mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-21 13:14:46 +00:00
Added initial behavior for ImageAssets to hold a list of GFX resources of different texture profiles to avoid mem leaks with incorrect-typed usages Added function to ImageAsset to get best-fit asset, allowing for fallbacks if the requested assetID is not found Added function to ShapeAsset to get best-fit asset, allowing for fallbacks if the requested assetID is not found Disabled fields for dynamic and static shadowmap refresh rates Moved noShape model to core/rendering/shapes to place it in a more logical module position Added an include to avoid undefined type compile error and removed unneeded semicolon from zone code Added call to reload probe textures when a reloadTextures call is made Adjusted default directional light shadowmap settings to not be as extreme Added utility function to probe manager to allow any class to request a 'best fit' list of probes that would affect a given location, allowing other classes such as fog or particles to utilize IBL. Also updated probeManager's forward rendering to utilize same function to reduce code duplication. Shifted shape loader code to utilize assimp for loader consistency and testing Changed render bin used for SSAO postfx so it runs at the right time Made Core_Rendering module scan for assets Updated loose file references to a number of assets to follow proper formatting Refactored asset import code to follow a more consistent object heirarchy structure on importing assets, allowing more reliable cross-referencing between inbound items Updated asset import logic for materials/images so that they properly utilize ImageType. Images correctly save out the assigned image type, materials reference the images' type to know what map slot they should be used in. Importer logic also updated to better find-and-add associated images based on type. Cleaned up a bunch of old, outdated code in the asset importer Added initial handling for in-place importing of files without needing to process them through the UI. Added ability to edit module script from RMB context menu if torsion path is set Updated list field code for variable inspector to utilize correct ownerObject field
966 lines
34 KiB
C++
966 lines
34 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (assimp)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2020, assimp team
|
|
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file PlyLoader.cpp
|
|
* @brief Implementation of the PLY importer class
|
|
*/
|
|
|
|
#ifndef ASSIMP_BUILD_NO_PLY_IMPORTER
|
|
|
|
// internal headers
|
|
#include "PlyLoader.h"
|
|
#include <assimp/IOStreamBuffer.h>
|
|
#include <memory>
|
|
#include <assimp/IOSystem.hpp>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/importerdesc.h>
|
|
|
|
using namespace ::Assimp;
|
|
|
|
static const aiImporterDesc desc = {
|
|
"Stanford Polygon Library (PLY) Importer",
|
|
"",
|
|
"",
|
|
"",
|
|
aiImporterFlags_SupportBinaryFlavour | aiImporterFlags_SupportTextFlavour,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
"ply"
|
|
};
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Internal stuff
|
|
namespace {
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Checks that property index is within range
|
|
template <class T>
|
|
inline
|
|
const T &GetProperty(const std::vector<T> &props, int idx) {
|
|
if (static_cast<size_t>(idx) >= props.size()) {
|
|
throw DeadlyImportError("Invalid .ply file: Property index is out of range.");
|
|
}
|
|
|
|
return props[idx];
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructor to be privately used by Importer
|
|
PLYImporter::PLYImporter()
|
|
: mBuffer(nullptr)
|
|
, pcDOM(nullptr)
|
|
, mGeneratedMesh(nullptr) {
|
|
// empty
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor, private as well
|
|
PLYImporter::~PLYImporter() {
|
|
// empty
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns whether the class can handle the format of the given file.
|
|
bool PLYImporter::CanRead(const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const {
|
|
const std::string extension = GetExtension(pFile);
|
|
|
|
if ( extension == "ply" ) {
|
|
return true;
|
|
} else if (!extension.length() || checkSig) {
|
|
if ( !pIOHandler ) {
|
|
return true;
|
|
}
|
|
static const char* tokens[] = { "ply" };
|
|
return SearchFileHeaderForToken(pIOHandler, pFile, tokens, 1);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
const aiImporterDesc* PLYImporter::GetInfo() const {
|
|
return &desc;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
static bool isBigEndian(const char* szMe) {
|
|
ai_assert(nullptr != szMe);
|
|
|
|
// binary_little_endian
|
|
// binary_big_endian
|
|
bool isBigEndian(false);
|
|
#if (defined AI_BUILD_BIG_ENDIAN)
|
|
if ( 'l' == *szMe || 'L' == *szMe ) {
|
|
isBigEndian = true;
|
|
}
|
|
#else
|
|
if ('b' == *szMe || 'B' == *szMe) {
|
|
isBigEndian = true;
|
|
}
|
|
#endif // ! AI_BUILD_BIG_ENDIAN
|
|
|
|
return isBigEndian;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Imports the given file into the given scene structure.
|
|
void PLYImporter::InternReadFile(const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) {
|
|
const std::string mode = "rb";
|
|
std::unique_ptr<IOStream> fileStream(pIOHandler->Open(pFile, mode));
|
|
if (!fileStream.get()) {
|
|
throw DeadlyImportError("Failed to open file " + pFile + ".");
|
|
}
|
|
|
|
// Get the file-size
|
|
const size_t fileSize( fileStream->FileSize() );
|
|
if ( 0 == fileSize ) {
|
|
throw DeadlyImportError("File " + pFile + " is empty.");
|
|
}
|
|
|
|
IOStreamBuffer<char> streamedBuffer(1024 * 1024);
|
|
streamedBuffer.open(fileStream.get());
|
|
|
|
// the beginning of the file must be PLY - magic, magic
|
|
std::vector<char> headerCheck;
|
|
streamedBuffer.getNextLine(headerCheck);
|
|
|
|
if ((headerCheck.size() < 3) ||
|
|
(headerCheck[0] != 'P' && headerCheck[0] != 'p') ||
|
|
(headerCheck[1] != 'L' && headerCheck[1] != 'l') ||
|
|
(headerCheck[2] != 'Y' && headerCheck[2] != 'y') ) {
|
|
streamedBuffer.close();
|
|
throw DeadlyImportError("Invalid .ply file: Magic number \'ply\' is no there");
|
|
}
|
|
|
|
std::vector<char> mBuffer2;
|
|
streamedBuffer.getNextLine(mBuffer2);
|
|
mBuffer = (unsigned char*)&mBuffer2[0];
|
|
|
|
char* szMe = (char*)&this->mBuffer[0];
|
|
SkipSpacesAndLineEnd(szMe, (const char**)&szMe);
|
|
|
|
// determine the format of the file data and construct the aiMesh
|
|
PLY::DOM sPlyDom;
|
|
this->pcDOM = &sPlyDom;
|
|
|
|
if (TokenMatch(szMe, "format", 6)) {
|
|
if (TokenMatch(szMe, "ascii", 5)) {
|
|
SkipLine(szMe, (const char**)&szMe);
|
|
if (!PLY::DOM::ParseInstance(streamedBuffer, &sPlyDom, this)) {
|
|
if (mGeneratedMesh != nullptr) {
|
|
delete(mGeneratedMesh);
|
|
mGeneratedMesh = nullptr;
|
|
}
|
|
|
|
streamedBuffer.close();
|
|
throw DeadlyImportError("Invalid .ply file: Unable to build DOM (#1)");
|
|
}
|
|
} else if (!::strncmp(szMe, "binary_", 7)) {
|
|
szMe += 7;
|
|
const bool bIsBE(isBigEndian(szMe));
|
|
|
|
// skip the line, parse the rest of the header and build the DOM
|
|
if (!PLY::DOM::ParseInstanceBinary(streamedBuffer, &sPlyDom, this, bIsBE)) {
|
|
if (mGeneratedMesh != nullptr) {
|
|
delete(mGeneratedMesh);
|
|
mGeneratedMesh = nullptr;
|
|
}
|
|
|
|
streamedBuffer.close();
|
|
throw DeadlyImportError("Invalid .ply file: Unable to build DOM (#2)");
|
|
}
|
|
} else {
|
|
if (mGeneratedMesh != nullptr) {
|
|
delete(mGeneratedMesh);
|
|
mGeneratedMesh = nullptr;
|
|
}
|
|
|
|
streamedBuffer.close();
|
|
throw DeadlyImportError("Invalid .ply file: Unknown file format");
|
|
}
|
|
} else {
|
|
AI_DEBUG_INVALIDATE_PTR(this->mBuffer);
|
|
if (mGeneratedMesh != nullptr) {
|
|
delete(mGeneratedMesh);
|
|
mGeneratedMesh = nullptr;
|
|
}
|
|
|
|
streamedBuffer.close();
|
|
throw DeadlyImportError("Invalid .ply file: Missing format specification");
|
|
}
|
|
|
|
//free the file buffer
|
|
streamedBuffer.close();
|
|
|
|
if (mGeneratedMesh == nullptr) {
|
|
throw DeadlyImportError("Invalid .ply file: Unable to extract mesh data ");
|
|
}
|
|
|
|
// if no face list is existing we assume that the vertex
|
|
// list is containing a list of points
|
|
bool pointsOnly = mGeneratedMesh->mFaces == nullptr ? true : false;
|
|
if (pointsOnly) {
|
|
mGeneratedMesh->mPrimitiveTypes = aiPrimitiveType::aiPrimitiveType_POINT;
|
|
}
|
|
|
|
// now load a list of all materials
|
|
std::vector<aiMaterial*> avMaterials;
|
|
std::string defaultTexture;
|
|
LoadMaterial(&avMaterials, defaultTexture, pointsOnly);
|
|
|
|
// now generate the output scene object. Fill the material list
|
|
pScene->mNumMaterials = (unsigned int)avMaterials.size();
|
|
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials];
|
|
for (unsigned int i = 0; i < pScene->mNumMaterials; ++i) {
|
|
pScene->mMaterials[i] = avMaterials[i];
|
|
}
|
|
|
|
// fill the mesh list
|
|
pScene->mNumMeshes = 1;
|
|
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
|
|
pScene->mMeshes[0] = mGeneratedMesh;
|
|
mGeneratedMesh = nullptr;
|
|
|
|
// generate a simple node structure
|
|
pScene->mRootNode = new aiNode();
|
|
pScene->mRootNode->mNumMeshes = pScene->mNumMeshes;
|
|
pScene->mRootNode->mMeshes = new unsigned int[pScene->mNumMeshes];
|
|
|
|
for (unsigned int i = 0; i < pScene->mRootNode->mNumMeshes; ++i) {
|
|
pScene->mRootNode->mMeshes[i] = i;
|
|
}
|
|
}
|
|
|
|
void PLYImporter::LoadVertex(const PLY::Element* pcElement, const PLY::ElementInstance* instElement, unsigned int pos) {
|
|
ai_assert(nullptr != pcElement);
|
|
ai_assert(nullptr != instElement);
|
|
|
|
ai_uint aiPositions[3] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
|
|
PLY::EDataType aiTypes[3] = { EDT_Char, EDT_Char, EDT_Char };
|
|
|
|
ai_uint aiNormal[3] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
|
|
PLY::EDataType aiNormalTypes[3] = { EDT_Char, EDT_Char, EDT_Char };
|
|
|
|
unsigned int aiColors[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
|
|
PLY::EDataType aiColorsTypes[4] = { EDT_Char, EDT_Char, EDT_Char, EDT_Char };
|
|
|
|
unsigned int aiTexcoord[2] = { 0xFFFFFFFF, 0xFFFFFFFF };
|
|
PLY::EDataType aiTexcoordTypes[2] = { EDT_Char, EDT_Char };
|
|
|
|
// now check whether which normal components are available
|
|
unsigned int _a( 0 ), cnt( 0 );
|
|
for ( std::vector<PLY::Property>::const_iterator a = pcElement->alProperties.begin();
|
|
a != pcElement->alProperties.end(); ++a, ++_a) {
|
|
if ((*a).bIsList) {
|
|
continue;
|
|
}
|
|
|
|
// Positions
|
|
if (PLY::EST_XCoord == (*a).Semantic) {
|
|
++cnt;
|
|
aiPositions[0] = _a;
|
|
aiTypes[0] = (*a).eType;
|
|
} else if (PLY::EST_YCoord == (*a).Semantic) {
|
|
++cnt;
|
|
aiPositions[1] = _a;
|
|
aiTypes[1] = (*a).eType;
|
|
} else if (PLY::EST_ZCoord == (*a).Semantic) {
|
|
++cnt;
|
|
aiPositions[2] = _a;
|
|
aiTypes[2] = (*a).eType;
|
|
} else if (PLY::EST_XNormal == (*a).Semantic) {
|
|
// Normals
|
|
++cnt;
|
|
aiNormal[0] = _a;
|
|
aiNormalTypes[0] = (*a).eType;
|
|
} else if (PLY::EST_YNormal == (*a).Semantic) {
|
|
++cnt;
|
|
aiNormal[1] = _a;
|
|
aiNormalTypes[1] = (*a).eType;
|
|
} else if (PLY::EST_ZNormal == (*a).Semantic) {
|
|
++cnt;
|
|
aiNormal[2] = _a;
|
|
aiNormalTypes[2] = (*a).eType;
|
|
} else if (PLY::EST_Red == (*a).Semantic) {
|
|
// Colors
|
|
++cnt;
|
|
aiColors[0] = _a;
|
|
aiColorsTypes[0] = (*a).eType;
|
|
} else if (PLY::EST_Green == (*a).Semantic) {
|
|
++cnt;
|
|
aiColors[1] = _a;
|
|
aiColorsTypes[1] = (*a).eType;
|
|
} else if (PLY::EST_Blue == (*a).Semantic) {
|
|
++cnt;
|
|
aiColors[2] = _a;
|
|
aiColorsTypes[2] = (*a).eType;
|
|
} else if (PLY::EST_Alpha == (*a).Semantic) {
|
|
++cnt;
|
|
aiColors[3] = _a;
|
|
aiColorsTypes[3] = (*a).eType;
|
|
} else if (PLY::EST_UTextureCoord == (*a).Semantic) {
|
|
// Texture coordinates
|
|
++cnt;
|
|
aiTexcoord[0] = _a;
|
|
aiTexcoordTypes[0] = (*a).eType;
|
|
} else if (PLY::EST_VTextureCoord == (*a).Semantic) {
|
|
++cnt;
|
|
aiTexcoord[1] = _a;
|
|
aiTexcoordTypes[1] = (*a).eType;
|
|
}
|
|
}
|
|
|
|
// check whether we have a valid source for the vertex data
|
|
if (0 != cnt) {
|
|
// Position
|
|
aiVector3D vOut;
|
|
if (0xFFFFFFFF != aiPositions[0]) {
|
|
vOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiPositions[0]).avList.front(), aiTypes[0]);
|
|
}
|
|
|
|
if (0xFFFFFFFF != aiPositions[1]) {
|
|
vOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiPositions[1]).avList.front(), aiTypes[1]);
|
|
}
|
|
|
|
if (0xFFFFFFFF != aiPositions[2]) {
|
|
vOut.z = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiPositions[2]).avList.front(), aiTypes[2]);
|
|
}
|
|
|
|
// Normals
|
|
aiVector3D nOut;
|
|
bool haveNormal = false;
|
|
if (0xFFFFFFFF != aiNormal[0]) {
|
|
nOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiNormal[0]).avList.front(), aiNormalTypes[0]);
|
|
haveNormal = true;
|
|
}
|
|
|
|
if (0xFFFFFFFF != aiNormal[1]) {
|
|
nOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiNormal[1]).avList.front(), aiNormalTypes[1]);
|
|
haveNormal = true;
|
|
}
|
|
|
|
if (0xFFFFFFFF != aiNormal[2]) {
|
|
nOut.z = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiNormal[2]).avList.front(), aiNormalTypes[2]);
|
|
haveNormal = true;
|
|
}
|
|
|
|
//Colors
|
|
aiColor4D cOut;
|
|
bool haveColor = false;
|
|
if (0xFFFFFFFF != aiColors[0]) {
|
|
cOut.r = NormalizeColorValue(GetProperty(instElement->alProperties,
|
|
aiColors[0]).avList.front(), aiColorsTypes[0]);
|
|
haveColor = true;
|
|
}
|
|
|
|
if (0xFFFFFFFF != aiColors[1]) {
|
|
cOut.g = NormalizeColorValue(GetProperty(instElement->alProperties,
|
|
aiColors[1]).avList.front(), aiColorsTypes[1]);
|
|
haveColor = true;
|
|
}
|
|
|
|
if (0xFFFFFFFF != aiColors[2]) {
|
|
cOut.b = NormalizeColorValue(GetProperty(instElement->alProperties,
|
|
aiColors[2]).avList.front(), aiColorsTypes[2]);
|
|
haveColor = true;
|
|
}
|
|
|
|
// assume 1.0 for the alpha channel if it is not set
|
|
if (0xFFFFFFFF == aiColors[3]) {
|
|
cOut.a = 1.0;
|
|
} else {
|
|
cOut.a = NormalizeColorValue(GetProperty(instElement->alProperties,
|
|
aiColors[3]).avList.front(), aiColorsTypes[3]);
|
|
|
|
haveColor = true;
|
|
}
|
|
|
|
//Texture coordinates
|
|
aiVector3D tOut;
|
|
tOut.z = 0;
|
|
bool haveTextureCoords = false;
|
|
if (0xFFFFFFFF != aiTexcoord[0]) {
|
|
tOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiTexcoord[0]).avList.front(), aiTexcoordTypes[0]);
|
|
haveTextureCoords = true;
|
|
}
|
|
|
|
if (0xFFFFFFFF != aiTexcoord[1]) {
|
|
tOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiTexcoord[1]).avList.front(), aiTexcoordTypes[1]);
|
|
haveTextureCoords = true;
|
|
}
|
|
|
|
//create aiMesh if needed
|
|
if ( nullptr == mGeneratedMesh ) {
|
|
mGeneratedMesh = new aiMesh();
|
|
mGeneratedMesh->mMaterialIndex = 0;
|
|
}
|
|
|
|
if (nullptr == mGeneratedMesh->mVertices) {
|
|
mGeneratedMesh->mNumVertices = pcElement->NumOccur;
|
|
mGeneratedMesh->mVertices = new aiVector3D[mGeneratedMesh->mNumVertices];
|
|
}
|
|
|
|
mGeneratedMesh->mVertices[pos] = vOut;
|
|
|
|
if (haveNormal) {
|
|
if (nullptr == mGeneratedMesh->mNormals)
|
|
mGeneratedMesh->mNormals = new aiVector3D[mGeneratedMesh->mNumVertices];
|
|
mGeneratedMesh->mNormals[pos] = nOut;
|
|
}
|
|
|
|
if (haveColor) {
|
|
if (nullptr == mGeneratedMesh->mColors[0])
|
|
mGeneratedMesh->mColors[0] = new aiColor4D[mGeneratedMesh->mNumVertices];
|
|
mGeneratedMesh->mColors[0][pos] = cOut;
|
|
}
|
|
|
|
if (haveTextureCoords) {
|
|
if (nullptr == mGeneratedMesh->mTextureCoords[0]) {
|
|
mGeneratedMesh->mNumUVComponents[0] = 2;
|
|
mGeneratedMesh->mTextureCoords[0] = new aiVector3D[mGeneratedMesh->mNumVertices];
|
|
}
|
|
mGeneratedMesh->mTextureCoords[0][pos] = tOut;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Convert a color component to [0...1]
|
|
ai_real PLYImporter::NormalizeColorValue(PLY::PropertyInstance::ValueUnion val, PLY::EDataType eType) {
|
|
switch (eType) {
|
|
case EDT_Float:
|
|
return val.fFloat;
|
|
case EDT_Double:
|
|
return (ai_real)val.fDouble;
|
|
case EDT_UChar:
|
|
return (ai_real)val.iUInt / (ai_real)0xFF;
|
|
case EDT_Char:
|
|
return (ai_real)(val.iInt + (0xFF / 2)) / (ai_real)0xFF;
|
|
case EDT_UShort:
|
|
return (ai_real)val.iUInt / (ai_real)0xFFFF;
|
|
case EDT_Short:
|
|
return (ai_real)(val.iInt + (0xFFFF / 2)) / (ai_real)0xFFFF;
|
|
case EDT_UInt:
|
|
return (ai_real)val.iUInt / (ai_real)0xFFFF;
|
|
case EDT_Int:
|
|
return ((ai_real)val.iInt / (ai_real)0xFF) + 0.5f;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0.0f;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Try to extract proper faces from the PLY DOM
|
|
void PLYImporter::LoadFace(const PLY::Element* pcElement, const PLY::ElementInstance* instElement,
|
|
unsigned int pos) {
|
|
ai_assert(nullptr != pcElement);
|
|
ai_assert(nullptr != instElement);
|
|
|
|
if (mGeneratedMesh == nullptr) {
|
|
throw DeadlyImportError("Invalid .ply file: Vertices should be declared before faces");
|
|
}
|
|
|
|
bool bOne = false;
|
|
|
|
// index of the vertex index list
|
|
unsigned int iProperty = 0xFFFFFFFF;
|
|
PLY::EDataType eType = EDT_Char;
|
|
bool bIsTriStrip = false;
|
|
|
|
// index of the material index property
|
|
//unsigned int iMaterialIndex = 0xFFFFFFFF;
|
|
//PLY::EDataType eType2 = EDT_Char;
|
|
|
|
// texture coordinates
|
|
unsigned int iTextureCoord = 0xFFFFFFFF;
|
|
PLY::EDataType eType3 = EDT_Char;
|
|
|
|
// face = unique number of vertex indices
|
|
if (PLY::EEST_Face == pcElement->eSemantic) {
|
|
unsigned int _a = 0;
|
|
for (std::vector<PLY::Property>::const_iterator a = pcElement->alProperties.begin();
|
|
a != pcElement->alProperties.end(); ++a, ++_a) {
|
|
if (PLY::EST_VertexIndex == (*a).Semantic) {
|
|
// must be a dynamic list!
|
|
if (!(*a).bIsList) {
|
|
continue;
|
|
}
|
|
|
|
iProperty = _a;
|
|
bOne = true;
|
|
eType = (*a).eType;
|
|
} else if (PLY::EST_TextureCoordinates == (*a).Semantic) {
|
|
// must be a dynamic list!
|
|
if (!(*a).bIsList) {
|
|
continue;
|
|
}
|
|
iTextureCoord = _a;
|
|
bOne = true;
|
|
eType3 = (*a).eType;
|
|
}
|
|
}
|
|
}
|
|
// triangle strip
|
|
// TODO: triangle strip and material index support???
|
|
else if (PLY::EEST_TriStrip == pcElement->eSemantic) {
|
|
unsigned int _a = 0;
|
|
for (std::vector<PLY::Property>::const_iterator a = pcElement->alProperties.begin();
|
|
a != pcElement->alProperties.end(); ++a, ++_a) {
|
|
// must be a dynamic list!
|
|
if (!(*a).bIsList) {
|
|
continue;
|
|
}
|
|
iProperty = _a;
|
|
bOne = true;
|
|
bIsTriStrip = true;
|
|
eType = (*a).eType;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// check whether we have at least one per-face information set
|
|
if (bOne) {
|
|
if (mGeneratedMesh->mFaces == nullptr) {
|
|
mGeneratedMesh->mNumFaces = pcElement->NumOccur;
|
|
mGeneratedMesh->mFaces = new aiFace[mGeneratedMesh->mNumFaces];
|
|
}
|
|
|
|
if (!bIsTriStrip) {
|
|
// parse the list of vertex indices
|
|
if (0xFFFFFFFF != iProperty) {
|
|
const unsigned int iNum = (unsigned int)GetProperty(instElement->alProperties, iProperty).avList.size();
|
|
mGeneratedMesh->mFaces[pos].mNumIndices = iNum;
|
|
mGeneratedMesh->mFaces[pos].mIndices = new unsigned int[iNum];
|
|
|
|
std::vector<PLY::PropertyInstance::ValueUnion>::const_iterator p =
|
|
GetProperty(instElement->alProperties, iProperty).avList.begin();
|
|
|
|
for (unsigned int a = 0; a < iNum; ++a, ++p) {
|
|
mGeneratedMesh->mFaces[pos].mIndices[a] = PLY::PropertyInstance::ConvertTo<unsigned int>(*p, eType);
|
|
}
|
|
}
|
|
|
|
// parse the material index
|
|
// cannot be handled without processing the whole file first
|
|
/*if (0xFFFFFFFF != iMaterialIndex)
|
|
{
|
|
mGeneratedMesh->mFaces[pos]. = PLY::PropertyInstance::ConvertTo<unsigned int>(
|
|
GetProperty(instElement->alProperties, iMaterialIndex).avList.front(), eType2);
|
|
}*/
|
|
|
|
if (0xFFFFFFFF != iTextureCoord) {
|
|
const unsigned int iNum = (unsigned int)GetProperty(instElement->alProperties, iTextureCoord).avList.size();
|
|
|
|
//should be 6 coords
|
|
std::vector<PLY::PropertyInstance::ValueUnion>::const_iterator p =
|
|
GetProperty(instElement->alProperties, iTextureCoord).avList.begin();
|
|
|
|
if ((iNum / 3) == 2) // X Y coord
|
|
{
|
|
for (unsigned int a = 0; a < iNum; ++a, ++p) {
|
|
unsigned int vindex = mGeneratedMesh->mFaces[pos].mIndices[a / 2];
|
|
if (vindex < mGeneratedMesh->mNumVertices) {
|
|
if (mGeneratedMesh->mTextureCoords[0] == nullptr ) {
|
|
mGeneratedMesh->mNumUVComponents[0] = 2;
|
|
mGeneratedMesh->mTextureCoords[0] = new aiVector3D[mGeneratedMesh->mNumVertices];
|
|
}
|
|
|
|
if (a % 2 == 0) {
|
|
mGeneratedMesh->mTextureCoords[0][vindex].x = PLY::PropertyInstance::ConvertTo<ai_real>(*p, eType3);
|
|
} else {
|
|
mGeneratedMesh->mTextureCoords[0][vindex].y = PLY::PropertyInstance::ConvertTo<ai_real>(*p, eType3);
|
|
}
|
|
|
|
mGeneratedMesh->mTextureCoords[0][vindex].z = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else { // triangle strips
|
|
// normally we have only one triangle strip instance where
|
|
// a value of -1 indicates a restart of the strip
|
|
bool flip = false;
|
|
const std::vector<PLY::PropertyInstance::ValueUnion>& quak = GetProperty(instElement->alProperties, iProperty).avList;
|
|
//pvOut->reserve(pvOut->size() + quak.size() + (quak.size()>>2u)); //Limits memory consumption
|
|
|
|
int aiTable[2] = { -1, -1 };
|
|
for (std::vector<PLY::PropertyInstance::ValueUnion>::const_iterator a = quak.begin(); a != quak.end(); ++a) {
|
|
const int p = PLY::PropertyInstance::ConvertTo<int>(*a, eType);
|
|
|
|
if (-1 == p) {
|
|
// restart the strip ...
|
|
aiTable[0] = aiTable[1] = -1;
|
|
flip = false;
|
|
continue;
|
|
}
|
|
if (-1 == aiTable[0]) {
|
|
aiTable[0] = p;
|
|
continue;
|
|
}
|
|
if (-1 == aiTable[1]) {
|
|
aiTable[1] = p;
|
|
continue;
|
|
}
|
|
|
|
if (mGeneratedMesh->mFaces == nullptr) {
|
|
mGeneratedMesh->mNumFaces = pcElement->NumOccur;
|
|
mGeneratedMesh->mFaces = new aiFace[mGeneratedMesh->mNumFaces];
|
|
}
|
|
|
|
mGeneratedMesh->mFaces[pos].mNumIndices = 3;
|
|
mGeneratedMesh->mFaces[pos].mIndices = new unsigned int[3];
|
|
mGeneratedMesh->mFaces[pos].mIndices[0] = aiTable[0];
|
|
mGeneratedMesh->mFaces[pos].mIndices[1] = aiTable[1];
|
|
mGeneratedMesh->mFaces[pos].mIndices[2] = p;
|
|
|
|
// every second pass swap the indices.
|
|
flip = !flip;
|
|
if ( flip ) {
|
|
std::swap(mGeneratedMesh->mFaces[pos].mIndices[0], mGeneratedMesh->mFaces[pos].mIndices[1]);
|
|
}
|
|
|
|
aiTable[0] = aiTable[1];
|
|
aiTable[1] = p;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Get a RGBA color in [0...1] range
|
|
void PLYImporter::GetMaterialColor(const std::vector<PLY::PropertyInstance>& avList,
|
|
unsigned int aiPositions[4],
|
|
PLY::EDataType aiTypes[4],
|
|
aiColor4D* clrOut)
|
|
{
|
|
ai_assert(NULL != clrOut);
|
|
|
|
if (0xFFFFFFFF == aiPositions[0])clrOut->r = 0.0f;
|
|
else
|
|
{
|
|
clrOut->r = NormalizeColorValue(GetProperty(avList,
|
|
aiPositions[0]).avList.front(), aiTypes[0]);
|
|
}
|
|
|
|
if (0xFFFFFFFF == aiPositions[1])clrOut->g = 0.0f;
|
|
else
|
|
{
|
|
clrOut->g = NormalizeColorValue(GetProperty(avList,
|
|
aiPositions[1]).avList.front(), aiTypes[1]);
|
|
}
|
|
|
|
if (0xFFFFFFFF == aiPositions[2])clrOut->b = 0.0f;
|
|
else
|
|
{
|
|
clrOut->b = NormalizeColorValue(GetProperty(avList,
|
|
aiPositions[2]).avList.front(), aiTypes[2]);
|
|
}
|
|
|
|
// assume 1.0 for the alpha channel ifit is not set
|
|
if (0xFFFFFFFF == aiPositions[3])clrOut->a = 1.0f;
|
|
else
|
|
{
|
|
clrOut->a = NormalizeColorValue(GetProperty(avList,
|
|
aiPositions[3]).avList.front(), aiTypes[3]);
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Extract a material from the PLY DOM
|
|
void PLYImporter::LoadMaterial(std::vector<aiMaterial*>* pvOut, std::string &defaultTexture, const bool pointsOnly)
|
|
{
|
|
ai_assert(NULL != pvOut);
|
|
|
|
// diffuse[4], specular[4], ambient[4]
|
|
// rgba order
|
|
unsigned int aaiPositions[3][4] = {
|
|
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
};
|
|
|
|
PLY::EDataType aaiTypes[3][4] = {
|
|
{ EDT_Char, EDT_Char, EDT_Char, EDT_Char },
|
|
{ EDT_Char, EDT_Char, EDT_Char, EDT_Char },
|
|
{ EDT_Char, EDT_Char, EDT_Char, EDT_Char }
|
|
};
|
|
PLY::ElementInstanceList* pcList = NULL;
|
|
|
|
unsigned int iPhong = 0xFFFFFFFF;
|
|
PLY::EDataType ePhong = EDT_Char;
|
|
|
|
unsigned int iOpacity = 0xFFFFFFFF;
|
|
PLY::EDataType eOpacity = EDT_Char;
|
|
|
|
// search in the DOM for a vertex entry
|
|
unsigned int _i = 0;
|
|
for (std::vector<PLY::Element>::const_iterator i = this->pcDOM->alElements.begin();
|
|
i != this->pcDOM->alElements.end(); ++i, ++_i)
|
|
{
|
|
if (PLY::EEST_Material == (*i).eSemantic)
|
|
{
|
|
pcList = &this->pcDOM->alElementData[_i];
|
|
|
|
// now check whether which coordinate sets are available
|
|
unsigned int _a = 0;
|
|
for (std::vector<PLY::Property>::const_iterator
|
|
a = (*i).alProperties.begin();
|
|
a != (*i).alProperties.end(); ++a, ++_a)
|
|
{
|
|
if ((*a).bIsList)continue;
|
|
|
|
// pohng specularity -----------------------------------
|
|
if (PLY::EST_PhongPower == (*a).Semantic)
|
|
{
|
|
iPhong = _a;
|
|
ePhong = (*a).eType;
|
|
}
|
|
|
|
// general opacity -----------------------------------
|
|
if (PLY::EST_Opacity == (*a).Semantic)
|
|
{
|
|
iOpacity = _a;
|
|
eOpacity = (*a).eType;
|
|
}
|
|
|
|
// diffuse color channels -----------------------------------
|
|
if (PLY::EST_DiffuseRed == (*a).Semantic)
|
|
{
|
|
aaiPositions[0][0] = _a;
|
|
aaiTypes[0][0] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_DiffuseGreen == (*a).Semantic)
|
|
{
|
|
aaiPositions[0][1] = _a;
|
|
aaiTypes[0][1] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_DiffuseBlue == (*a).Semantic)
|
|
{
|
|
aaiPositions[0][2] = _a;
|
|
aaiTypes[0][2] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_DiffuseAlpha == (*a).Semantic)
|
|
{
|
|
aaiPositions[0][3] = _a;
|
|
aaiTypes[0][3] = (*a).eType;
|
|
}
|
|
// specular color channels -----------------------------------
|
|
else if (PLY::EST_SpecularRed == (*a).Semantic)
|
|
{
|
|
aaiPositions[1][0] = _a;
|
|
aaiTypes[1][0] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_SpecularGreen == (*a).Semantic)
|
|
{
|
|
aaiPositions[1][1] = _a;
|
|
aaiTypes[1][1] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_SpecularBlue == (*a).Semantic)
|
|
{
|
|
aaiPositions[1][2] = _a;
|
|
aaiTypes[1][2] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_SpecularAlpha == (*a).Semantic)
|
|
{
|
|
aaiPositions[1][3] = _a;
|
|
aaiTypes[1][3] = (*a).eType;
|
|
}
|
|
// ambient color channels -----------------------------------
|
|
else if (PLY::EST_AmbientRed == (*a).Semantic)
|
|
{
|
|
aaiPositions[2][0] = _a;
|
|
aaiTypes[2][0] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_AmbientGreen == (*a).Semantic)
|
|
{
|
|
aaiPositions[2][1] = _a;
|
|
aaiTypes[2][1] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_AmbientBlue == (*a).Semantic)
|
|
{
|
|
aaiPositions[2][2] = _a;
|
|
aaiTypes[2][2] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_AmbientAlpha == (*a).Semantic)
|
|
{
|
|
aaiPositions[2][3] = _a;
|
|
aaiTypes[2][3] = (*a).eType;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
else if (PLY::EEST_TextureFile == (*i).eSemantic)
|
|
{
|
|
defaultTexture = (*i).szName;
|
|
}
|
|
}
|
|
// check whether we have a valid source for the material data
|
|
if (NULL != pcList) {
|
|
for (std::vector<ElementInstance>::const_iterator i = pcList->alInstances.begin(); i != pcList->alInstances.end(); ++i) {
|
|
aiColor4D clrOut;
|
|
aiMaterial* pcHelper = new aiMaterial();
|
|
|
|
// build the diffuse material color
|
|
GetMaterialColor((*i).alProperties, aaiPositions[0], aaiTypes[0], &clrOut);
|
|
pcHelper->AddProperty<aiColor4D>(&clrOut, 1, AI_MATKEY_COLOR_DIFFUSE);
|
|
|
|
// build the specular material color
|
|
GetMaterialColor((*i).alProperties, aaiPositions[1], aaiTypes[1], &clrOut);
|
|
pcHelper->AddProperty<aiColor4D>(&clrOut, 1, AI_MATKEY_COLOR_SPECULAR);
|
|
|
|
// build the ambient material color
|
|
GetMaterialColor((*i).alProperties, aaiPositions[2], aaiTypes[2], &clrOut);
|
|
pcHelper->AddProperty<aiColor4D>(&clrOut, 1, AI_MATKEY_COLOR_AMBIENT);
|
|
|
|
// handle phong power and shading mode
|
|
int iMode = (int)aiShadingMode_Gouraud;
|
|
if (0xFFFFFFFF != iPhong) {
|
|
ai_real fSpec = PLY::PropertyInstance::ConvertTo<ai_real>(GetProperty((*i).alProperties, iPhong).avList.front(), ePhong);
|
|
|
|
// if shininess is 0 (and the pow() calculation would therefore always
|
|
// become 1, not depending on the angle), use gouraud lighting
|
|
if (fSpec) {
|
|
// scale this with 15 ... hopefully this is correct
|
|
fSpec *= 15;
|
|
pcHelper->AddProperty<ai_real>(&fSpec, 1, AI_MATKEY_SHININESS);
|
|
|
|
iMode = (int)aiShadingMode_Phong;
|
|
}
|
|
}
|
|
pcHelper->AddProperty<int>(&iMode, 1, AI_MATKEY_SHADING_MODEL);
|
|
|
|
// handle opacity
|
|
if (0xFFFFFFFF != iOpacity) {
|
|
ai_real fOpacity = PLY::PropertyInstance::ConvertTo<ai_real>(GetProperty((*i).alProperties, iPhong).avList.front(), eOpacity);
|
|
pcHelper->AddProperty<ai_real>(&fOpacity, 1, AI_MATKEY_OPACITY);
|
|
}
|
|
|
|
// The face order is absolutely undefined for PLY, so we have to
|
|
// use two-sided rendering to be sure it's ok.
|
|
const int two_sided = 1;
|
|
pcHelper->AddProperty(&two_sided, 1, AI_MATKEY_TWOSIDED);
|
|
|
|
//default texture
|
|
if (!defaultTexture.empty())
|
|
{
|
|
const aiString name(defaultTexture.c_str());
|
|
pcHelper->AddProperty(&name, _AI_MATKEY_TEXTURE_BASE, aiTextureType_DIFFUSE, 0);
|
|
}
|
|
|
|
if (!pointsOnly)
|
|
{
|
|
const int two_sided = 1;
|
|
pcHelper->AddProperty(&two_sided, 1, AI_MATKEY_TWOSIDED);
|
|
}
|
|
|
|
//set to wireframe, so when using this material info we can switch to points rendering
|
|
if (pointsOnly)
|
|
{
|
|
const int wireframe = 1;
|
|
pcHelper->AddProperty(&wireframe, 1, AI_MATKEY_ENABLE_WIREFRAME);
|
|
}
|
|
|
|
// add the newly created material instance to the list
|
|
pvOut->push_back(pcHelper);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// generate a default material
|
|
aiMaterial* pcHelper = new aiMaterial();
|
|
|
|
// fill in a default material
|
|
int iMode = (int)aiShadingMode_Gouraud;
|
|
pcHelper->AddProperty<int>(&iMode, 1, AI_MATKEY_SHADING_MODEL);
|
|
|
|
//generate white material most 3D engine just multiply ambient / diffuse color with actual ambient / light color
|
|
aiColor3D clr;
|
|
clr.b = clr.g = clr.r = 1.0f;
|
|
pcHelper->AddProperty<aiColor3D>(&clr, 1, AI_MATKEY_COLOR_DIFFUSE);
|
|
pcHelper->AddProperty<aiColor3D>(&clr, 1, AI_MATKEY_COLOR_SPECULAR);
|
|
|
|
clr.b = clr.g = clr.r = 1.0f;
|
|
pcHelper->AddProperty<aiColor3D>(&clr, 1, AI_MATKEY_COLOR_AMBIENT);
|
|
|
|
// The face order is absolutely undefined for PLY, so we have to
|
|
// use two-sided rendering to be sure it's ok.
|
|
if (!pointsOnly)
|
|
{
|
|
const int two_sided = 1;
|
|
pcHelper->AddProperty(&two_sided, 1, AI_MATKEY_TWOSIDED);
|
|
}
|
|
|
|
//default texture
|
|
if (!defaultTexture.empty())
|
|
{
|
|
const aiString name(defaultTexture.c_str());
|
|
pcHelper->AddProperty(&name, _AI_MATKEY_TEXTURE_BASE, aiTextureType_DIFFUSE, 0);
|
|
}
|
|
|
|
//set to wireframe, so when using this material info we can switch to points rendering
|
|
if (pointsOnly)
|
|
{
|
|
const int wireframe = 1;
|
|
pcHelper->AddProperty(&wireframe, 1, AI_MATKEY_ENABLE_WIREFRAME);
|
|
}
|
|
|
|
pvOut->push_back(pcHelper);
|
|
}
|
|
}
|
|
|
|
#endif // !! ASSIMP_BUILD_NO_PLY_IMPORTER
|