mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-20 04:34:48 +00:00
163 lines
4.3 KiB
C++
163 lines
4.3 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Copyright (c) 2012 GarageGames, LLC
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to
|
|
// deal in the Software without restriction, including without limitation the
|
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
// sell copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
// IN THE SOFTWARE.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "math/mAngAxis.h"
|
|
#include "math/mQuat.h"
|
|
#include "math/mMatrix.h"
|
|
|
|
AngAxisF & AngAxisF::set( const QuatF & q )
|
|
{
|
|
angle = 2.0f * mAcos( q.w );
|
|
F32 sinHalfAngle = mSqrt(q.x * q.x + q.y * q.y + q.z * q.z);
|
|
if (sinHalfAngle != 0.0f)
|
|
axis.set( q.x / sinHalfAngle, q.y / sinHalfAngle, q.z / sinHalfAngle );
|
|
else
|
|
axis.set(1.0f,0.0f,0.0f);
|
|
return *this;
|
|
}
|
|
AngAxisF& AngAxisF::set(const EulerF& eul)
|
|
{
|
|
F32 c1 = mCos(eul.y / 2);
|
|
F32 s1 = mSin(eul.y / 2);
|
|
F32 c2 = mCos(eul.z / 2);
|
|
F32 s2 = mSin(eul.z / 2);
|
|
F32 c3 = mCos(eul.x / 2);
|
|
F32 s3 = mSin(eul.x / 2);
|
|
|
|
F32 c1c2 = c1 * c2;
|
|
F32 s1s2 = s1 * s2;
|
|
|
|
F32 w = c1c2 * c3 - s1s2 * s3;
|
|
F32 x = c1c2 * s3 + s1s2 * c3;
|
|
F32 y = s1 * c2 * c3 + c1 * s2 * s3;
|
|
F32 z = c1 * s2 * c3 - s1 * c2 * s3;
|
|
|
|
angle = 2.0f * mAcos(w);
|
|
|
|
F32 norm = x * x + y * y + z * z;
|
|
if (norm < POINT_EPSILON)
|
|
{
|
|
axis.set(1.0f, 0.0f, 0.0f);
|
|
}
|
|
else
|
|
{
|
|
norm = mSqrt(norm);
|
|
x /= norm;
|
|
y /= norm;
|
|
z /= norm;
|
|
}
|
|
|
|
axis.set(x, y, z);
|
|
|
|
return *this;
|
|
}
|
|
|
|
AngAxisF & AngAxisF::set( const MatrixF & mat )
|
|
{
|
|
QuatF q( mat );
|
|
set( q );
|
|
return *this;
|
|
}
|
|
|
|
MatrixF * AngAxisF::setMatrix( MatrixF * mat ) const
|
|
{
|
|
QuatF q( *this );
|
|
return q.setMatrix( mat );
|
|
}
|
|
|
|
void AngAxisF::RotateX(F32 angle, MatrixF * mat)
|
|
{
|
|
// for now...do it the easy way
|
|
AngAxisF rotX(Point3F(1.0f,0.0f,0.0f),angle);
|
|
rotX.setMatrix(mat);
|
|
}
|
|
|
|
void AngAxisF::RotateY(F32 angle, MatrixF * mat)
|
|
{
|
|
// for now...do it the easy way
|
|
AngAxisF rotY(Point3F(0.0f,1.0f,0.0f),angle);
|
|
rotY.setMatrix(mat);
|
|
}
|
|
|
|
void AngAxisF::RotateZ(F32 angle, MatrixF * mat)
|
|
{
|
|
// for now...do it the easy way
|
|
AngAxisF rotZ(Point3F(0.0f,0.0f,1.0f),angle);
|
|
rotZ.setMatrix(mat);
|
|
}
|
|
|
|
void AngAxisF::RotateX(F32 angle, const Point3F & from, Point3F * to)
|
|
{
|
|
// for now...do it the easy way
|
|
MatrixF mat;
|
|
AngAxisF::RotateX(angle,&mat);
|
|
mat.mulV(from,to);
|
|
}
|
|
|
|
void AngAxisF::RotateY(F32 angle, const Point3F & from, Point3F * to)
|
|
{
|
|
// for now...do it the easy way
|
|
MatrixF mat;
|
|
AngAxisF::RotateY(angle,&mat);
|
|
mat.mulV(from,to);
|
|
}
|
|
|
|
void AngAxisF::RotateZ(F32 angle, const Point3F & from, Point3F * to)
|
|
{
|
|
// for now...do it the easy way
|
|
MatrixF mat;
|
|
AngAxisF::RotateZ(angle,&mat);
|
|
mat.mulV(from,to);
|
|
}
|
|
|
|
EulerF AngAxisF::toEuler() const
|
|
{
|
|
EulerF r;
|
|
|
|
F32 s = mSin(angle);
|
|
F32 c = mCos(angle);
|
|
F32 invc = 1 - c;
|
|
|
|
if ((axis.x * axis.y * invc + axis.z * s) > (1 - POINT_EPSILON))
|
|
{
|
|
r.y = 2.0f * mAtan2(axis.x * mSin(angle / 2), mCos(angle / 2));
|
|
r.z = -M_HALFPI_F;
|
|
r.x = 0.f;
|
|
return r;
|
|
}
|
|
|
|
if ((axis.x * axis.y * invc + axis.z * s) < -(1 - POINT_EPSILON))
|
|
{
|
|
r.y = -2.0f * mAtan2(axis.x * mSin(angle / 2), mCos(angle / 2));
|
|
r.z = -M_HALFPI_F;
|
|
r.x = 0.f;
|
|
return r;
|
|
}
|
|
|
|
r.x = mAtan2(axis.x * s - axis.y * axis.z * invc, 1.0f - (axis.x * axis.x + axis.z * axis.z) * invc);
|
|
r.y = mAtan2(axis.y * s - axis.x * axis.z * invc, 1.0f - (axis.y * axis.y + axis.z * axis.z) * invc);
|
|
r.z = mAsin(axis.x * axis.y * invc + axis.z * s);
|
|
|
|
return r;
|
|
|
|
}
|