mPositions[index];
prevList->mWidths[i] = list->mWidths[index];
prevList->mDepths[i] = list->mDepths[index];
prevList->mNormals[i] = list->mNormals[index];
}
}
void RiverNodeEvent::padListToSize()
{
RiverNodeList* list = static_cast<RiverNodeList*>(mNodeList);
U32 totalValidNodes = list->mTotalValidNodes;
// Pad our list front?
if (mLocalListStart)
{
RiverNodeList* newlist = new RiverNodeList();
newlist->mPositions.increment(mLocalListStart);
newlist->mWidths.increment(mLocalListStart);
newlist->mDepths.increment(mLocalListStart);
newlist->mNormals.increment(mLocalListStart);
newlist->mPositions.merge(list->mPositions);
newlist->mWidths.merge(list->mWidths);
newlist->mDepths.merge(list->mDepths);
newlist->mNormals.merge(list->mNormals);
delete list;
mNodeList = list = newlist;
}
// Pad our list end?
if (list->mPositions.size() < mTotalNodes)
{
U32 delta = mTotalNodes - list->mPositions.size();
list->mPositions.increment(delta);
list->mWidths.increment(delta);
list->mDepths.increment(delta);
list->mNormals.increment(delta);
}
list->mTotalValidNodes = totalValidNodes;
}
IMPLEMENT_CO_NETEVENT_V1(RiverNodeEvent);
ConsoleDocClass( RiverNodeEvent,
"@brief Sends messages to the River Editor\n\n"
"Editor use only.\n\n"
"@internal"
);
//-----------------------------------------------------------------------------
// RiverNodeListNotify Class
//-----------------------------------------------------------------------------
class RiverNodeListNotify : public NodeListNotify
{
typedef NodeListNotify Parent;
protected:
SimObjectPtr<River> mRiver;
public:
RiverNodeListNotify( River* river, U32 listId ) { mRiver = river; mListId = listId; }
virtual ~RiverNodeListNotify() { mRiver = NULL; }
virtual void sendNotification( NodeListManager::NodeList* list );
};
void RiverNodeListNotify::sendNotification( NodeListManager::NodeList* list )
{
if (mRiver.isValid())
{
// Build the road's nodes
RiverNodeList* riverList = dynamic_cast<RiverNodeList*>( list );
if (riverList)
mRiver->buildNodesFromList( riverList );
}
}
//------------------------------------------------------------------------------
// Class: RiverSegment
//------------------------------------------------------------------------------
RiverSegment::RiverSegment()
{
mPlaneCount = 0;
columns = 0;
rows = 0;
numVerts = 0;
numTriangles = 0;
startVert = 0;
endVert = 0;
startIndex = 0;
endIndex = 0;
slice0 = NULL;
slice1 = NULL;
}
RiverSegment::RiverSegment( RiverSlice *rs0, RiverSlice *rs1 )
{
columns = 0;
rows = 0;
numVerts = 0;
numTriangles = 0;
startVert = 0;
endVert = 0;
startIndex = 0;
endIndex = 0;
slice0 = rs0;
slice1 = rs1;
// Calculate the planes for this segment
// Will be used for intersection/buoyancy tests
VectorF normal;
mPlaneCount = 6;
sSegmentPointCompareReference = getFaceCenter(6);
// left
mPlanes[0] = _getBestPlane( &slice1->p0, &slice1->pb0, &slice0->pb0, &slice0->p0 );
// right
mPlanes[1] = _getBestPlane( &slice0->pb2, &slice1->pb2, &slice1->p2, &slice0->p2 );
// near
mPlanes[2] = _getBestPlane( &slice0->pb0, &slice0->pb2, &slice0->p2, &slice0->p0 );
// far
mPlanes[3] = _getBestPlane( &slice1->pb2, &slice1->pb0, &slice1->p0, &slice1->p2 );
// top
mPlanes[4] = _getBestPlane( &slice0->p2, &slice1->p2, &slice1->p0, &slice0->p0 );
// bottom
mPlanes[5] = _getBestPlane( &slice0->pb2, &slice0->pb0, &slice1->pb0, &slice1->pb2 );
// Calculate the bounding box(s)
worldbounds.minExtents = worldbounds.maxExtents = rs0->p0;
worldbounds.extend( rs0->p2 );
worldbounds.extend( rs0->pb0 );
worldbounds.extend( rs0->pb2 );
worldbounds.extend( rs1->p0 );
worldbounds.extend( rs1->p2 );
worldbounds.extend( rs1->pb0 );
worldbounds.extend( rs1->pb2 );
/*
// Calculate tetrahedrons (for collision and buoyancy testing)
// This is 0 in the diagram.
mCubePoints[0] = cornerPoint;
mCubePoints[1] = cornerPoint + (VectorF( 1.0f, 0.0f, 0.0f ) * size );
mCubePoints[2] = cornerPoint + (VectorF( 0.0f, 1.0f, 0.0f ) * size );
mCubePoints[3] = cornerPoint + (VectorF( 1.0f, 1.0f, 0.0f ) * size );
mCubePoints[4] = cornerPoint + (VectorF( 0.0f, 0.0f, 1.0f );
mCubePoints[5] = cornerPoint + (VectorF( 1.0f, 0.0f, 1.0f );
mCubePoints[6] = cornerPoint + (VectorF( 0.0f, 1.0f, 1.0f );
mCubePoints[7] = cornerPoint + (VectorF( 1.0f, 1.0f, 1.0f );
// Center tetra.
mTetras[0].p0 = &mCubePoints[1];
mTetras[0].p1 = &mCubePoints[2];
mTetras[0].p2 = &mCubePoints[4];
mTetras[0].p3 = &mCubePoints[7];
mTetras[1].p0 = &mCubePoints[0]; // this is the tip
mTetras[1].p1 = &mCubePoints[1];
mTetras[1].p2 = &mCubePoints[2];
mTetras[1].p3 = &mCubePoints[4];
mTetras[2].p0 = &mCubePoints[3]; // tip
mTetras[2].p1 = &mCubePoints[2];
mTetras[2].p2 = &mCubePoints[1];
mTetras[2].p3 = &mCubePoints[7];
mTetras[3].p0 = &mCubePoints[6]; // tip
mTetras[3].p1 = &mCubePoints[7];
mTetras[3].p2 = &mCubePoints[4];
mTetras[3].p3 = &mCubePoints[2];
mTetras[4].p0 = &mCubePoints[5]; // tip
mTetras[4].p1 = &mCubePoints[7];
mTetras[4].p2 = &mCubePoints[4];
mTetras[4].p3 = &mCubePoints[3];*/
}
void RiverSegment::set( RiverSlice *rs0, RiverSlice *rs1 )
{
columns = 0;
rows = 0;
numVerts = 0;
numTriangles = 0;
startVert = 0;
endVert = 0;
startIndex = 0;
endIndex = 0;
slice0 = rs0;
slice1 = rs1;
}
static S32 QSORT_CALLBACK SegmentPointCompare(const void *aptr, const void *bptr)
{
const U32 a = *(const U32*)aptr;
const U32 b = *(const U32*)bptr;
F32 lenA = ( sSegmentPointCompareReference - sSegmentPointComparePoints[a] ).lenSquared();
F32 lenB = ( sSegmentPointCompareReference - sSegmentPointComparePoints[b] ).lenSquared();
return ( lenB - lenA );
}
PlaneF RiverSegment::_getBestPlane( const Point3F *p0, const Point3F *p1, const Point3F *p2, const Point3F *p3 )
{
sSegmentPointComparePoints[0] = *p0;
sSegmentPointComparePoints[1] = *p1;
sSegmentPointComparePoints[2] = *p2;
sSegmentPointComparePoints[3] = *p3;
Point3F points[4] = {
*p0, *p1, *p2, *p3
};
U32 indices[4] = {
0,1,2,3
};
dQsort(indices, 4, sizeof(U32), SegmentPointCompare);
// Collect the best three points (in correct winding order)
// To generate the plane's normal
Vector<Point3F> normalPnts;
for ( U32 i = 0; i < 4; i++ )
{
if ( i == indices[3] )
continue;
normalPnts.push_back(points[i]);
}
PlaneF plane( normalPnts[0], normalPnts[1], normalPnts[2] );
return plane;
}
Point3F RiverSegment::getFaceCenter( U32 faceIdx ) const
{
Point3F center(0,0,0);
switch ( faceIdx )
{
case 0: // left
center = slice1->p0 + slice0->p0 + slice0->pb0 + slice1->pb0;
center *= 0.25f;
break;
case 1: // right
center = slice0->p2 + slice1->p2 + slice1->pb2 + slice0->pb2;
center *= 0.25f;
break;
case 2: // near
center = slice0->p0 + slice0->p2 + slice0->pb2 + slice0->pb0;
center *= 0.25f;
break;
case 3: // far
center = slice1->pb0 + slice1->p0 + slice1->pb0 + slice1->pb2;
center *= 0.25f;
break;
case 4: // top
center = slice0->p0 + slice1->p0 + slice1->p2 + slice0->p2;
center *= 0.25f;
break;
case 5: // bottom
center = slice1->pb2 + slice1->pb0 + slice0->pb0 + slice0->pb2;
center *= 0.25f;
break;
case 6: // segment center
center = slice0->p0 + slice0->p2 + slice1->p0 + slice1->p2 + slice0->pb0 + slice0->pb2 + slice1->pb0 + slice1->pb2;
center /= 8;
break;
}
return center;
}
bool RiverSegment::intersectBox( const Box3F &bounds ) const
{
// This code copied from Frustum class.
Point3F maxPoint;
F32 maxDot;
// Note the planes are ordered left, right, near,
// far, top, bottom for getting early rejections
// from the typical horizontal scene.
for ( S32 i = 0; i < mPlaneCount; i++ )
{
// This is pretty much as optimal as you can
// get for a plane vs AABB test...
//
// 4 comparisons
// 3 multiplies
// 2 adds
// 1 negation
//
// It will early out as soon as it detects the
// bounds is outside one of the planes.
if ( mPlanes[i].x > 0 )
maxPoint.x = bounds.maxExtents.x;
else
maxPoint.x = bounds.minExtents.x;
if ( mPlanes[i].y > 0 )
maxPoint.y = bounds.maxExtents.y;
else
maxPoint.y = bounds.minExtents.y;
if ( mPlanes[i].z > 0 )
maxPoint.z = bounds.maxExtents.z;
else
maxPoint.z = bounds.minExtents.z;
maxDot = mDot( maxPoint, mPlanes[ i ] );
if ( maxDot <= -mPlanes[ i ].d )
return false;
}
return true;
}
bool RiverSegment::containsPoint( const Point3F &pnt ) const
{
// NOTE: this code from Frustum class.
F32 maxDot;
// Note the planes are ordered left, right, near,
// far, top, bottom for getting early rejections
// from the typical horizontal scene.
for ( S32 i = 0; i < mPlaneCount; i++ )
{
const PlaneF &plane = mPlanes[ i ];
// This is pretty much as optimal as you can
// get for a plane vs point test...
//
// 1 comparison
// 2 multiplies
// 1 adds
//
// It will early out as soon as it detects the
// point is outside one of the planes.
maxDot = mDot( pnt, plane ) + plane.d;
if ( maxDot < -0.1f )
return false;
}
return true;
}
F32 RiverSegment::distanceToSurface(const Point3F &pnt) const
{
return mPlanes[4].distToPlane( pnt );
}
bool River::smEditorOpen = false;
bool River::smWireframe = false;
bool River::smShowWalls = false;
bool River::smShowNodes = false;
bool River::smShowSpline = true;
bool River::smShowRiver = true;
SimObjectPtr<SimSet> River::smServerRiverSet = NULL;
IMPLEMENT_CO_NETOBJECT_V1(River);
River::River()
: mSegmentsPerBatch(10),
mMetersPerSegment(10.0f),
mDepthScale(1.0f),
mFlowMagnitude(1.0f),
mLodDistance( 50.0f ),
mMaxDivisionSize(2.5f),
mMinDivisionSize(0.25f),
mColumnCount(5)
{
mNetFlags.set( Ghostable | ScopeAlways );
mObjScale.set( 1, 1, 1 );
mObjBox.minExtents.set( -0.5, -0.5, -0.5 );
mObjBox.maxExtents.set( 0.5, 0.5, 0.5 );
mReflectNormalUp = false;
// We use the shader const miscParams.w to signify
// that this object is a River.
mMiscParamW = 1.0f;
}
River::~River()
{
}
void River::initPersistFields()
{
addGroup( "River" );
addField( "SegmentLength", TypeF32, Offset( mMetersPerSegment, River ),
"Divide the River lengthwise into segments of this length in meters. "
"These geometric volumes are used for spacial queries like determining containment." );
addField( "SubdivideLength", TypeF32, Offset( mMaxDivisionSize, River ),
"For purposes of generating the renderable geometry River segments are further subdivided "
"such that no quad is of greater width or length than this distance in meters." );
addField( "FlowMagnitude", TypeF32, Offset( mFlowMagnitude, River ),
"Magnitude of the force vector applied to dynamic objects within the River." );
addField( "LowLODDistance", TypeF32, Offset( mLodDistance, River ),
"Segments of the river at this distance in meters or greater will "
"render as a single unsubdivided without undulation effects." );
endGroup( "River" );
addGroup( "Internal" );
addProtectedField( "Node", TypeString, NULL, &addNodeFromField, &emptyStringProtectedGetFn, "For internal use, do not modify." );
endGroup( "Internal" );
Parent::initPersistFields();
}
void River::consoleInit()
{
Parent::consoleInit();
Con::addVariable( "$River::EditorOpen", TypeBool, &River::smEditorOpen, "For editor use.\n"
"@ingroup Editors\n" );
Con::addVariable( "$River::showWalls", TypeBool, &River::smShowWalls, "For editor use.\n"
"@ingroup Editors\n" );
Con::addVariable( "$River::showNodes", TypeBool, &River::smShowNodes, "For editor use.\n"
"@ingroup Editors\n");
Con::addVariable( "$River::showSpline", TypeBool, &River::smShowSpline, "For editor use.\n"
"@ingroup Editors\n" );
Con::addVariable( "$River::showRiver", TypeBool, &River::smShowRiver, "For editor use.\n"
"@ingroup Editors\n" );
Con::addVariable( "$River::showWireframe", TypeBool, &River::smWireframe, "For editor use.\n"
"@ingroup Editors\n");
}
bool River::addNodeFromField( void *object, const char *index, const char *data )
{
River *pObj = static_cast<River*>(object);
//if ( !pObj->isProperlyAdded() )
//{
F32 x,y,z,width,depth;
VectorF normal;
U32 result = dSscanf( data, "%f %f %f %f %f %f %f %f", &x, &y, &z, &width, &depth, &normal.x, &normal.y, &normal.z );
if ( result == 8 )
pObj->_addNode( Point3F(x,y,z), width, depth, normal );
//}
return false;
}
bool River::onAdd()
{
if ( !Parent::onAdd() )
return false;
// Reset the World Box.
//setGlobalBounds();
resetWorldBox();
// Set the Render Transform.
setRenderTransform(mObjToWorld);
// Add to Scene.
addToScene();
if ( isServerObject() )
getServerSet()->addObject( this );
_regenerate();
return true;
}
void River::onRemove()
{
removeFromScene();
Parent::onRemove();
}
void River::inspectPostApply()
{
// Set Parent.
Parent::inspectPostApply();
if ( mMetersPerSegment < MIN_METERS_PER_SEGMENT )
mMetersPerSegment = MIN_METERS_PER_SEGMENT;
mMaxDivisionSize = getMax( mMaxDivisionSize, mMinDivisionSize );
// Set fxPortal Mask.
setMaskBits(RiverMask|RegenMask);
}
void River::onStaticModified( const char* slotName, const char*newValue )
{
Parent::onStaticModified( slotName, newValue );
if ( dStricmp( slotName, "surfMaterial" ) == 0 )
setMaskBits( MaterialMask );
}
SimSet* River::getServerSet()
{
if ( !smServerRiverSet )
{
smServerRiverSet = new SimSet();
smServerRiverSet->registerObject( "ServerRiverSet" );
Sim::getRootGroup()->addObject( smServerRiverSet );
}
return smServerRiverSet;
}
void River::writeFields( Stream &stream, U32 tabStop )
{
Parent::writeFields( stream, tabStop );
// Now write all nodes
stream.write(2, "\r\n");
for ( U32 i = 0; i < mNodes.size(); i++ )
{
const RiverNode &node = mNodes[i];
stream.writeTabs(tabStop);
char buffer[1024];
dMemset( buffer, 0, 1024 );
dSprintf( buffer, 1024, "Node = \"%f %f %f %f %f %f %f %f\";", node.point.x, node.point.y, node.point.z,
node.width,
node.depth,
node.normal.x, node.normal.y, node.normal.z );
stream.writeLine( (const U8*)buffer );
}
}
bool River::writeField( StringTableEntry fieldname, const char *value )
{
if ( fieldname == StringTable->insert("node") )
return false;
return Parent::writeField( fieldname, value );
}
void River::innerRender( SceneRenderState *state )
{
GFXDEBUGEVENT_SCOPE( River_innerRender, ColorI( 255, 0, 0 ) );
PROFILE_SCOPE( River_innerRender );
// Setup SceneData
SceneData sgData;
sgData.init( state );
sgData.lights[0] = LIGHTMGR->getSpecialLight( LightManager::slSunLightType );
sgData.backBuffTex = REFLECTMGR->getRefractTex();
sgData.reflectTex = mPlaneReflector.reflectTex;
sgData.wireframe |= smWireframe;
const Point3F &camPosition = state->getCameraPosition();
// set the material
S32 matIdx = getMaterialIndex( camPosition );
if ( !initMaterial( matIdx ) )
return;
BaseMatInstance *mat = mMatInstances[matIdx];
WaterMatParams matParams = mMatParamHandles[matIdx];
if ( !mat )
return;
// setup proj/world transform
GFXTransformSaver saver;
setShaderParams( state, mat, matParams );
_makeRenderBatches( camPosition );
if ( !River::smShowRiver )
return;
// If no material... we're done.
if ( mLowLODBatches.empty() && mHighLODBatches.empty() )
return;
if ( !mHighLODBatches.empty() )
_makeHighLODBuffers();
mMatrixSet->restoreSceneViewProjection();
mMatrixSet->setWorld( MatrixF::Identity );
while( mat->setupPass( state, sgData ) )
{
mat->setSceneInfo(state, sgData);
mat->setTransforms(*mMatrixSet, state);
setCustomTextures( matIdx, mat->getCurPass(), matParams );
GFX->setVertexBuffer( mVB_low );
GFX->setPrimitiveBuffer( mPB_low );
for ( U32 i = 0; i < mLowLODBatches.size(); i++ )
{
const RiverRenderBatch &batch = mLowLODBatches[i];
U32 startVert = batch.startSegmentIdx * 2;
U32 endVert = ( batch.endSegmentIdx + 1 ) * 2 + 1;
U32 startIdx = batch.startSegmentIdx * 6;
U32 endIdx = batch.endSegmentIdx * 6 + 5;
U32 vertCount = ( endVert - startVert ) + 1;
U32 idxCount = ( endIdx - startIdx ) + 1;
U32 triangleCount = idxCount / 3;
AssertFatal( startVert < mLowVertCount, "River, bad draw call!" );
AssertFatal( startVert + vertCount <= mLowVertCount, "River, bad draw call!" );
AssertFatal( triangleCount <= mLowTriangleCount, "River, bad draw call!" );
GFX->drawIndexedPrimitive( GFXTriangleList, 0, startVert, vertCount, startIdx, triangleCount );
}
// Render all high detail batches.
//
// It is possible that the buffers could not be allocated because
// the max number of verts/indices was exceeded. We don't want to
// crash because that would be unhelpful for working in the editor.
if ( mVB_high.isValid() && mPB_high.isValid() )
{
GFX->setVertexBuffer( mVB_high );
GFX->setPrimitiveBuffer( mPB_high );
for ( U32 i = 0; i < mHighLODBatches.size(); i++ )
{
const RiverRenderBatch &batch = mHighLODBatches[i];
AssertFatal( batch.startVert < mHighVertCount, "River, bad draw call!" );
AssertFatal( batch.startVert + batch.vertCount <= mHighVertCount, "River, bad draw call!" );
AssertFatal( batch.triangleCount <= mHighTriangleCount, "River, bad draw call!" );
AssertFatal( batch.startIndex < mHighTriangleCount * 3, "River, bad draw call!" );
AssertFatal( batch.startIndex + batch.triangleCount * 3 <= mHighTriangleCount * 3, "River, bad draw call!" );
GFX->drawIndexedPrimitive( GFXTriangleList,
0,
0,
batch.vertCount,
batch.startIndex,
batch.triangleCount );
}
}
} // while( mat->setupPass( sgData ) )
}
void River::updateUnderwaterEffect( SceneRenderState *state )
{
// Calculate mWaterPlane before calling updateUnderwaterEffect.
Point3F dummy;
_getWaterPlane( state->getCameraPosition(), mWaterFogData.plane, dummy );
Parent::updateUnderwaterEffect( state );
}
void River::setShaderParams( SceneRenderState *state, BaseMatInstance* mat, const WaterMatParams& paramHandles )
{
// Set variables that will be assigned to shader consts within WaterCommon
// before calling Parent::setShaderParams
mUndulateMaxDist = mLodDistance;
Parent::setShaderParams( state, mat, paramHandles );
// Now set the rest of the shader consts that are either unique to this
// class or that WaterObject leaves to us to handle...
MaterialParameters* matParams = mat->getMaterialParameters();
// set vertex shader constants
//-----------------------------------
matParams->setSafe(paramHandles.mGridElementSizeSC, 1.0f);
if ( paramHandles.mModelMatSC->isValid() )
matParams->set(paramHandles.mModelMatSC, MatrixF::Identity, GFXSCT_Float4x4);
// set pixel shader constants
//-----------------------------------
LinearColorF c( mWaterFogData.color );
matParams->setSafe(paramHandles.mBaseColorSC, c);
// By default we need to show a true reflection is fullReflect is enabled and
// we are above water.
F32 reflect = mPlaneReflector.isEnabled() && !isUnderwater( state->getCameraPosition() );
// If we were occluded the last frame a query was fetched ( not necessarily last frame )
// and we weren't updated last frame... we don't have a valid texture to show
// so use the cubemap / fake reflection color this frame.
if ( mPlaneReflector.lastUpdateMs != REFLECTMGR->getLastUpdateMs() && mPlaneReflector.isOccluded() )
reflect = false;
Point4F reflectParams( mWaterPos.z, 0.0f, 1000.0f, !reflect );
matParams->setSafe(paramHandles.mReflectParamsSC, reflectParams );
matParams->setSafe(paramHandles.mReflectNormalSC, mPlaneReflector.refplane );
}
bool River::isUnderwater( const Point3F &pnt ) const
{
return containsPoint( pnt, NULL );
}
U32 River::packUpdate(NetConnection * con, U32 mask, BitStream * stream)
{
// Pack Parent.
U32 retMask = Parent::packUpdate(con, mask, stream);
if ( stream->writeFlag( mask & RiverMask ) )
{
// Write Object Transform.
stream->writeAffineTransform(mObjToWorld);
stream->write( mMetersPerSegment );
stream->write( mSegmentsPerBatch );
stream->write( mDepthScale );
stream->write( mMaxDivisionSize );
stream->write( mColumnCount );
stream->write( mFlowMagnitude );
stream->write( mLodDistance );
}
if ( stream->writeFlag( mask & NodeMask ) )
{
const U32 nodeByteSize = 32; // Based on sending all of a node's parameters
// Test if we can fit all of our nodes within the current stream.
// We make sure we leave 100 bytes still free in the stream for whatever
// may follow us.
S32 allowedBytes = stream->getWriteByteSize() - 100;
if ( stream->writeFlag( (nodeByteSize * mNodes.size()) < allowedBytes ) )
{
// All nodes should fit, so send them out now.
stream->writeInt( mNodes.size(), 16 );
for ( U32 i = 0; i < mNodes.size(); i++ )
{
mathWrite( *stream, mNodes[i].point );
stream->write( mNodes[i].width );
stream->write( mNodes[i].depth );
mathWrite( *stream, mNodes[i].normal );
}
}
else
{
// There isn't enough space left in the stream for all of the
// nodes. Batch them up into NetEvents.
U32 id = gServerNodeListManager->nextListId();
U32 count = 0;
U32 index = 0;
while (count < mNodes.size())
{
count += NodeListManager::smMaximumNodesPerEvent;
if (count > mNodes.size())
{
count = mNodes.size();
}
RiverNodeEvent* event = new RiverNodeEvent();
event->mId = id;
event->mTotalNodes = mNodes.size();
event->mLocalListStart = index;
for (; index<count; ++index)
{
event->mPositions.push_back( mNodes[index].point );
event->mWidths.push_back( mNodes[index].width );
event->mDepths.push_back( mNodes[index].depth );
event->mNormals.push_back( mNodes[index].normal );
}
con->postNetEvent( event );
}
stream->write( id );
}
}
if( stream->writeFlag( mask & ( RiverMask | InitialUpdateMask ) ) )
{
// This is set to allow the user to modify the size of the water dynamically
// in the editor
mathWrite( *stream, mObjScale );
stream->writeAffineTransform( mObjToWorld );
}
stream->writeFlag( mask & RegenMask );
return retMask;
}
void River::unpackUpdate(NetConnection * con, BitStream * stream)
{
// Unpack Parent.
Parent::unpackUpdate(con, stream);
// RiverMask
if(stream->readFlag())
{
MatrixF ObjectMatrix;
stream->readAffineTransform(&ObjectMatrix);
Parent::setTransform(ObjectMatrix);
stream->read( &mMetersPerSegment );
stream->read( &mSegmentsPerBatch );
stream->read( &mDepthScale );
stream->read( &mMaxDivisionSize );
stream->read( &mColumnCount );
stream->read( &mFlowMagnitude );
stream->read( &mLodDistance );
}
// NodeMask
if ( stream->readFlag() )
{
if (stream->readFlag())
{
// Nodes have been passed in this update
U32 count = stream->readInt( 16 );
mNodes.clear();
Point3F pos;
VectorF normal;
F32 width,depth;
for ( U32 i = 0; i < count; i++ )
{
mathRead( *stream, &pos );
stream->read( &width );
stream->read( &depth );
mathRead( *stream, &normal );
_addNode( pos, width, depth, normal );
}
}
else
{
// Nodes will arrive as events
U32 id;
stream->read( &id );
// Check if the road's nodes made it here before we did.
NodeListManager::NodeList* list = NULL;
if ( gClientNodeListManager->findListById( id, &list, true) )
{
// Work with the completed list
RiverNodeList* riverList = dynamic_cast<RiverNodeList*>( list );
if (riverList)
buildNodesFromList( riverList );
delete list;
}
else
{
// Nodes have not yet arrived, so register our interest in the list
RiverNodeListNotify* notify = new RiverNodeListNotify( this, id );
gClientNodeListManager->registerNotification( notify );
}
}
}
// RiverMask | InitialUpdateMask
if( stream->readFlag() )
{
mathRead( *stream, &mObjScale );
stream->readAffineTransform( &mObjToWorld );
}
// RegenMask
if ( stream->readFlag() && isProperlyAdded() )
regenerate();
}
void River::_getWaterPlane( const Point3F &camPos, PlaneF &outPlane, Point3F &outPos )
{
// Find the RiverSegment closest to the camera.
F32 closestDist = F32_MAX;
S32 closestSegment = 0;
Point3F projPnt(0.0f, 0.0f, 0.0f);
VectorF normal(0,0,0);
for ( U32 i = 0; i < mSegments.size(); i++ )
{
const RiverSegment &segment = mSegments[i];
const Point3F pos = MathUtils::mClosestPointOnSegment( segment.slice0->p1, segment.slice1->p1, camPos );
F32 dist = ( camPos - pos ).len();
if ( dist < closestDist )
{
closestDist = dist;
closestSegment = i;
projPnt = pos;
}
normal += segment.getSurfaceNormal();
}
if ( mReflectNormalUp )
normal.set(0,0,1);
else
normal.normalizeSafe();
outPos = projPnt;
outPlane.set( projPnt, normal );
}
void River::setTransform( const MatrixF &mat )
{
for ( U32 i = 0; i < mNodes.size(); i++ )
{
mWorldToObj.mulP( mNodes[i].point );
mat.mulP( mNodes[i].point );
}
/*
// Get the amount of change in position.
MatrixF oldMat = getTransform();
Point3F oldPos = oldMat.getPosition();
Point3F newPos = mat.getPosition();
Point3F delta = newPos - oldPos;
// Offset all nodes by that amount
for ( U32 i = 0; i < mNodes.size(); i++ )
{
mNodes[i].point += delta;
}
// Assign the new position ( we ignore rotation )
MatrixF newMat( oldMat );
newMat.setPosition( newPos );
*/
Parent::setTransform( mat );
// Regenerate and update the client
_regenerate();
setMaskBits( NodeMask | RegenMask );
}
void River::setScale( const VectorF &scale )
{
// We ignore scale requests from the editor
// right now.
}
bool River::castRay(const Point3F &s, const Point3F &e, RayInfo* info)
{
Point3F start = s;
Point3F end = e;
mObjToWorld.mulP(start);
mObjToWorld.mulP(end);
F32 out = 1.0f; // The output fraction/percentage along the line defined by s and e
VectorF norm(0.0f, 0.0f, 0.0f); // The normal of the face intersected
Vector<RiverHitSegment> hitSegments;
for ( U32 i = 0; i < mSegments.size(); i++ )
{
const RiverSegment &segment = mSegments[i];
F32 t;
VectorF n;
if ( segment.worldbounds.collideLine( start, end, &t, &n ) )
{
hitSegments.increment();
hitSegments.last().t = t;
hitSegments.last().idx = i;
}
}
dQsort( hitSegments.address(), hitSegments.size(), sizeof(RiverHitSegment), compareHitSegments );
U32 idx0, idx1, idx2;
F32 t;
for ( U32 i = 0; i < hitSegments.size(); i++ )
{
U32 segIdx = hitSegments[i].idx;
const RiverSegment &segment = mSegments[segIdx];
// Each segment has 6 faces
for ( U32 j = 0; j < 6; j++ )
{
if ( j == 4 && segIdx != 0 )
continue;
if ( j == 5 && segIdx != mSegments.size() - 1 )
continue;
// Each face has 2 triangles
for ( U32 k = 0; k < 2; k++ )
{
idx0 = gIdxArray[j][k][0];
idx1 = gIdxArray[j][k][1];
idx2 = gIdxArray[j][k][2];
const Point3F &v0 = segment[idx0];
const Point3F &v1 = segment[idx1];
const Point3F &v2 = segment[idx2];
if ( !MathUtils::mLineTriangleCollide( start, end,
v2, v1, v0,
NULL,
&t ) )
continue;
if ( t >= 0.0f && t < 1.0f && t < out )
{
out = t;
// optimize this, can be calculated easily within
// the collision test
norm = PlaneF( v0, v1, v2 );
}
}
}
if (out >= 0.0f && out < 1.0f)
break;
}
if (out >= 0.0f && out < 1.0f)
{
info->t = out;
info->normal = norm;
info->point.interpolate(start, end, out);
info->face = -1;
info->object = this;
return true;
}
return false;
}
bool River::collideBox(const Point3F &start, const Point3F &end, RayInfo* info)
{
return false;
}
bool River::buildPolyList( PolyListContext context, AbstractPolyList* polyList, const Box3F& box, const SphereF& sphere )
{
Vector<const RiverSegment*> hitSegments;
for ( U32 i = 0; i < mSegments.size(); i++ )
{
const RiverSegment &segment = mSegments[i];
if ( segment.worldbounds.isOverlapped( box ) )
{
hitSegments.push_back( &segment );
}
}
if ( !hitSegments.size() )
return false;
polyList->setObject( this );
polyList->setTransform( &MatrixF::Identity, Point3F( 1.0f, 1.0f, 1.0f ) );
for ( U32 i = 0; i < hitSegments.size(); i++ )
{
const RiverSegment* segment = hitSegments[i];
for ( U32 k = 0; k < 2; k++ )
{
// gIdxArray[0] gives us the top plane (see table definition).
U32 idx0 = gIdxArray[0][k][0];
U32 idx1 = gIdxArray[0][k][1];
U32 idx2 = gIdxArray[0][k][2];
const Point3F &v0 = (*segment)[idx0];
const Point3F &v1 = (*segment)[idx1];
const Point3F &v2 = (*segment)[idx2];
// Add vertices to poly list.
U32 i0 = polyList->addPoint(v0);
polyList->addPoint(v1);
polyList->addPoint(v2);
// Add plane between them.
polyList->begin(0, 0);
polyList->vertex(i0);
polyList->vertex(i0+1);
polyList->vertex(i0+2);
polyList->plane(i0, i0+1, i0+2);
polyList->end();
}
}
return true;
}
F32 River::getWaterCoverage( const Box3F &worldBox ) const
{
PROFILE_SCOPE( River_GetWaterCoverage );
if ( !mWorldBox.isOverlapped(worldBox) )
return 0.0f;
Point3F bottomPnt = worldBox.getCenter();
bottomPnt.z = worldBox.minExtents.z;
F32 farthest = 0.0f;
for ( U32 i = 0; i < mSegments.size(); i++ )
{
const RiverSegment &segment = mSegments[i];
if ( !segment.worldbounds.isOverlapped(worldBox) )
continue;
if ( !segment.intersectBox( worldBox ) )
continue;
F32 distance = segment.distanceToSurface( bottomPnt );
if ( distance > farthest )
farthest = distance;
}
F32 height = worldBox.maxExtents.z - worldBox.minExtents.z;
F32 distance = mClampF( farthest, 0.0f, height );
F32 coverage = distance / height;
return coverage;
}
F32 River::getSurfaceHeight( const Point2F &pos ) const
{
PROFILE_SCOPE( River_GetSurfaceHeight );
Point3F origin( pos.x, pos.y, mWorldBox.maxExtents.z );
Point3F direction(0,0,-1);
U32 nodeIdx;
Point3F collisionPnt;
if ( !collideRay( origin, direction, &nodeIdx, &collisionPnt ) )
return -1.0f;
return collisionPnt.z;
}
VectorF River::getFlow( const Point3F &pos ) const
{
PROFILE_SCOPE( River_GetFlow );
for ( U32 i = 0; i < mSegments.size(); i++ )
{
const RiverSegment &segment = mSegments[i];
if ( !segment.containsPoint(pos) )
continue;
VectorF flow = segment.slice0->p1 - segment.slice1->p1;
flow.normalize();
flow *= mFlowMagnitude;
return flow;
}
return VectorF::Zero;
}
void River::onReflectionInfoChanged()
{
/*
if ( isClientObject() && GFX->getPixelShaderVersion() >= 1.4 )
{
if ( mFullReflect )
REFLECTMGR->registerObject( this, ReflectDelegate( this, &River::updateReflection ), mReflectPriority, mReflectMaxRateMs, mReflectMaxDist );
else
{
REFLECTMGR->unregisterObject( this );
mReflectTex = NULL;
}
}
*/
}
void River::_regenerate()
{
if ( mNodes.size() == 0 )
return;
const Point3F &nodePt = mNodes.first().point;
MatrixF mat( true );
mat.setPosition( nodePt );
Parent::setTransform( mat );
_generateSlices();
}
void River::_generateSlices()
{
if ( mNodes.size() < 2 )
return;
U32 nodeCount = mNodes.size();
RiverSplineNode *splineNodes = new RiverSplineNode[nodeCount];
for ( U32 i = 0; i < nodeCount; i++ )
{
const RiverNode &node = mNodes[i];
splineNodes[i].x = node.point.x;
splineNodes[i].y = node.point.y;
splineNodes[i].z = node.point.z;
splineNodes[i].width = node.width;
splineNodes[i].depth = node.depth;
splineNodes[i].normal = node.normal;
}
CatmullRom<RiverSplineNode> spline;
spline.initialize( nodeCount, splineNodes );
delete [] splineNodes;
mSlices.clear();
for ( U32 i = 1; i < nodeCount; i++ )
{
F32 t0 = spline.getTime( i-1 );
F32 t1 = spline.getTime( i );
F32 segLength = spline.arcLength( t0, t1 );
U32 numSegments = mCeil( segLength / mMetersPerSegment );
numSegments = getMax( numSegments, (U32)1 );
F32 tstep = ( t1 - t0 ) / numSegments;
//AssertFatal( numSegments > 0, "River::_generateSlices, got zero segments!" );
U32 startIdx = 0;
U32 endIdx = ( i == nodeCount - 1 ) ? numSegments + 1 : numSegments;
for ( U32 j = startIdx; j < endIdx; j++ )
{
F32 t = t0 + tstep * j; //spline.findParameterByDistance( 0.0f, i * segLen );
RiverSplineNode val = spline.evaluate(t);
RiverSlice slice;
slice.p1.set( val.x, val.y, val.z );
slice.uvec.set( 0,0,1 );
slice.width = val.width;
slice.depth = val.depth;
slice.parentNodeIdx = i-1;
slice.normal = val.normal;
slice.normal.normalize();
mSlices.push_back( slice );
}
}
//
// Calculate fvec and rvec for all slices
//
RiverSlice *pSlice = NULL;
RiverSlice *pNextSlice = NULL;
// Must do the first slice outside the loop
{
pSlice = &mSlices[0];
pNextSlice = &mSlices[1];
pSlice->fvec = pNextSlice->p1 - pSlice->p1;
pSlice->fvec.normalize();
pSlice->rvec = mCross( pSlice->fvec, pSlice->normal );
pSlice->rvec.normalize();
pSlice->uvec = mCross( pSlice->rvec, pSlice->fvec );
pSlice->uvec.normalize();
pSlice->rvec = mCross( pSlice->fvec, pSlice->uvec );
pSlice->rvec.normalize();
}
for ( U32 i = 1; i < mSlices.size() - 1; i++ )
{
pSlice = &mSlices[i];
pNextSlice = &mSlices[i+1];
pSlice->fvec = pNextSlice->p1 - pSlice->p1;
pSlice->fvec.normalize();
pSlice->rvec = mCross( pSlice->fvec, pSlice->normal );
pSlice->rvec.normalize();
pSlice->uvec = mCross( pSlice->rvec, pSlice->fvec );
pSlice->uvec.normalize();
pSlice->rvec = mCross( pSlice->fvec, pSlice->uvec );
pSlice->rvec.normalize();
}
// Must do the last slice outside the loop
{
RiverSlice *lastSlice = &mSlices[mSlices.size()-1];
RiverSlice *prevSlice = &mSlices[mSlices.size()-2];
lastSlice->fvec = prevSlice->fvec;
lastSlice->rvec = mCross( lastSlice->fvec, lastSlice->normal );
lastSlice->rvec.normalize();
lastSlice->uvec = mCross( lastSlice->rvec, lastSlice->fvec );
lastSlice->uvec.normalize();
lastSlice->rvec = mCross( lastSlice->fvec, lastSlice->uvec );
lastSlice->rvec.normalize();
}
//
// Calculate p0/p2/pb0/pb2 for all slices
//
for ( U32 i = 0; i < mSlices.size(); i++ )
{
RiverSlice *slice = &mSlices[i];
slice->p0 = slice->p1 - slice->rvec * slice->width * 0.5f;
slice->p2 = slice->p1 + slice->rvec * slice->width * 0.5f;
slice->pb0 = slice->p0 - slice->uvec * slice->depth;
slice->pb2 = slice->p2 - slice->uvec * slice->depth;
}
// Generate the object/world bounds
Box3F box;
for ( U32 i = 0; i < mSlices.size(); i++ )
{
const RiverSlice &slice = mSlices[i];
if ( i == 0 )
{
box.minExtents = slice.p0;
box.maxExtents = slice.p2;
box.extend( slice.pb0 );
box.extend( slice.pb2 );
}
else
{
box.extend( slice.p0 );
box.extend( slice.p2 );
box.extend( slice.pb0 );
box.extend( slice.pb2 );
}
}
mWorldBox = box;
//mObjBox.minExtents -= pos;
//mObjBox.maxExtents -= pos;
resetObjectBox();
// Make sure we are in the correct bins given our world box.
if( getSceneManager() != NULL )
getSceneManager()->notifyObjectDirty( this );
_generateSegments();
}
void River::_generateSegments()
{
mSegments.clear();
for ( U32 i = 0; i < mSlices.size() - 1; i++ )
{
RiverSegment seg( &mSlices[i], &mSlices[i+1] );
mSegments.push_back( seg );
}
/*
#ifdef TORQUE_DEBUG
for ( U32 i = 0; i < mSegments.size(); i++ )
{
const RiverSegment &segment = mSegments[i];
PlaneF normal0 = MathUtils::mTriangleNormal( segment.slice0->p0, segment.slice1->p0, segment.slice1->p2 );
PlaneF normal1 = MathUtils::mTriangleNormal( segment.slice0->p0, segment.slice1->p2, segment.slice0->p2 );
AssertFatal( true || normal0 != normal1, "River::generateSegments, segment is not coplanar!" );
}
#endif // TORQUE_DEBUG
*/
// We have to go back and generate normals for each slice
// to be used in calculation of the reflect plane.
// The slice-normal we calculate are relative to the surface normal
// of the segments adjacent to the slice.
/*
if ( mSlices.size() >= 2 )
{
mSlices[0].normal = mSegments[0].getSurfaceNormal();
for ( U32 i = 1; i < mSlices.size() - 1; i++ )
{
mSlices[i].normal = ( mSegments[i-1].getSurfaceNormal() + mSegments[i].getSurfaceNormal() ) / 2;
}
mSlices.last().normal = mSegments.last().getSurfaceNormal();
}
*/
_generateVerts();
}
void River::_generateVerts()
{
if ( isServerObject() )
return;
// These will depend on the level of subdivision per segment
// calculated below.
mHighVertCount = 0;
mHighTriangleCount = 0;
// Calculate the number of row/column subdivisions per each
// RiverSegment.
F32 greatestWidth = 0.1f;
for ( U32 i = 0; i < mNodes.size(); i++ )
{
RiverNode &node = mNodes[i];
if ( node.width > greatestWidth )
greatestWidth = node.width;
}
mColumnCount = mCeil( greatestWidth / mMaxDivisionSize );
for ( U32 i = 0; i < mSegments.size(); i++ )
{
RiverSegment &segment = mSegments[i];
const RiverSlice *slice = segment.slice0;
const RiverSlice *nextSlice = segment.slice1;
// Calculate the size of divisions in the forward direction ( p00 -> p01 )
F32 segLength = (nextSlice->p1 - slice->p1).len();
// A division count of one is actually NO subdivision,
// the segment corners are the only verts in this segment.
U32 numRows = 1;
if ( segLength > 0.0f )
numRows = mCeil( segLength / mMaxDivisionSize );
// The problem with calculating num columns per segment is
// two adjacent - high lod segments of different width can have
// verts that don't line up! So even though RiverSegment HAS a
// column data member we initialize all segments in the river to
// the same (River::mColumnCount)
// Calculate the size of divisions in the right direction ( p00 -> p10 )
// F32 segWidth = ( ( p11 - p01 ).len() + ( p10 - p00 ).len() ) * 0.5f;
// U32 numColumns = 5;
//F32 columnSize = segWidth / numColumns;
//while ( columnSize > mMaxDivisionSize )
//{
// numColumns++;
// columnSize = segWidth / numColumns;
//}
// Save the calculated numb of columns / rows for this segment.
segment.columns = mColumnCount;
segment.rows = numRows;
// Save the corresponding number of verts/prims
segment.numVerts = ( 1 + mColumnCount ) * ( 1 + numRows );
segment.numTriangles = mColumnCount * numRows * 2;
mHighVertCount += segment.numVerts;
mHighTriangleCount += segment.numTriangles;
}
// Number of low detail verts/prims.
mLowVertCount = mSlices.size() * 2;
mLowTriangleCount = mSegments.size() * 2;
// Allocate the low detail VertexBuffer,
// this will stay in memory and will never need to change.
mVB_low.set( GFX, mLowVertCount, GFXBufferTypeStatic );
GFXWaterVertex *lowVertPtr = mVB_low.lock();
U32 vertCounter = 0;
// The texCoord.y value start/end for a segment
// as we loop through them.
F32 textCoordV = 0;
//
// Fill the low-detail VertexBuffer
//
for ( U32 i = 0; i < mSlices.size(); i++ )
{
RiverSlice &slice = mSlices[i];
lowVertPtr->point = slice.p0;
lowVertPtr->normal = slice.normal;
lowVertPtr->undulateData.set( -slice.width*0.5f, textCoordV );
lowVertPtr->horizonFactor.set( 0, 0, 0, 0 );
lowVertPtr++;
vertCounter++;
lowVertPtr->point = slice.p2;
lowVertPtr->normal = slice.normal;
lowVertPtr->undulateData.set( slice.width*0.5f, textCoordV );
lowVertPtr->horizonFactor.set( 0, 0, 0, 0 );
lowVertPtr++;
vertCounter++;
// Save this so we can get it later.
slice.texCoordV = textCoordV;
if ( i < mSlices.size() - 1 )
{
// Increment the textCoordV for the next slice.
F32 segLen = ( mSlices[i+1].p1 - slice.p1 ).len();
textCoordV += segLen;
}
}
AssertFatal( vertCounter == mLowVertCount, "River, wrote incorrect number of verts in mBV_low!" );
// Unlock the low-detail VertexBuffer, we are done filling it.
mVB_low.unlock();
//
// Create the low-detail prim buffer(s)
//
mPB_low.set( GFX, mLowTriangleCount * 3, mLowTriangleCount, GFXBufferTypeStatic );
U16 *lowIdxBuff;
mPB_low.lock(&lowIdxBuff);
U32 curLowIdx = 0;
// Temporaries to hold indices for the corner points of a quad.
U32 p00, p01, p11, p10;
U32 offset = 0;
// Fill the low-detail PrimitiveBuffer
for ( U32 i = 0; i < mSegments.size(); i++ )
{
//const RiverSegment &segment = mSegments[i];
// Two triangles formed by the corner points of this segment
// into the the low detail primitive buffer.
p00 = offset;
p01 = p00 + 2;
p11 = p01 + 1;
p10 = p00 + 1;
// Upper-Left triangle
lowIdxBuff[curLowIdx] = p00;
curLowIdx++;
lowIdxBuff[curLowIdx] = p01;
curLowIdx++;
lowIdxBuff[curLowIdx] = p11;
curLowIdx++;
// Lower-Right Triangle
lowIdxBuff[curLowIdx] = p00;
curLowIdx++;
lowIdxBuff[curLowIdx] = p11;
curLowIdx++;
lowIdxBuff[curLowIdx] = p10;
curLowIdx++;
offset += 2;
}
AssertFatal( curLowIdx == mLowTriangleCount * 3, "River, wrote incorrect number of indices in mPB_low!" );
// Unlock the low-detail PrimitiveBuffer, we are done filling it.
mPB_low.unlock();
}
bool River::getClosestNode( const Point3F &pos, U32 &idx ) const
{
F32 closestDist = F32_MAX;
for ( U32 i = 0; i < mNodes.size(); i++ )
{
F32 dist = ( mNodes[i].point - pos ).len();
if ( dist < closestDist )
{
closestDist = dist;
idx = i;
}
}
return closestDist != F32_MAX;
}
bool River::containsPoint( const Point3F &worldPos, U32 *nodeIdx ) const
{
// If point isn't in the world box,
// it's definitely not in the River.
//if ( !getWorldBox().isContained( worldPos ) )
// return false;
// Look through all edges, does the polygon
// formed from adjacent edge's contain the worldPos?
for ( U32 i = 0; i < mSegments.size(); i++ )
{
const RiverSegment &segment = mSegments[i];
if ( segment.containsPoint( worldPos ) )
{
if ( nodeIdx )
*nodeIdx = i;
return true;
}
}
return false;
}
F32 River::distanceToSurface( const Point3F &pnt, U32 segmentIdx )
{
return mSegments[segmentIdx].distanceToSurface( pnt );
}
bool River::collideRay( const Point3F &origin, const Point3F &direction, U32 *nodeIdx, Point3F *collisionPnt ) const
{
Point3F p0 = origin;
Point3F p1 = origin + direction * 2000.0f;
// If the line segment does not collide with the river's world box,
// it definitely does not collide with any part of the river.
if ( !getWorldBox().collideLine( p0, p1 ) )
return false;
if ( mSlices.size() < 2 )
return false;
MathUtils::Quad quad;
MathUtils::Ray ray;
F32 t;
// Check each river segment (formed by a pair of slices) for collision
// with the line segment.
for ( U32 i = 0; i < mSlices.size() - 1; i++ )
{
const RiverSlice &slice0 = mSlices[i];
const RiverSlice &slice1 = mSlices[i+1];
// For simplicities sake we will only test for collision between the
// line segment and the Top face of the river segment.
// Clockwise starting with the leftmost/closest point.
quad.p00 = slice0.p0;
quad.p01 = slice1.p0;
quad.p11 = slice1.p2;
quad.p10 = slice0.p2;
ray.origin = origin;
ray.direction = direction;
// NOTE:
// mRayQuadCollide is designed for a "real" quad in which all four points
// are coplanar which is actually not the case here. The more twist
// and turn in-between two neighboring river slices the more incorrect
// this calculation will be.
if ( MathUtils::mRayQuadCollide( quad, ray, NULL, &t ) )
{
if ( nodeIdx )
*nodeIdx = slice0.parentNodeIdx;
if ( collisionPnt )
*collisionPnt = ray.origin + ray.direction * t;
return true;
}
}
return false;
}
Point3F River::getNodePosition( U32 idx ) const
{
if ( mNodes.size() - 1 < idx )
return Point3F();
return mNodes[idx].point;
}
void River::setNodePosition( U32 idx, const Point3F &pos )
{
if ( mNodes.size() - 1 < idx )
return;
mNodes[idx].point = pos;
regenerate();
setMaskBits( NodeMask | RegenMask );
}
U32 River::addNode( const Point3F &pos, const F32 &width, const F32 &depth, const VectorF &normal )
{
U32 idx = _addNode( pos, width, depth, normal );
regenerate();
setMaskBits( NodeMask | RegenMask );
return idx;
}
U32 River::insertNode(const Point3F &pos, const F32 &width, const F32 &depth, const VectorF &normal, const U32 &idx)
{
U32 ret = _insertNode( pos, width, depth, normal, idx );
regenerate();
setMaskBits( NodeMask | RegenMask );
return ret;
}
void River::setNode(const Point3F &pos, const F32 &width, const F32 &depth, const VectorF &normal, const U32 &idx)
{
if ( mNodes.size() - 1 < idx )
return;
RiverNode &node = mNodes[idx];
node.point = pos;
node.width = width;
node.depth = depth;
node.normal = normal;
regenerate();
setMaskBits( NodeMask | RegenMask );
}
void River::setNodeWidth( U32 idx, F32 meters )
{
meters = mClampF( meters, MIN_NODE_WIDTH, MAX_NODE_WIDTH );
if ( mNodes.size() - 1 < idx )
return;
mNodes[idx].width = meters;
_regenerate();
setMaskBits( RegenMask | NodeMask );
}
void River::setNodeHeight( U32 idx, F32 height )
{
if ( mNodes.size() - 1 < idx )
return;
mNodes[idx].point.z = height;
_regenerate();
setMaskBits( RegenMask | NodeMask );
}
F32 River::getNodeWidth( U32 idx ) const
{
if ( mNodes.size() - 1 < idx )
return -1.0f;
return mNodes[idx].width;
}
void River::setNodeDepth( U32 idx, F32 meters )
{
meters = mClampF( meters, MIN_NODE_DEPTH, MAX_NODE_DEPTH );
if ( mNodes.size() - 1 < idx )
return;
mNodes[idx].depth = meters;
_regenerate();
setMaskBits( RiverMask | RegenMask | NodeMask );
}
void River::setNodeNormal( U32 idx, const VectorF &normal )
{
if ( mNodes.size() - 1 < idx )
return;
mNodes[idx].normal = normal;
regenerate();
setMaskBits( NodeMask | RegenMask );
}
F32 River::getNodeDepth( U32 idx ) const
{
if ( mNodes.size() - 1 < idx )
return -1.0f;
return mNodes[idx].depth;
}
VectorF River::getNodeNormal( U32 idx ) const
{
if ( mNodes.size() - 1 < idx )
return VectorF::Zero;
return mNodes[idx].normal;
}
MatrixF River::getNodeTransform( U32 idx ) const
{
MatrixF mat(true);
if ( mNodes.size() - 1 < idx )
return mat;
bool hasNext = idx + 1 < mNodes.size();
bool hasPrev = (S32)idx - 1 >= 0;
const RiverNode &node = mNodes[idx];
VectorF fvec( 0, 1, 0 );
if ( hasNext )
{
fvec = mNodes[idx+1].point - node.point;
fvec.normalizeSafe();
}
else if ( hasPrev )
{
fvec = node.point - mNodes[idx-1].point;
fvec.normalizeSafe();
}
else
fvec = mPerp( node.normal );
if ( fvec.isZero() )
fvec = mPerp( node.normal );
F32 dot = mDot( fvec, node.normal );
if ( dot < -0.9f || dot > 0.9f )
fvec = mPerp( node.normal );
VectorF rvec = mCross( fvec, node.normal );
if ( rvec.isZero() )
rvec = mPerp( fvec );
rvec.normalize();
fvec = mCross( node.normal, rvec );
fvec.normalize();
mat.setColumn( 0, rvec );
mat.setColumn( 1, fvec );
mat.setColumn( 2, node.normal );
mat.setColumn( 3, node.point );
AssertFatal( m_matF_determinant( mat ) != 0.0f, "no inverse!");
return mat;
}
void River::deleteNode( U32 idx )
{
if ( mNodes.size() - 1 < idx )
return;
mNodes.erase(idx);
_regenerate();
setMaskBits( RegenMask | NodeMask );
}
void River::buildNodesFromList( RiverNodeList* list )
{
mNodes.clear();
for (U32 i=0; i<list->mPositions.size(); ++i)
{
_addNode( list->mPositions[i], list->mWidths[i], list->mDepths[i], list->mNormals[i] );
}
_regenerate();
}
void River::_makeRenderBatches( const Point3F &cameraPos )
{
// Loop through each segment to determine if it is either 1 [not visible], 2 [high LOD], 3 [low LOD]
mHighLODBatches.clear();
mLowLODBatches.clear();
// Keeps track of what we batch type we are currently collecting.
// -1 is uninitialized, 0 is low detail, 1 is high detail
S32 lastDetail = -1;
bool highDetail;
U32 startSegmentIdx = -1;
U32 endSegmentIdx = 0;
F32 lodDistSquared = mLodDistance * mLodDistance;
for ( U32 i = 0; i < mSegments.size(); i++ )
{
const RiverSegment &segment = mSegments[i];
const RiverSlice *slice = segment.slice0;
const RiverSlice *nextSlice = segment.slice1;
// TODO: add bounds BoxF to RiverSegment
const bool isVisible = true; //frustum.intersects( segment.bounds );
if ( isVisible )
{
F32 dist0 = MathUtils::mTriangleDistance( slice->p0, nextSlice->p0, nextSlice->p2, cameraPos );
F32 dist1 = MathUtils::mTriangleDistance( slice->p0, nextSlice->p2, slice->p2, cameraPos );
F32 dist = getMin( dist0, dist1 );
highDetail = ( dist < lodDistSquared );
if ( (highDetail && lastDetail == 0) ||
(!highDetail && lastDetail == 1) )
{
// We hit a segment with a different lod than the previous.
// Save what we have so far...
RiverRenderBatch batch;
batch.startSegmentIdx = startSegmentIdx;
batch.endSegmentIdx = endSegmentIdx;
if ( lastDetail == 0 )
{
mLowLODBatches.push_back( batch );
}
else
{
mHighLODBatches.push_back( batch );
}
// Reset the batching
startSegmentIdx = -1;
lastDetail = -1;
i--;
continue;
}
// If this is the start of a set of batches.
if ( startSegmentIdx == -1 )
{
endSegmentIdx = startSegmentIdx = i;
lastDetail = ( highDetail ) ? 1 : 0;
}
// Else we're extending the end batch index.
else
++endSegmentIdx;
// If this isn't the last batch then continue.
if ( i < mSegments.size()-1 )
continue;
}
// If we still don't have a start batch skip.
if ( startSegmentIdx == -1 )
continue;
// Save what we have so far...
RiverRenderBatch batch;
batch.startSegmentIdx = startSegmentIdx;
batch.endSegmentIdx = endSegmentIdx;
if ( lastDetail == 0 )
{
mLowLODBatches.push_back( batch );
}
else
{
mHighLODBatches.push_back( batch );
}
// Reset the batching.
startSegmentIdx = -1;
lastDetail = -1;
}
}
void River::_makeHighLODBuffers()
{
PROFILE_SCOPE( River_makeHighLODBuffers );
// This is the number of verts/triangles for ALL high lod batches combined.
// eg. the size for the buffers.
U32 numVerts = 0;
U32 numTriangles = 0;
for ( U32 i = 0; i < mHighLODBatches.size(); i++ )
{
RiverRenderBatch &batch = mHighLODBatches[i];
for ( U32 j = batch.startSegmentIdx; j <= batch.endSegmentIdx; j++ )
{
const RiverSegment &segment = mSegments[j];
numTriangles += segment.numTriangles;
numVerts += segment.numVerts;
}
}
if ( numVerts > MAX_DYNAMIC_VERTS || numTriangles * 3 > MAX_DYNAMIC_INDICES )
{
mVB_high = NULL;
mPB_high = NULL;
return;
}
mHighTriangleCount = numTriangles;
mHighVertCount = numVerts;
mVB_high.set( GFX, numVerts, GFXBufferTypeVolatile );
GFXWaterVertex *vertPtr = mVB_high.lock();
U32 vertCounter = 0;
// NOTE: this will break if different segments have different number
// of columns, but that will also cause T-junction triangles so just don't
// do that.
// For each batch, loop through the segments contained by
// that batch, and add their verts to the buffer.
for ( U32 i = 0; i < mHighLODBatches.size(); i++ )
{
RiverRenderBatch &batch = mHighLODBatches[i];
batch.startVert = vertCounter;
batch.vertCount = 0;
VectorF lastNormal(0,0,1);
for ( U32 j = batch.startSegmentIdx; j <= batch.endSegmentIdx; j++ )
{
// Add the verts for this segment to the buffer.
RiverSegment &segment = mSegments[j];
BiSqrToQuad3D squareToQuad( segment.getP00(),
segment.getP10(),
segment.getP11(),
segment.getP01() );
// We are duplicating the last row of verts in a segment on
// the first row of the next segment. This could be optimized but
// shouldn't cause any problems.
VectorF normal = segment.getSurfaceNormal();
for ( U32 k = 0; k <= segment.rows; k++ )
{
VectorF vertNormal = ( k == 0 && j != batch.startSegmentIdx ) ? lastNormal : normal;
F32 rowLen = mLerp( segment.slice0->width, segment.slice1->width, (F32)k / (F32)segment.rows );
for ( U32 l = 0; l <= segment.columns; l++ )
{
// We are generating a "row" of verts along the forwardDivision
// Each l iteration is a step to the right along with row.
Point2F uv( (F32)l / (F32)segment.columns, (F32)k / (F32)segment.rows );
Point3F pnt = squareToQuad.transform( uv );
// Assign the Vert
vertPtr->point = pnt;
vertPtr->normal = vertNormal;
vertPtr->undulateData.x = ( uv.x - 0.5f ) * rowLen;
vertPtr->undulateData.y = ( segment.TexCoordEnd() - segment.TexCoordStart() ) * uv.y + segment.TexCoordStart();
vertPtr->horizonFactor.set( 0, 0, 0, 0 );
vertPtr++;
vertCounter++;
batch.vertCount++;
}
}
lastNormal = normal;
}
}
AssertFatal( vertCounter == mHighVertCount, "River, wrote incorrect number of verts in mVB_high" );
mVB_high.unlock();
//
// Do the high lod primitive buffer.
//
mPB_high.set( GFX, numTriangles * 3, numTriangles, GFXBufferTypeVolatile );
U16 *idxBuff;
mPB_high.lock(&idxBuff);
U32 curIdx = 0;
U32 batchOffset = 0;
// For each high lod batch, we must add indices to the buffer
// for each segment it contains ( and the count will depend on
// the division level columns/rows for each segment ).
// Temporaries for holding the indices of a quad
U32 p00, p01, p11, p10;
for ( U32 i = 0; i < mHighLODBatches.size(); i++ )
{
RiverRenderBatch &batch = mHighLODBatches[i];
batch.indexCount = 0;
batch.triangleCount = 0;
batch.startIndex = curIdx;
U32 temp = 0;
U32 segmentOffset = 0;
for ( U32 j = batch.startSegmentIdx; j <= batch.endSegmentIdx; j++ )
{
const RiverSegment &segment = mSegments[j];
// Loop through all divisions adding the indices to the
// high detail primitive buffer.
for ( U32 k = 0; k < segment.rows; k++ )
{
for ( U32 l = 0; l < segment.columns; l++ )
{
// The indices for this quad.
p00 = batchOffset + segmentOffset + l + k * ( segment.columns + 1 );
p01 = p00 + segment.columns + 1;
p11 = p01 + 1;
p10 = p00 + 1;
AssertFatal( p00 <= mHighTriangleCount * 3, "River, bad draw call!" );
AssertFatal( p01 <= mHighTriangleCount * 3, "River, bad draw call!" );
AssertFatal( p11 <= mHighTriangleCount * 3, "River, bad draw call!" );
AssertFatal( p10 <= mHighTriangleCount * 3, "River, bad draw call!" );
// Upper-Left triangle
idxBuff[curIdx] = p00;
curIdx++;
idxBuff[curIdx] = p01;
curIdx++;
idxBuff[curIdx] = p11;
curIdx++;
// Lower-Right Triangle
idxBuff[curIdx] = p00;
curIdx++;
idxBuff[curIdx] = p11;
curIdx++;
idxBuff[curIdx] = p10;
curIdx++;
batch.indexCount += 6;
batch.triangleCount += 2;
}
}
// Increment the sliceOffset by the number of verts
// used by this segment. So the next segment will index
// into new verts.
segmentOffset += ( segment.columns + 1 ) * ( segment.rows + 1 );
temp += ( segment.columns + 1 ) * ( segment.rows + 1 );
}
batchOffset += temp;
}
// Unlock the PrimitiveBuffer, we are done filling it.
mPB_high.unlock();
}
U32 River::_addNode( const Point3F &pos, const F32 &width, const F32 &depth, const VectorF &normal )
{
mNodes.increment();
RiverNode &node = mNodes.last();
node.point = pos;
node.width = width;
node.depth = depth;
node.normal = normal;
setMaskBits( NodeMask | RegenMask );
return mNodes.size() - 1;
}
U32 River::_insertNode( const Point3F &pos, const F32 &width, const F32 &depth, const VectorF &normal, const U32 &idx )
{
U32 ret;
RiverNode *node;
if ( idx == U32_MAX )
{
mNodes.increment();
node = &mNodes.last();
ret = mNodes.size() - 1;
}
else
{
mNodes.insert( idx );
node = &mNodes[idx];
ret = idx;
}
node->point = pos;
node->depth = depth;
node->width = width;
node->normal = normal;
return ret;
}
void River::setMetersPerSegment( F32 meters )
{
if ( meters < MIN_METERS_PER_SEGMENT )
{
Con::warnf( "River::setMetersPerSegment, specified meters (%g) is below the min meters (%g), NOT SET!", meters, MIN_METERS_PER_SEGMENT );
return;
}
mMetersPerSegment = meters;
_regenerate();
setMaskBits( RiverMask | RegenMask );
}
void River::setBatchSize( U32 size )
{
// Not functional
//mSegmentsPerBatch = size;
//_regenerate();
//setMaskBits( RiverMask | RegenMask );
}
void River::regenerate()
{
_regenerate();
setMaskBits( RegenMask );
}
void River::setMaxDivisionSize( F32 meters )
{
if ( meters < mMinDivisionSize )
mMaxDivisionSize = mMinDivisionSize;
else
mMaxDivisionSize = meters;
_regenerate();
setMaskBits( RiverMask | RegenMask );
}
//-------------------------------------------------------------------------
// Console Methods
//-------------------------------------------------------------------------
DefineEngineMethod( River, regenerate, void, (),,
"Intended as a helper to developers and editor scripts.\n"
"Force River to recreate its geometry."
)
{
object->regenerate();
}
DefineEngineMethod( River, setMetersPerSegment, void, ( F32 meters ),,
"Intended as a helper to developers and editor scripts.\n"
"@see SegmentLength field."
)
{
object->setMetersPerSegment( meters );
}
DefineEngineMethod( River, setBatchSize, void, ( F32 meters ),,
"Intended as a helper to developers and editor scripts.\n"
"BatchSize is not currently used."
)
{
object->setBatchSize( meters );
}
DefineEngineMethod( River, setNodeDepth, void, ( S32 idx, F32 meters ),,
"Intended as a helper to developers and editor scripts.\n"
"Sets the depth in meters of a particular node."
)
{
object->setNodeDepth( idx, meters );
}
DefineEngineMethod( River, setMaxDivisionSize, void, ( F32 meters ),,
"Intended as a helper to developers and editor scripts.\n"
"@see SubdivideLength field."
)
{
object->setMaxDivisionSize( meters );
}