mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-20 12:44:46 +00:00
356 lines
12 KiB
C++
356 lines
12 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Copyright (c) 2012 GarageGames, LLC
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to
|
|
// deal in the Software without restriction, including without limitation the
|
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
// sell copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
// IN THE SOFTWARE.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "platform/platform.h"
|
|
#include "T3D/physics/bullet/btCollision.h"
|
|
|
|
#include "math/mPoint3.h"
|
|
#include "math/mMatrix.h"
|
|
#include "T3D/physics/bullet/bt.h"
|
|
#include "T3D/physics/bullet/btCasts.h"
|
|
|
|
class btHeightfieldTerrainShapeCustom : public btHeightfieldTerrainShape
|
|
{
|
|
bool* mHoles;
|
|
|
|
public:
|
|
btHeightfieldTerrainShapeCustom(const bool *holes,
|
|
int heightStickWidth,
|
|
int heightStickLength,
|
|
const void* heightfieldData,
|
|
btScalar heightScale,
|
|
btScalar minHeight,
|
|
btScalar maxHeight,
|
|
int upAxis,
|
|
PHY_ScalarType heightDataType,
|
|
bool flipQuadEdges) : btHeightfieldTerrainShape(heightStickWidth,
|
|
heightStickLength,
|
|
heightfieldData,
|
|
heightScale,
|
|
minHeight,
|
|
maxHeight,
|
|
upAxis,
|
|
heightDataType,
|
|
flipQuadEdges)
|
|
{
|
|
mHoles = new bool[heightStickWidth * heightStickLength];
|
|
dMemcpy(mHoles, holes, heightStickWidth * heightStickLength * sizeof(bool));
|
|
}
|
|
|
|
virtual ~btHeightfieldTerrainShapeCustom()
|
|
{
|
|
delete[] mHoles;
|
|
}
|
|
|
|
virtual void processAllTriangles(btTriangleCallback* callback, const btVector3& aabbMin, const btVector3& aabbMax) const;
|
|
};
|
|
|
|
|
|
BtCollision::BtCollision()
|
|
: mCompound( NULL ),
|
|
mLocalXfm( true )
|
|
{
|
|
}
|
|
|
|
BtCollision::~BtCollision()
|
|
{
|
|
SAFE_DELETE( mCompound );
|
|
|
|
for ( U32 i=0; i < mShapes.size(); i++ )
|
|
delete mShapes[i];
|
|
|
|
for ( U32 i=0; i < mMeshInterfaces.size(); i++ )
|
|
delete mMeshInterfaces[i];
|
|
}
|
|
|
|
btCollisionShape* BtCollision::getShape()
|
|
{
|
|
if ( mCompound )
|
|
return mCompound;
|
|
|
|
if ( mShapes.empty() )
|
|
return NULL;
|
|
|
|
return mShapes.first();
|
|
}
|
|
|
|
void BtCollision::_addShape( btCollisionShape *shape, const MatrixF &localXfm )
|
|
{
|
|
AssertFatal( !shape->isCompound(), "BtCollision::_addShape - Shape should not be a compound!" );
|
|
|
|
// Stick the shape into the array to delete later. Remember
|
|
// that the compound shape doesn't delete its children.
|
|
mShapes.push_back( shape );
|
|
|
|
// If this is the first shape then just store the
|
|
// local transform and we're done.
|
|
if ( mShapes.size() == 1 )
|
|
{
|
|
mLocalXfm = localXfm;
|
|
return;
|
|
}
|
|
|
|
// We use a compound to store the shapes with their
|
|
// local transforms... so create it if we haven't already.
|
|
if ( !mCompound )
|
|
{
|
|
mCompound = new btCompoundShape();
|
|
|
|
// There should only be one shape now... add it and
|
|
// clear the local transform.
|
|
mCompound->addChildShape( btCast<btTransform>( mLocalXfm ), mShapes.first() );
|
|
mLocalXfm = MatrixF::Identity;
|
|
}
|
|
|
|
// Add the new shape to the compound.
|
|
mCompound->addChildShape( btCast<btTransform>( localXfm ), shape );
|
|
}
|
|
|
|
void BtCollision::addPlane( const PlaneF &plane )
|
|
{
|
|
// NOTE: Torque uses a negative D... thats why we flip it here.
|
|
btStaticPlaneShape *shape = new btStaticPlaneShape( btVector3( plane.x, plane.y, plane.z ), -plane.d );
|
|
_addShape( shape, MatrixF::Identity );
|
|
}
|
|
|
|
void BtCollision::addBox( const Point3F &halfWidth,
|
|
const MatrixF &localXfm )
|
|
{
|
|
btBoxShape *shape = new btBoxShape( btVector3( halfWidth.x, halfWidth.y, halfWidth.z ) );
|
|
shape->setMargin( 0.01f );
|
|
_addShape( shape, localXfm );
|
|
}
|
|
|
|
void BtCollision::addSphere( const F32 radius,
|
|
const MatrixF &localXfm )
|
|
{
|
|
btSphereShape *shape = new btSphereShape( radius );
|
|
shape->setMargin( 0.01f );
|
|
_addShape( shape, localXfm );
|
|
}
|
|
|
|
void BtCollision::addCapsule( F32 radius,
|
|
F32 height,
|
|
const MatrixF &localXfm )
|
|
{
|
|
btCapsuleShape *shape = new btCapsuleShape( radius, height );
|
|
shape->setMargin( 0.01f );
|
|
_addShape( shape, localXfm );
|
|
}
|
|
|
|
bool BtCollision::addConvex( const Point3F *points,
|
|
U32 count,
|
|
const MatrixF &localXfm )
|
|
{
|
|
btConvexHullShape *shape = new btConvexHullShape( (btScalar*)points, count, sizeof( Point3F ) );
|
|
shape->setMargin( 0.01f );
|
|
_addShape( shape, localXfm );
|
|
return true;
|
|
}
|
|
|
|
bool BtCollision::addTriangleMesh( const Point3F *vert,
|
|
U32 vertCount,
|
|
const U32 *index,
|
|
U32 triCount,
|
|
const MatrixF &localXfm )
|
|
{
|
|
// Setup the interface for loading the triangles.
|
|
btTriangleMesh *meshInterface = new btTriangleMesh( true, false );
|
|
for ( ; triCount-- ; )
|
|
{
|
|
meshInterface->addTriangle( btCast<btVector3>( vert[ *( index + 0 ) ] ),
|
|
btCast<btVector3>( vert[ *( index + 1 ) ] ),
|
|
btCast<btVector3>( vert[ *( index + 2 ) ] ),
|
|
false );
|
|
|
|
index += 3;
|
|
}
|
|
mMeshInterfaces.push_back( meshInterface );
|
|
|
|
btBvhTriangleMeshShape *shape = new btBvhTriangleMeshShape( meshInterface, true, true );
|
|
shape->setMargin( 0.01f );
|
|
_addShape( shape, localXfm );
|
|
|
|
return true;
|
|
}
|
|
|
|
bool BtCollision::addHeightfield( const U16 *heights,
|
|
const bool *holes, // TODO: Bullet height fields do not support holes
|
|
U32 blockSize,
|
|
F32 metersPerSample,
|
|
const MatrixF &localXfm )
|
|
{
|
|
// We pass the absolute maximum and minimum of a U16 height
|
|
// field and not the actual min and max. This helps with
|
|
// placement.
|
|
const F32 heightScale = 0.03125f;
|
|
const F32 minHeight = 0;
|
|
const F32 maxHeight = 65535 * heightScale;
|
|
|
|
btHeightfieldTerrainShapeCustom* shape = new btHeightfieldTerrainShapeCustom(holes,
|
|
blockSize, blockSize,
|
|
reinterpret_cast<const void*>(heights),
|
|
heightScale,
|
|
0, 0xFFFF * heightScale,
|
|
2, // Z up!
|
|
PHY_SHORT,
|
|
false);
|
|
|
|
shape->setMargin( 0.01f );
|
|
shape->setLocalScaling( btVector3( metersPerSample, metersPerSample, 1.0f ) );
|
|
shape->setUseDiamondSubdivision( true );
|
|
|
|
// The local axis of the heightfield is the exact center of
|
|
// its bounds defined as...
|
|
//
|
|
// ( blockSize * samplesPerMeter, blockSize * samplesPerMeter, maxHeight ) / 2.0f
|
|
//
|
|
// So we create a local transform to move it to the min point
|
|
// of the bounds so it matched Torque terrain.
|
|
Point3F offset( (F32)blockSize * metersPerSample / 2.0f,
|
|
(F32)blockSize * metersPerSample / 2.0f,
|
|
maxHeight / 2.0f );
|
|
|
|
// And also bump it by half a sample square size.
|
|
offset.x -= metersPerSample / 2.0f;
|
|
offset.y -= metersPerSample / 2.0f;
|
|
|
|
MatrixF offsetXfm( true );
|
|
offsetXfm.setPosition( offset );
|
|
|
|
_addShape( shape, offsetXfm );
|
|
|
|
return true;
|
|
}
|
|
|
|
void btHeightfieldTerrainShapeCustom::processAllTriangles(btTriangleCallback* callback, const btVector3& aabbMin, const btVector3& aabbMax) const
|
|
{
|
|
// scale down the input aabb's so they are in local (non-scaled) coordinates
|
|
btVector3 localAabbMin = aabbMin * btVector3(1.f / m_localScaling[0], 1.f / m_localScaling[1], 1.f / m_localScaling[2]);
|
|
btVector3 localAabbMax = aabbMax * btVector3(1.f / m_localScaling[0], 1.f / m_localScaling[1], 1.f / m_localScaling[2]);
|
|
|
|
// account for local origin
|
|
localAabbMin += m_localOrigin;
|
|
localAabbMax += m_localOrigin;
|
|
|
|
//quantize the aabbMin and aabbMax, and adjust the start/end ranges
|
|
int quantizedAabbMin[3];
|
|
int quantizedAabbMax[3];
|
|
quantizeWithClamp(quantizedAabbMin, localAabbMin, 0);
|
|
quantizeWithClamp(quantizedAabbMax, localAabbMax, 1);
|
|
|
|
// expand the min/max quantized values
|
|
// this is to catch the case where the input aabb falls between grid points!
|
|
for (int i = 0; i < 3; ++i) {
|
|
quantizedAabbMin[i]--;
|
|
quantizedAabbMax[i]++;
|
|
}
|
|
|
|
int startX = 0;
|
|
int endX = m_heightStickWidth - 1;
|
|
int startJ = 0;
|
|
int endJ = m_heightStickLength - 1;
|
|
|
|
switch (m_upAxis)
|
|
{
|
|
case 0:
|
|
{
|
|
if (quantizedAabbMin[1] > startX)
|
|
startX = quantizedAabbMin[1];
|
|
if (quantizedAabbMax[1] < endX)
|
|
endX = quantizedAabbMax[1];
|
|
if (quantizedAabbMin[2] > startJ)
|
|
startJ = quantizedAabbMin[2];
|
|
if (quantizedAabbMax[2] < endJ)
|
|
endJ = quantizedAabbMax[2];
|
|
break;
|
|
}
|
|
case 1:
|
|
{
|
|
if (quantizedAabbMin[0] > startX)
|
|
startX = quantizedAabbMin[0];
|
|
if (quantizedAabbMax[0] < endX)
|
|
endX = quantizedAabbMax[0];
|
|
if (quantizedAabbMin[2] > startJ)
|
|
startJ = quantizedAabbMin[2];
|
|
if (quantizedAabbMax[2] < endJ)
|
|
endJ = quantizedAabbMax[2];
|
|
break;
|
|
};
|
|
case 2:
|
|
{
|
|
if (quantizedAabbMin[0] > startX)
|
|
startX = quantizedAabbMin[0];
|
|
if (quantizedAabbMax[0] < endX)
|
|
endX = quantizedAabbMax[0];
|
|
if (quantizedAabbMin[1] > startJ)
|
|
startJ = quantizedAabbMin[1];
|
|
if (quantizedAabbMax[1] < endJ)
|
|
endJ = quantizedAabbMax[1];
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
//need to get valid m_upAxis
|
|
btAssert(0);
|
|
}
|
|
}
|
|
|
|
for (int j = startJ; j < endJ; j++)
|
|
{
|
|
for (int x = startX; x < endX; x++)
|
|
{
|
|
U32 index = (m_heightStickLength - (m_heightStickLength - x - 1)) + (j * m_heightStickWidth);
|
|
|
|
if (mHoles && mHoles[getMax((S32)index - 1, 0)])
|
|
continue;
|
|
|
|
btVector3 vertices[3];
|
|
if (m_flipQuadEdges || (m_useDiamondSubdivision && !((j + x) & 1)) || (m_useZigzagSubdivision && !(j & 1)))
|
|
{
|
|
//first triangle
|
|
getVertex(x, j, vertices[0]);
|
|
getVertex(x, j + 1, vertices[1]);
|
|
getVertex(x + 1, j + 1, vertices[2]);
|
|
callback->processTriangle(vertices, x, j);
|
|
//second triangle
|
|
// getVertex(x,j,vertices[0]);//already got this vertex before, thanks to Danny Chapman
|
|
getVertex(x + 1, j + 1, vertices[1]);
|
|
getVertex(x + 1, j, vertices[2]);
|
|
callback->processTriangle(vertices, x, j);
|
|
}
|
|
else
|
|
{
|
|
//first triangle
|
|
getVertex(x, j, vertices[0]);
|
|
getVertex(x, j + 1, vertices[1]);
|
|
getVertex(x + 1, j, vertices[2]);
|
|
callback->processTriangle(vertices, x, j);
|
|
//second triangle
|
|
getVertex(x + 1, j, vertices[0]);
|
|
//getVertex(x,j+1,vertices[1]);
|
|
getVertex(x + 1, j + 1, vertices[2]);
|
|
callback->processTriangle(vertices, x, j);
|
|
}
|
|
}
|
|
}
|
|
} |