Torque3D/Engine/source/gfx/gl/gfxGLDevice.cpp
2012-09-19 11:15:01 -04:00

770 lines
23 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "gfx/gl/gfxGLDevice.h"
#include "gfx/gfxCubemap.h"
#include "gfx/screenshot.h"
#include "gfx/gfxDrawUtil.h"
#include "gfx/gl/gfxGLEnumTranslate.h"
#include "gfx/gl/gfxGLVertexBuffer.h"
#include "gfx/gl/gfxGLPrimitiveBuffer.h"
#include "gfx/gl/gfxGLTextureTarget.h"
#include "gfx/gl/gfxGLTextureManager.h"
#include "gfx/gl/gfxGLTextureObject.h"
#include "gfx/gl/gfxGLCubemap.h"
#include "gfx/gl/gfxGLCardProfiler.h"
#include "gfx/gl/gfxGLWindowTarget.h"
#include "gfx/gl/ggl/ggl.h"
#include "platform/platformDlibrary.h"
#include "gfx/gl/gfxGLShader.h"
#include "gfx/primBuilder.h"
#include "console/console.h"
#include "gfx/gl/gfxGLOcclusionQuery.h"
GFXAdapter::CreateDeviceInstanceDelegate GFXGLDevice::mCreateDeviceInstance(GFXGLDevice::createInstance);
GFXDevice *GFXGLDevice::createInstance( U32 adapterIndex )
{
return new GFXGLDevice(adapterIndex);
}
namespace GL
{
extern void gglPerformBinds();
extern void gglPerformExtensionBinds(void *context);
}
void loadGLCore()
{
static bool coreLoaded = false; // Guess what this is for.
if(coreLoaded)
return;
coreLoaded = true;
// Make sure we've got our GL bindings.
GL::gglPerformBinds();
}
void loadGLExtensions(void *context)
{
static bool extensionsLoaded = false;
if(extensionsLoaded)
return;
extensionsLoaded = true;
GL::gglPerformExtensionBinds(context);
}
void GFXGLDevice::initGLState()
{
// We don't currently need to sync device state with a known good place because we are
// going to set everything in GFXGLStateBlock, but if we change our GFXGLStateBlock strategy, this may
// need to happen.
// Deal with the card profiler here when we know we have a valid context.
mCardProfiler = new GFXGLCardProfiler();
mCardProfiler->init();
glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, (GLint*)&mMaxShaderTextures);
glGetIntegerv(GL_MAX_TEXTURE_UNITS, (GLint*)&mMaxFFTextures);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
// Apple's drivers lie and claim that everything supports fragment shaders. Conveniently they don't lie about the number
// of supported image units. Checking for 16 or more image units ensures that we don't try and use pixel shaders on
// cards which don't support them.
if(mCardProfiler->queryProfile("GL::suppFragmentShader") && mMaxShaderTextures >= 16)
mPixelShaderVersion = 2.0f;
else
mPixelShaderVersion = 0.0f;
// MACHAX - Setting mPixelShaderVersion to 3.0 will allow Advanced Lighting
// to run. At the time of writing (6/18) it doesn't quite work yet.
if(Con::getBoolVariable("$pref::machax::enableAdvancedLighting", false))
mPixelShaderVersion = 3.0f;
mSupportsAnisotropic = mCardProfiler->queryProfile( "GL::suppAnisotropic" );
}
GFXGLDevice::GFXGLDevice(U32 adapterIndex) :
mAdapterIndex(adapterIndex),
mCurrentVB(NULL),
mCurrentPB(NULL),
m_mCurrentWorld(true),
m_mCurrentView(true),
mContext(NULL),
mPixelFormat(NULL),
mPixelShaderVersion(0.0f),
mMaxShaderTextures(2),
mMaxFFTextures(2),
mClip(0, 0, 0, 0)
{
loadGLCore();
GFXGLEnumTranslate::init();
GFXVertexColor::setSwizzle( &Swizzles::rgba );
mDeviceSwizzle32 = &Swizzles::bgra;
mDeviceSwizzle24 = &Swizzles::bgr;
mTextureManager = new GFXGLTextureManager();
gScreenShot = new ScreenShot();
for(U32 i = 0; i < TEXTURE_STAGE_COUNT; i++)
mActiveTextureType[i] = GL_ZERO;
}
GFXGLDevice::~GFXGLDevice()
{
mCurrentStateBlock = NULL;
mCurrentPB = NULL;
mCurrentVB = NULL;
for(U32 i = 0; i < mVolatileVBs.size(); i++)
mVolatileVBs[i] = NULL;
for(U32 i = 0; i < mVolatilePBs.size(); i++)
mVolatilePBs[i] = NULL;
GFXResource* walk = mResourceListHead;
while(walk)
{
walk->zombify();
walk = walk->getNextResource();
}
if( mCardProfiler )
SAFE_DELETE( mCardProfiler );
SAFE_DELETE( gScreenShot );
}
void GFXGLDevice::zombify()
{
mTextureManager->zombify();
if(mCurrentVB)
mCurrentVB->finish();
if(mCurrentPB)
mCurrentPB->finish();
//mVolatileVBs.clear();
//mVolatilePBs.clear();
GFXResource* walk = mResourceListHead;
while(walk)
{
walk->zombify();
walk = walk->getNextResource();
}
}
void GFXGLDevice::resurrect()
{
GFXResource* walk = mResourceListHead;
while(walk)
{
walk->resurrect();
walk = walk->getNextResource();
}
if(mCurrentVB)
mCurrentVB->prepare();
if(mCurrentPB)
mCurrentPB->prepare();
mTextureManager->resurrect();
}
GFXVertexBuffer* GFXGLDevice::findVolatileVBO(U32 numVerts, const GFXVertexFormat *vertexFormat, U32 vertSize)
{
for(U32 i = 0; i < mVolatileVBs.size(); i++)
if ( mVolatileVBs[i]->mNumVerts >= numVerts &&
mVolatileVBs[i]->mVertexFormat.isEqual( *vertexFormat ) &&
mVolatileVBs[i]->mVertexSize == vertSize &&
mVolatileVBs[i]->getRefCount() == 1 )
return mVolatileVBs[i];
// No existing VB, so create one
StrongRefPtr<GFXGLVertexBuffer> buf(new GFXGLVertexBuffer(GFX, numVerts, vertexFormat, vertSize, GFXBufferTypeVolatile));
buf->registerResourceWithDevice(this);
mVolatileVBs.push_back(buf);
return buf.getPointer();
}
GFXPrimitiveBuffer* GFXGLDevice::findVolatilePBO(U32 numIndices, U32 numPrimitives)
{
for(U32 i = 0; i < mVolatilePBs.size(); i++)
if((mVolatilePBs[i]->mIndexCount >= numIndices) && (mVolatilePBs[i]->getRefCount() == 1))
return mVolatilePBs[i];
// No existing PB, so create one
StrongRefPtr<GFXGLPrimitiveBuffer> buf(new GFXGLPrimitiveBuffer(GFX, numIndices, numPrimitives, GFXBufferTypeVolatile));
buf->registerResourceWithDevice(this);
mVolatilePBs.push_back(buf);
return buf.getPointer();
}
GFXVertexBuffer *GFXGLDevice::allocVertexBuffer( U32 numVerts,
const GFXVertexFormat *vertexFormat,
U32 vertSize,
GFXBufferType bufferType )
{
if(bufferType == GFXBufferTypeVolatile)
return findVolatileVBO(numVerts, vertexFormat, vertSize);
GFXGLVertexBuffer* buf = new GFXGLVertexBuffer( GFX, numVerts, vertexFormat, vertSize, bufferType );
buf->registerResourceWithDevice(this);
return buf;
}
GFXPrimitiveBuffer *GFXGLDevice::allocPrimitiveBuffer( U32 numIndices, U32 numPrimitives, GFXBufferType bufferType )
{
if(bufferType == GFXBufferTypeVolatile)
return findVolatilePBO(numIndices, numPrimitives);
GFXGLPrimitiveBuffer* buf = new GFXGLPrimitiveBuffer(GFX, numIndices, numPrimitives, bufferType);
buf->registerResourceWithDevice(this);
return buf;
}
void GFXGLDevice::setVertexStream( U32 stream, GFXVertexBuffer *buffer )
{
AssertFatal( stream == 0, "GFXGLDevice::setVertexStream - We don't support multiple vertex streams!" );
// Reset the state the old VB required, then set the state the new VB requires.
if ( mCurrentVB )
mCurrentVB->finish();
mCurrentVB = static_cast<GFXGLVertexBuffer*>( buffer );
if ( mCurrentVB )
mCurrentVB->prepare();
}
void GFXGLDevice::setVertexStreamFrequency( U32 stream, U32 frequency )
{
// We don't support vertex stream frequency or mesh instancing in OGL yet.
}
GFXCubemap* GFXGLDevice::createCubemap()
{
GFXGLCubemap* cube = new GFXGLCubemap();
cube->registerResourceWithDevice(this);
return cube;
};
void GFXGLDevice::endSceneInternal()
{
// nothing to do for opengl
mCanCurrentlyRender = false;
}
void GFXGLDevice::clear(U32 flags, ColorI color, F32 z, U32 stencil)
{
// Make sure we have flushed our render target state.
_updateRenderTargets();
bool zwrite = true;
if (mCurrentGLStateBlock)
{
zwrite = mCurrentGLStateBlock->getDesc().zWriteEnable;
}
glDepthMask(true);
ColorF c = color;
glClearColor(c.red, c.green, c.blue, c.alpha);
glClearDepth(z);
glClearStencil(stencil);
GLbitfield clearflags = 0;
clearflags |= (flags & GFXClearTarget) ? GL_COLOR_BUFFER_BIT : 0;
clearflags |= (flags & GFXClearZBuffer) ? GL_DEPTH_BUFFER_BIT : 0;
clearflags |= (flags & GFXClearStencil) ? GL_STENCIL_BUFFER_BIT : 0;
glClear(clearflags);
if(!zwrite)
glDepthMask(false);
}
// Given a primitive type and a number of primitives, return the number of indexes/vertexes used.
GLsizei GFXGLDevice::primCountToIndexCount(GFXPrimitiveType primType, U32 primitiveCount)
{
switch (primType)
{
case GFXPointList :
return primitiveCount;
break;
case GFXLineList :
return primitiveCount * 2;
break;
case GFXLineStrip :
return primitiveCount + 1;
break;
case GFXTriangleList :
return primitiveCount * 3;
break;
case GFXTriangleStrip :
return 2 + primitiveCount;
break;
case GFXTriangleFan :
return 2 + primitiveCount;
break;
default:
AssertFatal(false, "GFXGLDevice::primCountToIndexCount - unrecognized prim type");
break;
}
return 0;
}
inline void GFXGLDevice::preDrawPrimitive()
{
if( mStateDirty )
{
updateStates();
}
if(mCurrentShaderConstBuffer)
setShaderConstBufferInternal(mCurrentShaderConstBuffer);
}
inline void GFXGLDevice::postDrawPrimitive(U32 primitiveCount)
{
mDeviceStatistics.mDrawCalls++;
mDeviceStatistics.mPolyCount += primitiveCount;
}
void GFXGLDevice::drawPrimitive( GFXPrimitiveType primType, U32 vertexStart, U32 primitiveCount )
{
preDrawPrimitive();
// There are some odd performance issues if a buffer is bound to GL_ELEMENT_ARRAY_BUFFER when glDrawArrays is called. Unbinding the buffer
// improves performance by 10%.
if(mCurrentPB)
mCurrentPB->finish();
glDrawArrays(GFXGLPrimType[primType], vertexStart, primCountToIndexCount(primType, primitiveCount));
if(mCurrentPB)
mCurrentPB->prepare();
postDrawPrimitive(primitiveCount);
}
void GFXGLDevice::drawIndexedPrimitive( GFXPrimitiveType primType,
U32 startVertex,
U32 minIndex,
U32 numVerts,
U32 startIndex,
U32 primitiveCount )
{
AssertFatal( startVertex == 0, "GFXGLDevice::drawIndexedPrimitive() - Non-zero startVertex unsupported!" );
preDrawPrimitive();
U16* buf = (U16*)static_cast<GFXGLPrimitiveBuffer*>(mCurrentPrimitiveBuffer.getPointer())->getBuffer() + startIndex;
glDrawElements(GFXGLPrimType[primType], primCountToIndexCount(primType, primitiveCount), GL_UNSIGNED_SHORT, buf);
postDrawPrimitive(primitiveCount);
}
void GFXGLDevice::setPB(GFXGLPrimitiveBuffer* pb)
{
if(mCurrentPB)
mCurrentPB->finish();
mCurrentPB = pb;
}
void GFXGLDevice::setLightInternal(U32 lightStage, const GFXLightInfo light, bool lightEnable)
{
if(!lightEnable)
{
glDisable(GL_LIGHT0 + lightStage);
return;
}
if(light.mType == GFXLightInfo::Ambient)
{
AssertFatal(false, "Instead of setting an ambient light you should set the global ambient color.");
return;
}
GLenum lightEnum = GL_LIGHT0 + lightStage;
glLightfv(lightEnum, GL_AMBIENT, (GLfloat*)&light.mAmbient);
glLightfv(lightEnum, GL_DIFFUSE, (GLfloat*)&light.mColor);
glLightfv(lightEnum, GL_SPECULAR, (GLfloat*)&light.mColor);
F32 pos[4];
if(light.mType != GFXLightInfo::Vector)
{
dMemcpy(pos, &light.mPos, sizeof(light.mPos));
pos[3] = 1.0;
}
else
{
dMemcpy(pos, &light.mDirection, sizeof(light.mDirection));
pos[3] = 0.0;
}
// Harcoded attenuation
glLightf(lightEnum, GL_CONSTANT_ATTENUATION, 1.0f);
glLightf(lightEnum, GL_LINEAR_ATTENUATION, 0.1f);
glLightf(lightEnum, GL_QUADRATIC_ATTENUATION, 0.0f);
glLightfv(lightEnum, GL_POSITION, (GLfloat*)&pos);
glEnable(lightEnum);
}
void GFXGLDevice::setLightMaterialInternal(const GFXLightMaterial mat)
{
// CodeReview - Setting these for front and back is unnecessary. We should consider
// checking what faces we're culling and setting this only for the unculled faces.
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, (GLfloat*)&mat.ambient);
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, (GLfloat*)&mat.diffuse);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, (GLfloat*)&mat.specular);
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, (GLfloat*)&mat.emissive);
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, mat.shininess);
}
void GFXGLDevice::setGlobalAmbientInternal(ColorF color)
{
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, (GLfloat*)&color);
}
void GFXGLDevice::setTextureInternal(U32 textureUnit, const GFXTextureObject*texture)
{
const GFXGLTextureObject *tex = static_cast<const GFXGLTextureObject*>(texture);
glActiveTexture(GL_TEXTURE0 + textureUnit);
if (tex)
{
// GFXGLTextureObject::bind also handles applying the current sampler state.
if(mActiveTextureType[textureUnit] != tex->getBinding() && mActiveTextureType[textureUnit] != GL_ZERO)
{
glBindTexture(mActiveTextureType[textureUnit], 0);
glDisable(mActiveTextureType[textureUnit]);
}
mActiveTextureType[textureUnit] = tex->getBinding();
tex->bind(textureUnit);
}
else if(mActiveTextureType[textureUnit] != GL_ZERO)
{
glBindTexture(mActiveTextureType[textureUnit], 0);
glDisable(mActiveTextureType[textureUnit]);
mActiveTextureType[textureUnit] = GL_ZERO;
}
glActiveTexture(GL_TEXTURE0);
}
void GFXGLDevice::setCubemapInternal(U32 textureUnit, const GFXGLCubemap* texture)
{
glActiveTexture(GL_TEXTURE0 + textureUnit);
if(texture)
{
if(mActiveTextureType[textureUnit] != GL_TEXTURE_CUBE_MAP && mActiveTextureType[textureUnit] != GL_ZERO)
{
glBindTexture(mActiveTextureType[textureUnit], 0);
glDisable(mActiveTextureType[textureUnit]);
}
mActiveTextureType[textureUnit] = GL_TEXTURE_CUBE_MAP;
texture->bind(textureUnit);
}
else if(mActiveTextureType[textureUnit] != GL_ZERO)
{
glBindTexture(mActiveTextureType[textureUnit], 0);
glDisable(mActiveTextureType[textureUnit]);
mActiveTextureType[textureUnit] = GL_ZERO;
}
glActiveTexture(GL_TEXTURE0);
}
void GFXGLDevice::setMatrix( GFXMatrixType mtype, const MatrixF &mat )
{
MatrixF modelview;
switch (mtype)
{
case GFXMatrixWorld :
{
glMatrixMode(GL_MODELVIEW);
m_mCurrentWorld = mat;
modelview = m_mCurrentWorld;
modelview *= m_mCurrentView;
modelview.transpose();
glLoadMatrixf((F32*) modelview);
}
break;
case GFXMatrixView :
{
glMatrixMode(GL_MODELVIEW);
m_mCurrentView = mat;
modelview = m_mCurrentView;
modelview *= m_mCurrentWorld;
modelview.transpose();
glLoadMatrixf((F32*) modelview);
}
break;
case GFXMatrixProjection :
{
glMatrixMode(GL_PROJECTION);
MatrixF t(mat);
t.transpose();
glLoadMatrixf((F32*) t);
glMatrixMode(GL_MODELVIEW);
}
break;
// CodeReview - Add support for texture transform matrix types
default:
AssertFatal(false, "GFXGLDevice::setMatrix - Unknown matrix mode!");
return;
}
}
void GFXGLDevice::setClipRect( const RectI &inRect )
{
AssertFatal(mCurrentRT.isValid(), "GFXGLDevice::setClipRect - must have a render target set to do any rendering operations!");
// Clip the rect against the renderable size.
Point2I size = mCurrentRT->getSize();
RectI maxRect(Point2I(0,0), size);
mClip = inRect;
mClip.intersect(maxRect);
// Create projection matrix. See http://www.opengl.org/documentation/specs/man_pages/hardcopy/GL/html/gl/ortho.html
const F32 left = mClip.point.x;
const F32 right = mClip.point.x + mClip.extent.x;
const F32 bottom = mClip.extent.y;
const F32 top = 0.0f;
const F32 near = 0.0f;
const F32 far = 1.0f;
const F32 tx = -(right + left)/(right - left);
const F32 ty = -(top + bottom)/(top - bottom);
const F32 tz = -(far + near)/(far - near);
static Point4F pt;
pt.set(2.0f / (right - left), 0.0f, 0.0f, 0.0f);
mProjectionMatrix.setColumn(0, pt);
pt.set(0.0f, 2.0f/(top - bottom), 0.0f, 0.0f);
mProjectionMatrix.setColumn(1, pt);
pt.set(0.0f, 0.0f, -2.0f/(far - near), 0.0f);
mProjectionMatrix.setColumn(2, pt);
pt.set(tx, ty, tz, 1.0f);
mProjectionMatrix.setColumn(3, pt);
// Translate projection matrix.
static MatrixF translate(true);
pt.set(0.0f, -mClip.point.y, 0.0f, 1.0f);
translate.setColumn(3, pt);
mProjectionMatrix *= translate;
setMatrix(GFXMatrixProjection, mProjectionMatrix);
MatrixF mTempMatrix(true);
setViewMatrix( mTempMatrix );
setWorldMatrix( mTempMatrix );
// Set the viewport to the clip rect (with y flip)
RectI viewport(mClip.point.x, size.y - (mClip.point.y + mClip.extent.y), mClip.extent.x, mClip.extent.y);
setViewport(viewport);
}
/// Creates a state block object based on the desc passed in. This object
/// represents an immutable state.
GFXStateBlockRef GFXGLDevice::createStateBlockInternal(const GFXStateBlockDesc& desc)
{
return GFXStateBlockRef(new GFXGLStateBlock(desc));
}
/// Activates a stateblock
void GFXGLDevice::setStateBlockInternal(GFXStateBlock* block, bool force)
{
AssertFatal(dynamic_cast<GFXGLStateBlock*>(block), "GFXGLDevice::setStateBlockInternal - Incorrect stateblock type for this device!");
GFXGLStateBlock* glBlock = static_cast<GFXGLStateBlock*>(block);
GFXGLStateBlock* glCurrent = static_cast<GFXGLStateBlock*>(mCurrentStateBlock.getPointer());
if (force)
glCurrent = NULL;
glBlock->activate(glCurrent); // Doesn't use current yet.
mCurrentGLStateBlock = glBlock;
}
//------------------------------------------------------------------------------
GFXTextureTarget * GFXGLDevice::allocRenderToTextureTarget()
{
GFXGLTextureTarget *targ = new GFXGLTextureTarget();
targ->registerResourceWithDevice(this);
return targ;
}
GFXFence * GFXGLDevice::createFence()
{
GFXFence* fence = _createPlatformSpecificFence();
if(!fence)
fence = new GFXGeneralFence( this );
fence->registerResourceWithDevice(this);
return fence;
}
GFXOcclusionQuery* GFXGLDevice::createOcclusionQuery()
{
GFXOcclusionQuery *query = new GFXGLOcclusionQuery( this );
query->registerResourceWithDevice(this);
return query;
}
void GFXGLDevice::setupGenericShaders( GenericShaderType type )
{
TORQUE_UNUSED(type);
// We have FF support, use that.
disableShaders();
}
GFXShader* GFXGLDevice::createShader()
{
GFXGLShader* shader = new GFXGLShader();
shader->registerResourceWithDevice( this );
return shader;
}
void GFXGLDevice::setShader( GFXShader *shader )
{
if ( shader )
{
GFXGLShader *glShader = static_cast<GFXGLShader*>( shader );
glShader->useProgram();
}
else
glUseProgram(0);
}
void GFXGLDevice::disableShaders()
{
setShader(NULL);
setShaderConstBuffer( NULL );
}
void GFXGLDevice::setShaderConstBufferInternal(GFXShaderConstBuffer* buffer)
{
static_cast<GFXGLShaderConstBuffer*>(buffer)->activate();
}
U32 GFXGLDevice::getNumSamplers() const
{
return mPixelShaderVersion > 0.001f ? mMaxShaderTextures : mMaxFFTextures;
}
U32 GFXGLDevice::getNumRenderTargets() const
{
return 1;
}
void GFXGLDevice::_updateRenderTargets()
{
if ( mRTDirty || mCurrentRT->isPendingState() )
{
if ( mRTDeactivate )
{
mRTDeactivate->deactivate();
mRTDeactivate = NULL;
}
// NOTE: The render target changes is not really accurate
// as the GFXTextureTarget supports MRT internally. So when
// we activate a GFXTarget it could result in multiple calls
// to SetRenderTarget on the actual device.
mDeviceStatistics.mRenderTargetChanges++;
GFXGLTextureTarget *tex = dynamic_cast<GFXGLTextureTarget*>( mCurrentRT.getPointer() );
if ( tex )
{
tex->applyState();
tex->makeActive();
}
else
{
GFXGLWindowTarget *win = dynamic_cast<GFXGLWindowTarget*>( mCurrentRT.getPointer() );
AssertFatal( win != NULL,
"GFXGLDevice::_updateRenderTargets() - invalid target subclass passed!" );
win->makeActive();
if( win->mContext != static_cast<GFXGLDevice*>(GFX)->mContext )
{
mRTDirty = false;
GFX->updateStates(true);
}
}
mRTDirty = false;
}
if ( mViewportDirty )
{
glViewport( mViewport.point.x, mViewport.point.y, mViewport.extent.x, mViewport.extent.y );
mViewportDirty = false;
}
}
GFXFormat GFXGLDevice::selectSupportedFormat( GFXTextureProfile* profile,
const Vector<GFXFormat>& formats,
bool texture,
bool mustblend,
bool mustfilter )
{
for(U32 i = 0; i < formats.size(); i++)
{
// Single channel textures are not supported by FBOs.
if(profile->testFlag(GFXTextureProfile::RenderTarget) && (formats[i] == GFXFormatA8 || formats[i] == GFXFormatL8 || formats[i] == GFXFormatL16))
continue;
if(GFXGLTextureInternalFormat[formats[i]] == GL_ZERO)
continue;
return formats[i];
}
return GFXFormatR8G8B8A8;
}
//
// Register this device with GFXInit
//
class GFXGLRegisterDevice
{
public:
GFXGLRegisterDevice()
{
GFXInit::getRegisterDeviceSignal().notify(&GFXGLDevice::enumerateAdapters);
}
};
static GFXGLRegisterDevice pGLRegisterDevice;
ConsoleFunction(cycleResources, void, 1, 1, "")
{
static_cast<GFXGLDevice*>(GFX)->zombify();
static_cast<GFXGLDevice*>(GFX)->resurrect();
}