Torque3D/Engine/source/collision/clippedPolyList.cpp
2012-11-08 16:56:22 -05:00

481 lines
14 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "collision/clippedPolyList.h"
#include "math/mMath.h"
#include "console/console.h"
#include "platform/profiler.h"
#include "core/tAlgorithm.h"
bool ClippedPolyList::allowClipping = true;
//----------------------------------------------------------------------------
ClippedPolyList::ClippedPolyList()
: mNormal( Point3F::Zero ),
mNormalTolCosineRadians( 0.0f )
{
VECTOR_SET_ASSOCIATION(mPolyList);
VECTOR_SET_ASSOCIATION(mVertexList);
VECTOR_SET_ASSOCIATION(mIndexList);
VECTOR_SET_ASSOCIATION(mPolyPlaneList);
VECTOR_SET_ASSOCIATION(mPlaneList);
VECTOR_SET_ASSOCIATION(mNormalList);
mIndexList.reserve(IndexListReserveSize);
}
ClippedPolyList::~ClippedPolyList()
{
}
//----------------------------------------------------------------------------
void ClippedPolyList::clear()
{
// Only clears internal data
mPolyList.clear();
mVertexList.clear();
mIndexList.clear();
mPolyPlaneList.clear();
mNormalList.clear();
}
bool ClippedPolyList::isEmpty() const
{
return mPolyList.size() == 0;
}
//----------------------------------------------------------------------------
U32 ClippedPolyList::addPoint(const Point3F& p)
{
return addPointAndNormal( p, Point3F::Zero );
}
U32 ClippedPolyList::addPointAndNormal(const Point3F& p, const Point3F& normal)
{
mVertexList.increment();
Vertex& v = mVertexList.last();
v.point.x = p.x * mScale.x;
v.point.y = p.y * mScale.y;
v.point.z = p.z * mScale.z;
mMatrix.mulP(v.point);
mNormalList.increment();
VectorF& n = mNormalList.last();
n = normal;
if ( !n.isZero() )
mMatrix.mulV(n);
AssertFatal(mNormalList.size() == mVertexList.size(), "Normals count does not match vertex count!");
// Build the plane mask
register U32 mask = 1;
register S32 count = mPlaneList.size();
register PlaneF * plane = mPlaneList.address();
v.mask = 0;
while(--count >= 0) {
if (plane++->distToPlane(v.point) > 0)
v.mask |= mask;
mask <<= 1;
}
return mVertexList.size() - 1;
}
U32 ClippedPolyList::addPlane(const PlaneF& plane)
{
mPolyPlaneList.increment();
mPlaneTransformer.transform(plane, mPolyPlaneList.last());
return mPolyPlaneList.size() - 1;
}
//----------------------------------------------------------------------------
void ClippedPolyList::begin(BaseMatInstance* material,U32 surfaceKey)
{
mPolyList.increment();
Poly& poly = mPolyList.last();
poly.object = mCurrObject;
poly.material = material;
poly.vertexStart = mIndexList.size();
poly.surfaceKey = surfaceKey;
poly.polyFlags = 0;
if(ClippedPolyList::allowClipping)
poly.polyFlags = CLIPPEDPOLYLIST_FLAG_ALLOWCLIPPING;
}
//----------------------------------------------------------------------------
void ClippedPolyList::plane(U32 v1,U32 v2,U32 v3)
{
mPolyList.last().plane.set(mVertexList[v1].point,
mVertexList[v2].point,mVertexList[v3].point);
}
void ClippedPolyList::plane(const PlaneF& p)
{
mPlaneTransformer.transform(p, mPolyList.last().plane);
}
void ClippedPolyList::plane(const U32 index)
{
AssertFatal(index < mPolyPlaneList.size(), "Out of bounds index!");
mPolyList.last().plane = mPolyPlaneList[index];
}
const PlaneF& ClippedPolyList::getIndexedPlane(const U32 index)
{
AssertFatal(index < mPolyPlaneList.size(), "Out of bounds index!");
return mPolyPlaneList[index];
}
//----------------------------------------------------------------------------
void ClippedPolyList::vertex(U32 vi)
{
mIndexList.push_back(vi);
}
//----------------------------------------------------------------------------
void ClippedPolyList::end()
{
PROFILE_SCOPE( ClippedPolyList_Clip );
Poly& poly = mPolyList.last();
// Reject polygons facing away from our normal.
if ( mDot( poly.plane, mNormal ) < mNormalTolCosineRadians )
{
mIndexList.setSize(poly.vertexStart);
mPolyList.decrement();
return;
}
// Build initial inside/outside plane masks
U32 indexStart = poly.vertexStart;
U32 vertexCount = mIndexList.size() - indexStart;
U32 frontMask = 0,backMask = 0;
U32 i;
for (i = indexStart; i < mIndexList.size(); i++)
{
U32 mask = mVertexList[mIndexList[i]].mask;
frontMask |= mask;
backMask |= ~mask;
}
// Trivial accept if all the vertices are on the backsides of
// all the planes.
if (!frontMask)
{
poly.vertexCount = vertexCount;
return;
}
// Trivial reject if any plane not crossed has all it's points
// on the front.
U32 crossMask = frontMask & backMask;
if (~crossMask & frontMask)
{
mIndexList.setSize(poly.vertexStart);
mPolyList.decrement();
return;
}
// Potentially, this will add up to mPlaneList.size() * (indexStart - indexEnd)
// elements to mIndexList, so ensure that it has enough space to store that
// so we can use push_back_noresize. If you find this code block getting hit
// frequently, changing the value of 'IndexListReserveSize' or doing some selective
// allocation is suggested
//
// TODO: Re-visit this, since it obviously does not work correctly, and than
// re-enable the push_back_noresize
//while(mIndexList.size() + mPlaneList.size() * (mIndexList.size() - indexStart) > mIndexList.capacity() )
// mIndexList.reserve(mIndexList.capacity() * 2);
// Need to do some clipping
for (U32 p = 0; p < mPlaneList.size(); p++)
{
U32 pmask = 1 << p;
// Only test against this plane if we have something
// on both sides
if (!(crossMask & pmask))
continue;
U32 indexEnd = mIndexList.size();
U32 i1 = indexEnd - 1;
U32 mask1 = mVertexList[mIndexList[i1]].mask;
for (U32 i2 = indexStart; i2 < indexEnd; i2++)
{
U32 mask2 = mVertexList[mIndexList[i2]].mask;
if ((mask1 ^ mask2) & pmask)
{
//
mVertexList.increment();
VectorF& v1 = mVertexList[mIndexList[i1]].point;
VectorF& v2 = mVertexList[mIndexList[i2]].point;
VectorF vv = v2 - v1;
F32 t = -mPlaneList[p].distToPlane(v1) / mDot(mPlaneList[p],vv);
mNormalList.increment();
VectorF& n1 = mNormalList[mIndexList[i1]];
VectorF& n2 = mNormalList[mIndexList[i1]];
VectorF nn = mLerp( n1, n2, t );
nn.normalizeSafe();
mNormalList.last() = nn;
mIndexList.push_back/*_noresize*/(mVertexList.size() - 1);
Vertex& iv = mVertexList.last();
iv.point.x = v1.x + vv.x * t;
iv.point.y = v1.y + vv.y * t;
iv.point.z = v1.z + vv.z * t;
iv.mask = 0;
// Test against the remaining planes
for (U32 i = p + 1; i < mPlaneList.size(); i++)
if (mPlaneList[i].distToPlane(iv.point) > 0)
{
iv.mask = 1 << i;
break;
}
}
if (!(mask2 & pmask))
{
U32 index = mIndexList[i2];
mIndexList.push_back/*_noresize*/(index);
}
mask1 = mask2;
i1 = i2;
}
// Check for degenerate
indexStart = indexEnd;
if (mIndexList.size() - indexStart < 3)
{
mIndexList.setSize(poly.vertexStart);
mPolyList.decrement();
return;
}
}
// Emit what's left and compress the index list.
poly.vertexCount = mIndexList.size() - indexStart;
memcpy(&mIndexList[poly.vertexStart],
&mIndexList[indexStart],poly.vertexCount);
mIndexList.setSize(poly.vertexStart + poly.vertexCount);
}
//----------------------------------------------------------------------------
void ClippedPolyList::memcpy(U32* dst, U32* src,U32 size)
{
U32* end = src + size;
while (src != end)
*dst++ = *src++;
}
void ClippedPolyList::cullUnusedVerts()
{
PROFILE_SCOPE( ClippedPolyList_CullUnusedVerts );
U32 i = 0;
U32 k, n, numDeleted;
bool result;
IndexListIterator iNextIter;
VertexListIterator nextVIter;
VertexListIterator vIter;
for ( vIter = mVertexList.begin(); vIter != mVertexList.end(); vIter++, i++ )
{
// Is this vertex used?
iNextIter = find( mIndexList.begin(), mIndexList.end(), i );
if ( iNextIter != mIndexList.end() )
continue;
// If not, find the next used vertex.
// i is an unused vertex
// k is a used vertex
// delete the vertices from i to j - 1
k = 0;
n = i + 1;
result = false;
numDeleted = 0;
for ( nextVIter = vIter + 1; nextVIter != mVertexList.end(); nextVIter++, n++ )
{
iNextIter = find( mIndexList.begin(), mIndexList.end(), n );
// If we found a used vertex
// grab its index for later use
// and set our result bool.
if ( (*iNextIter) == n )
{
k = n;
result = true;
break;
}
}
// All the remaining verts are unused.
if ( !result )
{
mVertexList.setSize( i );
mNormalList.setSize( i );
break;
}
// Erase unused verts.
numDeleted = (k-1) - i + 1;
mVertexList.erase( i, numDeleted );
mNormalList.erase( i, numDeleted );
// Find any references to vertices after those deleted
// in the mIndexList and correct with an offset
for ( iNextIter = mIndexList.begin(); iNextIter != mIndexList.end(); iNextIter++ )
{
if ( (*iNextIter) > i )
(*iNextIter) -= numDeleted;
}
// After the erase the current iter should
// point at the used vertex we found... the
// loop will continue with the next vert.
}
}
void ClippedPolyList::triangulate()
{
PROFILE_SCOPE( ClippedPolyList_Triangulate );
// Copy the source lists to our temp list and clear
// the originals which will recieve the results.
mTempPolyList.set( mPolyList.address(), mPolyList.size() );
mTempIndexList.set( mIndexList.address(), mIndexList.size() );
mPolyList.clear();
mIndexList.clear();
U32 j, numTriangles;
//
PolyListIterator polyIter = mTempPolyList.begin();
for ( ; polyIter != mTempPolyList.end(); polyIter++ )
{
const Poly &poly = *polyIter;
// How many triangles in this poly?
numTriangles = poly.vertexCount - 2;
// Build out the triangles.
for ( j = 0; j < numTriangles; j++ )
{
mPolyList.increment();
Poly &triangle = mPolyList.last();
triangle = poly;
triangle.vertexCount = 3;
triangle.vertexStart = mIndexList.size();
mIndexList.push_back( mTempIndexList[ poly.vertexStart ] );
mIndexList.push_back( mTempIndexList[ poly.vertexStart + 1 + j ] );
mIndexList.push_back( mTempIndexList[ poly.vertexStart + 2 + j ] );
}
}
}
void ClippedPolyList::generateNormals()
{
PROFILE_SCOPE( ClippedPolyList_GenerateNormals );
AssertFatal(mNormalList.size() == mVertexList.size(), "Normals count does not match vertex count!");
U32 i, polyCount;
VectorF normal;
PolyListIterator polyIter;
IndexListIterator indexIter;
Vector<VectorF>::iterator normalIter = mNormalList.begin();
U32 n = 0;
for ( ; normalIter != mNormalList.end(); normalIter++, n++ )
{
// Skip normals that already have values.
if ( !normalIter->isZero() )
continue;
// Average all the face normals which
// share this vertex index.
indexIter = mIndexList.begin();
normal.zero();
polyCount = 0;
i = 0;
for ( ; indexIter != mIndexList.end(); indexIter++, i++ )
{
if ( n != *indexIter )
continue;
polyIter = mPolyList.begin();
for ( ; polyIter != mPolyList.end(); polyIter++ )
{
const Poly& poly = *polyIter;
if ( i < poly.vertexStart || i > poly.vertexStart + poly.vertexCount )
continue;
++polyCount;
normal += poly.plane;
}
}
// Average it.
if ( polyCount > 0 )
normal /= (F32)polyCount;
// Note: we use a temporary for the normal averaging
// then copy the result to limit the number of arrays
// we're touching during the innermost loop.
*normalIter = normal;
}
}