mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-20 12:44:46 +00:00
491 lines
11 KiB
C++
491 lines
11 KiB
C++
/*
|
|
ROBERT PENNER'S MOST EXCELLENT EASING METHODS - ported to Torque C++ by Paul Dana
|
|
|
|
Easing Equations v1.5
|
|
May 1, 2003
|
|
(c) 2003 Robert Penner, all rights reserved.
|
|
This work is subject to the terms in http://www.robertpenner.com/easing_terms_of_use.html.
|
|
|
|
These tweening functions provide different flavors of
|
|
math-based motion under a consistent API.
|
|
|
|
Types of easing:
|
|
|
|
Linear
|
|
Quadratic
|
|
Cubic
|
|
Quartic
|
|
Quintic
|
|
Sinusoidal
|
|
Exponential
|
|
Circular
|
|
Elastic
|
|
Back
|
|
Bounce
|
|
|
|
Changes:
|
|
1.5 - added bounce easing
|
|
1.4 - added elastic and back easing
|
|
1.3 - tweaked the exponential easing functions to make endpoints exact
|
|
1.2 - inline optimizations (changing t and multiplying in one step)--thanks to Tatsuo Kato for the idea
|
|
|
|
Discussed in Chapter 7 of
|
|
Robert Penner's Programming Macromedia Flash MX
|
|
(including graphs of the easing equations)
|
|
|
|
http://www.robertpenner.com/profmx
|
|
http://www.amazon.com/exec/obidos/ASIN/0072223561/robertpennerc-20
|
|
*/
|
|
|
|
#ifndef _MEASE_H_
|
|
#define _MEASE_H_
|
|
|
|
// the ease methods below all are static and take atomic types as params
|
|
// so they are the most generally useful. for convenience, define here
|
|
// a type that can contain all the params needed for below to make
|
|
// data structures that use these methods cleaner...
|
|
//------------------------------------------------------------------------------
|
|
class Ease
|
|
{
|
|
//-------------------------------------- Public data
|
|
public:
|
|
enum enumDirection
|
|
{
|
|
InOut=0,
|
|
In,
|
|
Out
|
|
};
|
|
|
|
enum enumType
|
|
{
|
|
Linear=0,
|
|
Quadratic,
|
|
Cubic,
|
|
Quartic,
|
|
Quintic,
|
|
Sinusoidal,
|
|
Exponential,
|
|
Circular,
|
|
Elastic,
|
|
Back,
|
|
Bounce,
|
|
};
|
|
};
|
|
|
|
class EaseF : public Ease
|
|
{
|
|
//-------------------------------------- Public data
|
|
public:
|
|
S32 mDir; // inout, in, out
|
|
S32 mType; // linear, etc...
|
|
F32 mParam[2]; // optional params
|
|
|
|
//-------------------------------------- Public interface
|
|
public:
|
|
EaseF();
|
|
EaseF(const EaseF &ease);
|
|
EaseF(const S32 dir, const S32 type);
|
|
EaseF(const S32 dir, const S32 type, F32 param[2]);
|
|
|
|
//-------------------------------------- Non-math mutators and misc functions
|
|
void set(const S32 dir, const S32 type);
|
|
void set(const S32 dir, const S32 type, F32 param[2]);
|
|
void set(const S32 dir, const S32 type, F32 param0, F32 param1);
|
|
void set(const char *s);
|
|
|
|
F32 getValue(F32 t, F32 b, F32 c, F32 d) const;
|
|
F32 getUnitValue(F32 t, bool noExtrapolation) const
|
|
{
|
|
F32 v = getValue(t,0.0f,1.0f,1.0f);
|
|
if (noExtrapolation)
|
|
v = mClampF(v,0.0f,1.0f);
|
|
return v;
|
|
}
|
|
F32 getUnitValue(F32 t) const
|
|
{
|
|
return getValue(t,0.0f,1.0f,1.0f);
|
|
}
|
|
};
|
|
|
|
|
|
// simple linear tweening - no easing
|
|
// t: current time, b: beginning value, c: change in value, d: duration
|
|
inline F32 mLinearTween(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
return c*t/d + b;
|
|
}
|
|
|
|
|
|
///////////// QUADRATIC EASING: t^2 ///////////////////
|
|
|
|
// quadratic easing in - accelerating from zero velocity
|
|
// t: current time, b: beginning value, c: change in value, d: duration
|
|
// t and d can be in frames or seconds/milliseconds
|
|
inline F32 mEaseInQuad(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t /= d;
|
|
return c*t*t + b;
|
|
};
|
|
|
|
// quadratic easing out - decelerating to zero velocity
|
|
inline F32 mEaseOutQuad(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t /= d;
|
|
return -c * t*(t-2) + b;
|
|
};
|
|
|
|
// quadratic easing in/out - acceleration until halfway, then deceleration
|
|
inline F32 mEaseInOutQuad(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t /= d/2;
|
|
if (t < 1)
|
|
return c/2*t*t + b;
|
|
t--;
|
|
return -c/2 * (t*(t-2) - 1) + b;
|
|
};
|
|
|
|
///////////// CUBIC EASING: t^3 ///////////////////////
|
|
|
|
// cubic easing in - accelerating from zero velocity
|
|
// t: current time, b: beginning value, c: change in value, d: duration
|
|
// t and d can be frames or seconds/milliseconds
|
|
inline F32 mEaseInCubic(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t /= d;
|
|
return c*t*t*t + b;
|
|
};
|
|
|
|
// cubic easing out - decelerating to zero velocity
|
|
inline F32 mEaseOutCubic(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t /= d;
|
|
t--;
|
|
return c*(t*t*t + 1) + b;
|
|
};
|
|
|
|
// cubic easing in/out - acceleration until halfway, then deceleration
|
|
inline F32 mEaseInOutCubic(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t /= d/2;
|
|
if (t < 1)
|
|
return c/2*t*t*t + b;
|
|
t -= 2;
|
|
return c/2*(t*t*t + 2) + b;
|
|
};
|
|
|
|
|
|
///////////// QUARTIC EASING: t^4 /////////////////////
|
|
|
|
// quartic easing in - accelerating from zero velocity
|
|
// t: current time, b: beginning value, c: change in value, d: duration
|
|
// t and d can be frames or seconds/milliseconds
|
|
inline F32 mEaseInQuart(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t /= d;
|
|
return c*t*t*t*t + b;
|
|
};
|
|
|
|
// quartic easing out - decelerating to zero velocity
|
|
inline F32 mEaseOutQuart(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t /= d;
|
|
t--;
|
|
return -c * (t*t*t*t - 1) + b;
|
|
};
|
|
|
|
// quartic easing in/out - acceleration until halfway, then deceleration
|
|
inline F32 mEaseInOutQuart(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t /= d/2;
|
|
if (t < 1)
|
|
return c/2*t*t*t*t + b;
|
|
t -= 2;
|
|
return -c/2 * (t*t*t*t - 2) + b;
|
|
};
|
|
|
|
|
|
///////////// QUINTIC EASING: t^5 ////////////////////
|
|
|
|
// quintic easing in - accelerating from zero velocity
|
|
// t: current time, b: beginning value, c: change in value, d: duration
|
|
// t and d can be frames or seconds/milliseconds
|
|
inline F32 mEaseInQuint(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t /= d;
|
|
return c*t*t*t*t*t + b;
|
|
};
|
|
|
|
// quintic easing out - decelerating to zero velocity
|
|
inline F32 mEaseOutQuint(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t /= d;
|
|
t--;
|
|
return c*(t*t*t*t*t + 1) + b;
|
|
};
|
|
|
|
// quintic easing in/out - acceleration until halfway, then deceleration
|
|
inline F32 mEaseInOutQuint(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t /= d/2;
|
|
if (t < 1)
|
|
return c/2*t*t*t*t*t + b;
|
|
t -= 2;
|
|
return c/2*(t*t*t*t*t + 2) + b;
|
|
};
|
|
|
|
|
|
|
|
///////////// SINUSOIDAL EASING: sin(t) ///////////////
|
|
|
|
// sinusoidal easing in - accelerating from zero velocity
|
|
// t: current time, b: beginning value, c: change in position, d: duration
|
|
inline F32 mEaseInSine(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
return -c * mCos(t/d * (M_PI_F/2)) + c + b;
|
|
};
|
|
|
|
// sinusoidal easing out - decelerating to zero velocity
|
|
inline F32 mEaseOutSine(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
return c * mSin(t/d * (M_PI_F/2)) + b;
|
|
};
|
|
|
|
// sinusoidal easing in/out - accelerating until halfway, then decelerating
|
|
inline F32 mEaseInOutSine(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
return -c/2 * (mCos(M_PI_F*t/d) - 1) + b;
|
|
};
|
|
|
|
|
|
///////////// EXPONENTIAL EASING: 2^t /////////////////
|
|
|
|
// exponential easing in - accelerating from zero velocity
|
|
// t: current time, b: beginning value, c: change in position, d: duration
|
|
inline F32 mEaseInExpo(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
return c * mPow( 2, 10 * (t/d - 1) ) + b;
|
|
};
|
|
|
|
// exponential easing out - decelerating to zero velocity
|
|
inline F32 mEaseOutExpo(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
return c * ( -mPow( 2, -10 * t/d ) + 1 ) + b;
|
|
};
|
|
|
|
// exponential easing in/out - accelerating until halfway, then decelerating
|
|
inline F32 mEaseInOutExpo(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t /= d/2;
|
|
if (t < 1)
|
|
return c/2 * mPow( 2, 10 * (t - 1) ) + b;
|
|
t--;
|
|
return c/2 * ( -mPow( 2, -10 * t) + 2 ) + b;
|
|
};
|
|
|
|
|
|
/////////// CIRCULAR EASING: sqrt(1-t^2) //////////////
|
|
|
|
// circular easing in - accelerating from zero velocity
|
|
// t: current time, b: beginning value, c: change in position, d: duration
|
|
inline F32 mEaseInCirc (F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t/=d;
|
|
return -c * (mSqrt(1 - (t)*t) - 1) + b;
|
|
};
|
|
|
|
// circular easing out - decelerating to zero velocity
|
|
inline F32 mEaseOutCirc (F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
t/=d;
|
|
t--;
|
|
return c * mSqrt(1 - (t)*t) + b;
|
|
};
|
|
|
|
// circular easing in/out - acceleration until halfway, then deceleration
|
|
inline F32 mEaseInOutCirc(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
if ((t/=d/2) < 1)
|
|
return -c/2 * (mSqrt(1 - t*t) - 1) + b;
|
|
t-=2;
|
|
return c/2 * (mSqrt(1 - (t)*t) + 1) + b;
|
|
};
|
|
|
|
|
|
/////////// ELASTIC EASING: exponentially decaying sine wave //////////////
|
|
|
|
// t: current time, b: beginning value, c: change in value, d: duration, a: amplitude (optional), p: period (optional)
|
|
// t and d can be in frames or seconds/milliseconds
|
|
|
|
inline F32 mEaseInElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p)
|
|
{
|
|
if (t==0)
|
|
return b;
|
|
|
|
F32 dt = t /= d;
|
|
if (dt == 1)
|
|
return b+c;
|
|
|
|
if (p<=0)
|
|
p=d*.3f;
|
|
|
|
F32 s;
|
|
if (a < mFabs(c))
|
|
{
|
|
a=c;
|
|
s=p/4;
|
|
}
|
|
else
|
|
s = p/(2*M_PI_F) * mAsin (c/a);
|
|
|
|
t -= 1;
|
|
return -(a*mPow(2,10*t) * mSin( (t*d-s)*(2*M_PI_F)/p )) + b;
|
|
};
|
|
|
|
inline F32 mEaseOutElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p)
|
|
{
|
|
if (t==0)
|
|
return b;
|
|
|
|
F32 dt = t /= d;
|
|
if (dt == 1)
|
|
return b+c;
|
|
|
|
if (p<=0)
|
|
p=d*.3f;
|
|
|
|
F32 s;
|
|
if (a < mFabs(c))
|
|
{
|
|
a=c;
|
|
s=p/4;
|
|
}
|
|
else
|
|
s = p/(2*M_PI_F) * mAsin (c/a);
|
|
|
|
return a*mPow(2,-10*t) * mSin( (t*d-s)*(2*M_PI_F)/p ) + c + b;
|
|
};
|
|
|
|
inline F32 mEaseInOutElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p)
|
|
{
|
|
if (t==0)
|
|
return b;
|
|
|
|
F32 dt = t /= d / 2;
|
|
if (dt == 2)
|
|
return b+c;
|
|
|
|
if (p<=0)
|
|
p=d*(.3f*1.5f);
|
|
|
|
F32 s;
|
|
if (a < mFabs(c))
|
|
{
|
|
a=c;
|
|
s=p/4;
|
|
}
|
|
else
|
|
s = p/(2*M_PI_F) * mAsin (c/a);
|
|
|
|
if (t < 1)
|
|
{
|
|
t -= 1;
|
|
return -.5f*(a*mPow(2, 10 * t) * mSin((t*d - s)*(2 * M_PI_F) / p)) + b;
|
|
}
|
|
|
|
t -= 1;
|
|
return a*mPow(2,-10*t) * mSin( (t*d-s)*(2*M_PI_F)/p )*.5f + c + b;
|
|
};
|
|
|
|
|
|
/////////// BACK EASING: overshooting cubic easing: (s+1)*t^3 - s*t^2 //////////////
|
|
|
|
// back easing in - backtracking slightly, then reversing direction and moving to target
|
|
// t: current time, b: beginning value, c: change in value, d: duration, s: overshoot amount (optional)
|
|
// t and d can be in frames or seconds/milliseconds
|
|
// s controls the amount of overshoot: higher s means greater overshoot
|
|
// s has a default value of 1.70158, which produces an overshoot of 10 percent
|
|
// s==0 produces cubic easing with no overshoot
|
|
inline F32 mEaseInBack(F32 t, F32 b, F32 c, F32 d, F32 s)
|
|
{
|
|
if (s < 0)
|
|
s = 1.70158f;
|
|
|
|
F32 td = t /= d;
|
|
return c*td*t*((s + 1)*t - s) + b;
|
|
};
|
|
|
|
// back easing out - moving towards target, overshooting it slightly, then reversing and coming back to target
|
|
inline F32 mEaseOutBack(F32 t, F32 b, F32 c, F32 d, F32 s)
|
|
{
|
|
if (s < 0)
|
|
s = 1.70158f;
|
|
|
|
F32 td = t / d - 1;
|
|
t = td;
|
|
return c*(td*t*((s + 1)*t + s) + 1) + b;
|
|
};
|
|
|
|
// back easing in/out - backtracking slightly, then reversing direction and moving to target,
|
|
// then overshooting target, reversing, and finally coming back to target
|
|
inline F32 mEaseInOutBack(F32 t, F32 b, F32 c, F32 d, F32 s)
|
|
{
|
|
if (s < 0)
|
|
s = 1.70158f;
|
|
|
|
F32 td = t /= d / 2;
|
|
if (td < 1)
|
|
{
|
|
s *= 1.525f;
|
|
return c / 2 * (t*t*((s + 1)*t - s)) + b;
|
|
}
|
|
|
|
s *= 1.525f;
|
|
t -= 2;
|
|
return c/2*(t*t*((s+1)*t + s) + 2) + b;
|
|
};
|
|
|
|
|
|
/////////// BOUNCE EASING: exponentially decaying parabolic bounce //////////////
|
|
|
|
// bounce easing out
|
|
inline F32 mEaseOutBounce(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
if ((t/=d) < (1/2.75f))
|
|
{
|
|
return c*(7.5625f*t*t) + b;
|
|
}
|
|
else if (t < (2/2.75))
|
|
{
|
|
t -= 1.5f / 2.75f;
|
|
return c*(7.5625f*t*t + .75f) + b;
|
|
}
|
|
else if (t < (2.5/2.75))
|
|
{
|
|
t -= 2.25f / 2.75f;
|
|
return c*(7.5625f*t*t + .9375f) + b;
|
|
}
|
|
else
|
|
{
|
|
t -= 2.625f / 2.75f;
|
|
return c*(7.5625f*t*t + .984375f) + b;
|
|
}
|
|
};
|
|
|
|
// bounce easing in
|
|
// t: current time, b: beginning value, c: change in position, d: duration
|
|
inline F32 mEaseInBounce(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
return c - mEaseOutBounce (d-t, 0, c, d) + b;
|
|
};
|
|
|
|
// bounce easing in/out
|
|
inline F32 mEaseInOutBounce(F32 t, F32 b, F32 c, F32 d)
|
|
{
|
|
if (t < d/2)
|
|
return mEaseInBounce (t*2, 0, c, d) * .5f + b;
|
|
|
|
return mEaseOutBounce (t*2-d, 0, c, d) * .5f + c*.5f + b;
|
|
};
|
|
|
|
#endif // _MEASE_H_
|