mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-21 21:24:46 +00:00
1513 lines
55 KiB
C++
1513 lines
55 KiB
C++
/*
|
|
* HRTF utility for producing and demonstrating the process of creating an
|
|
* OpenAL Soft compatible HRIR data set.
|
|
*
|
|
* Copyright (C) 2011-2019 Christopher Fitzgerald
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
*
|
|
* --------------------------------------------------------------------------
|
|
*
|
|
* A big thanks goes out to all those whose work done in the field of
|
|
* binaural sound synthesis using measured HRTFs makes this utility and the
|
|
* OpenAL Soft implementation possible.
|
|
*
|
|
* The algorithm for diffuse-field equalization was adapted from the work
|
|
* done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of
|
|
* MIT Media Laboratory. It operates as follows:
|
|
*
|
|
* 1. Take the FFT of each HRIR and only keep the magnitude responses.
|
|
* 2. Calculate the diffuse-field power-average of all HRIRs weighted by
|
|
* their contribution to the total surface area covered by their
|
|
* measurement. This has since been modified to use coverage volume for
|
|
* multi-field HRIR data sets.
|
|
* 3. Take the diffuse-field average and limit its magnitude range.
|
|
* 4. Equalize the responses by using the inverse of the diffuse-field
|
|
* average.
|
|
* 5. Reconstruct the minimum-phase responses.
|
|
* 5. Zero the DC component.
|
|
* 6. IFFT the result and truncate to the desired-length minimum-phase FIR.
|
|
*
|
|
* The spherical head algorithm for calculating propagation delay was adapted
|
|
* from the paper:
|
|
*
|
|
* Modeling Interaural Time Difference Assuming a Spherical Head
|
|
* Joel David Miller
|
|
* Music 150, Musical Acoustics, Stanford University
|
|
* December 2, 2001
|
|
*
|
|
* The formulae for calculating the Kaiser window metrics are from the
|
|
* the textbook:
|
|
*
|
|
* Discrete-Time Signal Processing
|
|
* Alan V. Oppenheim and Ronald W. Schafer
|
|
* Prentice-Hall Signal Processing Series
|
|
* 1999
|
|
*/
|
|
|
|
#define _UNICODE /* NOLINT(bugprone-reserved-identifier) */
|
|
#include "config.h"
|
|
|
|
#include "makemhr.h"
|
|
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <chrono>
|
|
#include <cmath>
|
|
#include <complex>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <filesystem>
|
|
#include <fstream>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <string_view>
|
|
#include <thread>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "alcomplex.h"
|
|
#include "alnumbers.h"
|
|
#include "alnumeric.h"
|
|
#include "alspan.h"
|
|
#include "alstring.h"
|
|
#include "loaddef.h"
|
|
#include "loadsofa.h"
|
|
|
|
#include "win_main_utf8.h"
|
|
|
|
|
|
HrirDataT::~HrirDataT() = default;
|
|
|
|
namespace {
|
|
|
|
using namespace std::string_view_literals;
|
|
|
|
struct FileDeleter {
|
|
void operator()(gsl::owner<FILE*> f) { fclose(f); }
|
|
};
|
|
using FilePtr = std::unique_ptr<FILE,FileDeleter>;
|
|
|
|
// The epsilon used to maintain signal stability.
|
|
constexpr double Epsilon{1e-9};
|
|
|
|
// The limits to the FFT window size override on the command line.
|
|
constexpr uint MinFftSize{65536};
|
|
constexpr uint MaxFftSize{131072};
|
|
|
|
// The limits to the equalization range limit on the command line.
|
|
constexpr double MinLimit{2.0};
|
|
constexpr double MaxLimit{120.0};
|
|
|
|
// The limits to the truncation window size on the command line.
|
|
constexpr uint MinTruncSize{16};
|
|
constexpr uint MaxTruncSize{128};
|
|
|
|
// The limits to the custom head radius on the command line.
|
|
constexpr double MinCustomRadius{0.05};
|
|
constexpr double MaxCustomRadius{0.15};
|
|
|
|
// The maximum propagation delay value supported by OpenAL Soft.
|
|
constexpr double MaxHrtd{63.0};
|
|
|
|
// The OpenAL Soft HRTF format marker. It stands for minimum-phase head
|
|
// response protocol 03.
|
|
constexpr auto GetMHRMarker() noexcept { return "MinPHR03"sv; }
|
|
|
|
|
|
// Head model used for calculating the impulse delays.
|
|
enum HeadModelT {
|
|
HM_None,
|
|
HM_Dataset, // Measure the onset from the dataset.
|
|
HM_Sphere, // Calculate the onset using a spherical head model.
|
|
|
|
HM_Default = HM_Dataset
|
|
};
|
|
|
|
|
|
// The defaults for the command line options.
|
|
constexpr uint DefaultFftSize{65536};
|
|
constexpr bool DefaultEqualize{true};
|
|
constexpr bool DefaultSurface{true};
|
|
constexpr double DefaultLimit{24.0};
|
|
constexpr uint DefaultTruncSize{64};
|
|
constexpr double DefaultCustomRadius{0.0};
|
|
|
|
/* Channel index enums. Mono uses LeftChannel only. */
|
|
enum ChannelIndex : uint {
|
|
LeftChannel = 0u,
|
|
RightChannel = 1u
|
|
};
|
|
|
|
|
|
/* Performs a string substitution. Any case-insensitive occurrences of the
|
|
* pattern string are replaced with the replacement string. The result is
|
|
* truncated if necessary.
|
|
*/
|
|
auto StrSubst(std::string_view in, const std::string_view pat, const std::string_view rep) -> std::string
|
|
{
|
|
std::string ret;
|
|
ret.reserve(in.size() + pat.size());
|
|
|
|
while(in.size() >= pat.size())
|
|
{
|
|
if(al::starts_with(in, pat))
|
|
{
|
|
in = in.substr(pat.size());
|
|
ret += rep;
|
|
}
|
|
else
|
|
{
|
|
size_t endpos{1};
|
|
while(endpos < in.size() && std::toupper(in[endpos]) != std::toupper(pat.front()))
|
|
++endpos;
|
|
ret += in.substr(0, endpos);
|
|
in = in.substr(endpos);
|
|
}
|
|
}
|
|
ret += in;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*********************
|
|
*** Math routines ***
|
|
*********************/
|
|
|
|
// Simple clamp routine.
|
|
double Clamp(const double val, const double lower, const double upper)
|
|
{
|
|
return std::min(std::max(val, lower), upper);
|
|
}
|
|
|
|
inline uint dither_rng(uint *seed)
|
|
{
|
|
*seed = *seed * 96314165 + 907633515;
|
|
return *seed;
|
|
}
|
|
|
|
// Performs a triangular probability density function dither. The input samples
|
|
// should be normalized (-1 to +1).
|
|
void TpdfDither(const al::span<double> out, const al::span<const double> in, const double scale,
|
|
const size_t channel, const size_t step, uint *seed)
|
|
{
|
|
static constexpr double PRNG_SCALE = 1.0 / std::numeric_limits<uint>::max();
|
|
assert(channel < step);
|
|
|
|
for(size_t i{0};i < in.size();++i)
|
|
{
|
|
uint prn0{dither_rng(seed)};
|
|
uint prn1{dither_rng(seed)};
|
|
out[i*step + channel] = std::round(in[i]*scale + (prn0*PRNG_SCALE - prn1*PRNG_SCALE));
|
|
}
|
|
}
|
|
|
|
/* Apply a range limit (in dB) to the given magnitude response. This is used
|
|
* to adjust the effects of the diffuse-field average on the equalization
|
|
* process.
|
|
*/
|
|
void LimitMagnitudeResponse(const uint n, const uint m, const double limit,
|
|
const al::span<double> inout)
|
|
{
|
|
const double halfLim{limit / 2.0};
|
|
// Convert the response to dB.
|
|
for(uint i{0};i < m;++i)
|
|
inout[i] = 20.0 * std::log10(inout[i]);
|
|
// Use six octaves to calculate the average magnitude of the signal.
|
|
const auto lower = (static_cast<uint>(std::ceil(n / std::pow(2.0, 8.0)))) - 1;
|
|
const auto upper = (static_cast<uint>(std::floor(n / std::pow(2.0, 2.0)))) - 1;
|
|
double ave{0.0};
|
|
for(uint i{lower};i <= upper;++i)
|
|
ave += inout[i];
|
|
ave /= upper - lower + 1;
|
|
// Keep the response within range of the average magnitude.
|
|
for(uint i{0};i < m;++i)
|
|
inout[i] = Clamp(inout[i], ave - halfLim, ave + halfLim);
|
|
// Convert the response back to linear magnitude.
|
|
for(uint i{0};i < m;++i)
|
|
inout[i] = std::pow(10.0, inout[i] / 20.0);
|
|
}
|
|
|
|
/* Reconstructs the minimum-phase component for the given magnitude response
|
|
* of a signal. This is equivalent to phase recomposition, sans the missing
|
|
* residuals (which were discarded). The mirrored half of the response is
|
|
* reconstructed.
|
|
*/
|
|
void MinimumPhase(const al::span<double> mags, const al::span<complex_d> out)
|
|
{
|
|
assert(mags.size() == out.size());
|
|
const size_t m{(mags.size()/2) + 1};
|
|
|
|
size_t i;
|
|
for(i = 0;i < m;i++)
|
|
out[i] = std::log(mags[i]);
|
|
for(;i < mags.size();++i)
|
|
{
|
|
mags[i] = mags[mags.size() - i];
|
|
out[i] = out[mags.size() - i];
|
|
}
|
|
complex_hilbert(out);
|
|
// Remove any DC offset the filter has.
|
|
mags[0] = Epsilon;
|
|
for(i = 0;i < mags.size();++i)
|
|
out[i] = std::polar(mags[i], out[i].imag());
|
|
}
|
|
|
|
|
|
/***************************
|
|
*** File storage output ***
|
|
***************************/
|
|
|
|
// Write an ASCII string to a file.
|
|
auto WriteAscii(const std::string_view out, std::ostream &ostream, const std::string_view filename) -> int
|
|
{
|
|
if(!ostream.write(out.data(), std::streamsize(out.size())) || ostream.bad())
|
|
{
|
|
fprintf(stderr, "\nError: Bad write to file '%.*s'.\n", al::sizei(filename),
|
|
filename.data());
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// Write a binary value of the given byte order and byte size to a file,
|
|
// loading it from a 32-bit unsigned integer.
|
|
auto WriteBin4(const uint bytes, const uint32_t in, std::ostream &ostream,
|
|
const std::string_view filename) -> int
|
|
{
|
|
std::array<char,4> out{};
|
|
for(uint i{0};i < bytes;i++)
|
|
out[i] = static_cast<char>((in>>(i*8)) & 0x000000FF);
|
|
|
|
if(!ostream.write(out.data(), std::streamsize(bytes)) || ostream.bad())
|
|
{
|
|
fprintf(stderr, "\nError: Bad write to file '%.*s'.\n", al::sizei(filename),
|
|
filename.data());
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// Store the OpenAL Soft HRTF data set.
|
|
auto StoreMhr(const HrirDataT *hData, const std::string_view filename) -> bool
|
|
{
|
|
const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
|
|
const uint n{hData->mIrPoints};
|
|
uint dither_seed{22222};
|
|
|
|
std::ofstream ostream{std::filesystem::u8path(filename)};
|
|
if(!ostream.is_open())
|
|
{
|
|
fprintf(stderr, "\nError: Could not open MHR file '%.*s'.\n", al::sizei(filename),
|
|
filename.data());
|
|
return false;
|
|
}
|
|
if(!WriteAscii(GetMHRMarker(), ostream, filename))
|
|
return false;
|
|
if(!WriteBin4(4, hData->mIrRate, ostream, filename))
|
|
return false;
|
|
if(!WriteBin4(1, static_cast<uint32_t>(hData->mChannelType), ostream, filename))
|
|
return false;
|
|
if(!WriteBin4(1, hData->mIrPoints, ostream, filename))
|
|
return false;
|
|
if(!WriteBin4(1, static_cast<uint>(hData->mFds.size()), ostream, filename))
|
|
return false;
|
|
for(size_t fi{hData->mFds.size()-1};fi < hData->mFds.size();--fi)
|
|
{
|
|
auto fdist = static_cast<uint32_t>(std::round(1000.0 * hData->mFds[fi].mDistance));
|
|
if(!WriteBin4(2, fdist, ostream, filename))
|
|
return false;
|
|
if(!WriteBin4(1, static_cast<uint32_t>(hData->mFds[fi].mEvs.size()), ostream, filename))
|
|
return false;
|
|
for(size_t ei{0};ei < hData->mFds[fi].mEvs.size();++ei)
|
|
{
|
|
const auto &elev = hData->mFds[fi].mEvs[ei];
|
|
if(!WriteBin4(1, static_cast<uint32_t>(elev.mAzs.size()), ostream, filename))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for(size_t fi{hData->mFds.size()-1};fi < hData->mFds.size();--fi)
|
|
{
|
|
static constexpr double scale{8388607.0};
|
|
static constexpr uint bps{3u};
|
|
|
|
for(const auto &evd : hData->mFds[fi].mEvs)
|
|
{
|
|
for(const auto &azd : evd.mAzs)
|
|
{
|
|
std::array<double,MaxTruncSize*2_uz> out{};
|
|
|
|
TpdfDither(out, azd.mIrs[0].first(n), scale, 0, channels, &dither_seed);
|
|
if(hData->mChannelType == CT_STEREO)
|
|
TpdfDither(out, azd.mIrs[1].first(n), scale, 1, channels, &dither_seed);
|
|
const size_t numsamples{size_t{channels} * n};
|
|
for(size_t i{0};i < numsamples;i++)
|
|
{
|
|
const auto v = static_cast<int>(Clamp(out[i], -scale-1.0, scale));
|
|
if(!WriteBin4(bps, static_cast<uint32_t>(v), ostream, filename))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for(size_t fi{hData->mFds.size()-1};fi < hData->mFds.size();--fi)
|
|
{
|
|
/* Delay storage has 2 bits of extra precision. */
|
|
static constexpr double DelayPrecScale{4.0};
|
|
for(const auto &evd : hData->mFds[fi].mEvs)
|
|
{
|
|
for(const auto &azd : evd.mAzs)
|
|
{
|
|
auto v = static_cast<uint>(std::round(azd.mDelays[0]*DelayPrecScale));
|
|
if(!WriteBin4(1, v, ostream, filename)) return false;
|
|
if(hData->mChannelType == CT_STEREO)
|
|
{
|
|
v = static_cast<uint>(std::round(azd.mDelays[1]*DelayPrecScale));
|
|
if(!WriteBin4(1, v, ostream, filename)) return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/***********************
|
|
*** HRTF processing ***
|
|
***********************/
|
|
|
|
/* Balances the maximum HRIR magnitudes of multi-field data sets by
|
|
* independently normalizing each field in relation to the overall maximum.
|
|
* This is done to ignore distance attenuation.
|
|
*/
|
|
void BalanceFieldMagnitudes(const HrirDataT *hData, const uint channels, const uint m)
|
|
{
|
|
std::array<double,MAX_FD_COUNT> maxMags{};
|
|
double maxMag{0.0};
|
|
|
|
for(size_t fi{0};fi < hData->mFds.size();++fi)
|
|
{
|
|
for(size_t ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvs.size();++ei)
|
|
{
|
|
for(const auto &azd : hData->mFds[fi].mEvs[ei].mAzs)
|
|
{
|
|
for(size_t ti{0};ti < channels;++ti)
|
|
{
|
|
for(size_t i{0};i < m;++i)
|
|
maxMags[fi] = std::max(azd.mIrs[ti][i], maxMags[fi]);
|
|
}
|
|
}
|
|
}
|
|
|
|
maxMag = std::max(maxMags[fi], maxMag);
|
|
}
|
|
|
|
for(size_t fi{0};fi < hData->mFds.size();++fi)
|
|
{
|
|
const double magFactor{maxMag / maxMags[fi]};
|
|
|
|
for(size_t ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvs.size();++ei)
|
|
{
|
|
for(const auto &azd : hData->mFds[fi].mEvs[ei].mAzs)
|
|
{
|
|
for(size_t ti{0};ti < channels;++ti)
|
|
{
|
|
for(size_t i{0};i < m;++i)
|
|
azd.mIrs[ti][i] *= magFactor;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculate the contribution of each HRIR to the diffuse-field average based
|
|
* on its coverage volume. All volumes are centered at the spherical HRIR
|
|
* coordinates and measured by extruded solid angle.
|
|
*/
|
|
void CalculateDfWeights(const HrirDataT *hData, const al::span<double> weights)
|
|
{
|
|
double sum, innerRa, outerRa, evs, ev, upperEv, lowerEv;
|
|
double solidAngle, solidVolume;
|
|
uint fi, ei;
|
|
|
|
sum = 0.0;
|
|
// The head radius acts as the limit for the inner radius.
|
|
innerRa = hData->mRadius;
|
|
for(fi = 0;fi < hData->mFds.size();fi++)
|
|
{
|
|
// Each volume ends half way between progressive field measurements.
|
|
if((fi + 1) < hData->mFds.size())
|
|
outerRa = 0.5f * (hData->mFds[fi].mDistance + hData->mFds[fi + 1].mDistance);
|
|
// The final volume has its limit extended to some practical value.
|
|
// This is done to emphasize the far-field responses in the average.
|
|
else
|
|
outerRa = 10.0f;
|
|
|
|
const double raPowDiff{std::pow(outerRa, 3.0) - std::pow(innerRa, 3.0)};
|
|
evs = al::numbers::pi / 2.0 / static_cast<double>(hData->mFds[fi].mEvs.size() - 1);
|
|
for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvs.size();ei++)
|
|
{
|
|
const auto &elev = hData->mFds[fi].mEvs[ei];
|
|
// For each elevation, calculate the upper and lower limits of
|
|
// the patch band.
|
|
ev = elev.mElevation;
|
|
lowerEv = std::max(-al::numbers::pi / 2.0, ev - evs);
|
|
upperEv = std::min(al::numbers::pi / 2.0, ev + evs);
|
|
// Calculate the surface area of the patch band.
|
|
solidAngle = 2.0 * al::numbers::pi * (std::sin(upperEv) - std::sin(lowerEv));
|
|
// Then the volume of the extruded patch band.
|
|
solidVolume = solidAngle * raPowDiff / 3.0;
|
|
// Each weight is the volume of one extruded patch.
|
|
weights[(fi*MAX_EV_COUNT) + ei] = solidVolume / static_cast<double>(elev.mAzs.size());
|
|
// Sum the total coverage volume of the HRIRs for all fields.
|
|
sum += solidAngle;
|
|
}
|
|
|
|
innerRa = outerRa;
|
|
}
|
|
|
|
for(fi = 0;fi < hData->mFds.size();fi++)
|
|
{
|
|
// Normalize the weights given the total surface coverage for all
|
|
// fields.
|
|
for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvs.size();ei++)
|
|
weights[(fi * MAX_EV_COUNT) + ei] /= sum;
|
|
}
|
|
}
|
|
|
|
/* Calculate the diffuse-field average from the given magnitude responses of
|
|
* the HRIR set. Weighting can be applied to compensate for the varying
|
|
* coverage of each HRIR. The final average can then be limited by the
|
|
* specified magnitude range (in positive dB; 0.0 to skip).
|
|
*/
|
|
void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint channels, const uint m,
|
|
const bool weighted, const double limit, const al::span<double> dfa)
|
|
{
|
|
std::vector<double> weights(hData->mFds.size() * MAX_EV_COUNT);
|
|
uint count;
|
|
|
|
if(weighted)
|
|
{
|
|
// Use coverage weighting to calculate the average.
|
|
CalculateDfWeights(hData, weights);
|
|
}
|
|
else
|
|
{
|
|
double weight;
|
|
|
|
// If coverage weighting is not used, the weights still need to be
|
|
// averaged by the number of existing HRIRs.
|
|
count = hData->mIrCount;
|
|
for(size_t fi{0};fi < hData->mFds.size();++fi)
|
|
{
|
|
for(size_t ei{0};ei < hData->mFds[fi].mEvStart;++ei)
|
|
count -= static_cast<uint>(hData->mFds[fi].mEvs[ei].mAzs.size());
|
|
}
|
|
weight = 1.0 / count;
|
|
|
|
for(size_t fi{0};fi < hData->mFds.size();++fi)
|
|
{
|
|
for(size_t ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvs.size();++ei)
|
|
weights[(fi * MAX_EV_COUNT) + ei] = weight;
|
|
}
|
|
}
|
|
for(size_t ti{0};ti < channels;++ti)
|
|
{
|
|
for(size_t i{0};i < m;++i)
|
|
dfa[(ti * m) + i] = 0.0;
|
|
for(size_t fi{0};fi < hData->mFds.size();++fi)
|
|
{
|
|
for(size_t ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvs.size();++ei)
|
|
{
|
|
for(size_t ai{0};ai < hData->mFds[fi].mEvs[ei].mAzs.size();++ai)
|
|
{
|
|
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
|
|
// Get the weight for this HRIR's contribution.
|
|
double weight = weights[(fi * MAX_EV_COUNT) + ei];
|
|
|
|
// Add this HRIR's weighted power average to the total.
|
|
for(size_t i{0};i < m;++i)
|
|
dfa[(ti * m) + i] += weight * azd->mIrs[ti][i] * azd->mIrs[ti][i];
|
|
}
|
|
}
|
|
}
|
|
// Finish the average calculation and keep it from being too small.
|
|
for(size_t i{0};i < m;++i)
|
|
dfa[(ti * m) + i] = std::max(sqrt(dfa[(ti * m) + i]), Epsilon);
|
|
// Apply a limit to the magnitude range of the diffuse-field average
|
|
// if desired.
|
|
if(limit > 0.0)
|
|
LimitMagnitudeResponse(hData->mFftSize, m, limit, dfa.subspan(ti * m));
|
|
}
|
|
}
|
|
|
|
// Perform diffuse-field equalization on the magnitude responses of the HRIR
|
|
// set using the given average response.
|
|
void DiffuseFieldEqualize(const uint channels, const uint m, const al::span<const double> dfa,
|
|
const HrirDataT *hData)
|
|
{
|
|
for(size_t fi{0};fi < hData->mFds.size();++fi)
|
|
{
|
|
for(size_t ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvs.size();++ei)
|
|
{
|
|
for(auto &azd : hData->mFds[fi].mEvs[ei].mAzs)
|
|
{
|
|
for(size_t ti{0};ti < channels;++ti)
|
|
{
|
|
for(size_t i{0};i < m;++i)
|
|
azd.mIrs[ti][i] /= dfa[(ti * m) + i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Given field and elevation indices and an azimuth, calculate the indices of
|
|
* the two HRIRs that bound the coordinate along with a factor for
|
|
* calculating the continuous HRIR using interpolation.
|
|
*/
|
|
void CalcAzIndices(const HrirFdT &field, const uint ei, const double az, uint *a0, uint *a1, double *af)
|
|
{
|
|
double f{(2.0*al::numbers::pi + az) * static_cast<double>(field.mEvs[ei].mAzs.size()) /
|
|
(2.0*al::numbers::pi)};
|
|
const uint i{static_cast<uint>(f) % static_cast<uint>(field.mEvs[ei].mAzs.size())};
|
|
|
|
f -= std::floor(f);
|
|
*a0 = i;
|
|
*a1 = (i + 1) % static_cast<uint>(field.mEvs[ei].mAzs.size());
|
|
*af = f;
|
|
}
|
|
|
|
/* Synthesize any missing onset timings at the bottom elevations of each field.
|
|
* This just mirrors some top elevations for the bottom, and blends the
|
|
* remaining elevations (not an accurate model).
|
|
*/
|
|
void SynthesizeOnsets(HrirDataT *hData)
|
|
{
|
|
const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
|
|
|
|
auto proc_field = [channels](HrirFdT &field) -> void
|
|
{
|
|
/* Get the starting elevation from the measurements, and use it as the
|
|
* upper elevation limit for what needs to be calculated.
|
|
*/
|
|
const uint upperElevReal{field.mEvStart};
|
|
if(upperElevReal <= 0) return;
|
|
|
|
/* Get the lowest half of the missing elevations' delays by mirroring
|
|
* the top elevation delays. The responses are on a spherical grid
|
|
* centered between the ears, so these should align.
|
|
*/
|
|
uint ei{};
|
|
if(channels > 1)
|
|
{
|
|
/* Take the polar opposite position of the desired measurement and
|
|
* swap the ears.
|
|
*/
|
|
field.mEvs[0].mAzs[0].mDelays[0] = field.mEvs[field.mEvs.size()-1].mAzs[0].mDelays[1];
|
|
field.mEvs[0].mAzs[0].mDelays[1] = field.mEvs[field.mEvs.size()-1].mAzs[0].mDelays[0];
|
|
for(ei = 1u;ei < (upperElevReal+1)/2;++ei)
|
|
{
|
|
const uint topElev{static_cast<uint>(field.mEvs.size()-ei-1)};
|
|
|
|
for(uint ai{0u};ai < field.mEvs[ei].mAzs.size();ai++)
|
|
{
|
|
uint a0, a1;
|
|
double af;
|
|
|
|
/* Rotate this current azimuth by a half-circle, and lookup
|
|
* the mirrored elevation to find the indices for the polar
|
|
* opposite position (may need blending).
|
|
*/
|
|
const double az{field.mEvs[ei].mAzs[ai].mAzimuth + al::numbers::pi};
|
|
CalcAzIndices(field, topElev, az, &a0, &a1, &af);
|
|
|
|
/* Blend the delays, and again, swap the ears. */
|
|
field.mEvs[ei].mAzs[ai].mDelays[0] = Lerp(
|
|
field.mEvs[topElev].mAzs[a0].mDelays[1],
|
|
field.mEvs[topElev].mAzs[a1].mDelays[1], af);
|
|
field.mEvs[ei].mAzs[ai].mDelays[1] = Lerp(
|
|
field.mEvs[topElev].mAzs[a0].mDelays[0],
|
|
field.mEvs[topElev].mAzs[a1].mDelays[0], af);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
field.mEvs[0].mAzs[0].mDelays[0] = field.mEvs[field.mEvs.size()-1].mAzs[0].mDelays[0];
|
|
for(ei = 1u;ei < (upperElevReal+1)/2;++ei)
|
|
{
|
|
const uint topElev{static_cast<uint>(field.mEvs.size()-ei-1)};
|
|
|
|
for(uint ai{0u};ai < field.mEvs[ei].mAzs.size();ai++)
|
|
{
|
|
uint a0, a1;
|
|
double af;
|
|
|
|
/* For mono data sets, mirror the azimuth front<->back
|
|
* since the other ear is a mirror of what we have (e.g.
|
|
* the left ear's back-left is simulated with the right
|
|
* ear's front-right, which uses the left ear's front-left
|
|
* measurement).
|
|
*/
|
|
double az{field.mEvs[ei].mAzs[ai].mAzimuth};
|
|
if(az <= al::numbers::pi) az = al::numbers::pi - az;
|
|
else az = (al::numbers::pi*2.0)-az + al::numbers::pi;
|
|
CalcAzIndices(field, topElev, az, &a0, &a1, &af);
|
|
|
|
field.mEvs[ei].mAzs[ai].mDelays[0] = Lerp(
|
|
field.mEvs[topElev].mAzs[a0].mDelays[0],
|
|
field.mEvs[topElev].mAzs[a1].mDelays[0], af);
|
|
}
|
|
}
|
|
}
|
|
/* Record the lowest elevation filled in with the mirrored top. */
|
|
const uint lowerElevFake{ei-1u};
|
|
|
|
/* Fill in the remaining delays using bilinear interpolation. This
|
|
* helps smooth the transition back to the real delays.
|
|
*/
|
|
for(;ei < upperElevReal;++ei)
|
|
{
|
|
const double ef{(field.mEvs[upperElevReal].mElevation - field.mEvs[ei].mElevation) /
|
|
(field.mEvs[upperElevReal].mElevation - field.mEvs[lowerElevFake].mElevation)};
|
|
|
|
for(uint ai{0u};ai < field.mEvs[ei].mAzs.size();ai++)
|
|
{
|
|
uint a0, a1, a2, a3;
|
|
double af0, af1;
|
|
|
|
double az{field.mEvs[ei].mAzs[ai].mAzimuth};
|
|
CalcAzIndices(field, upperElevReal, az, &a0, &a1, &af0);
|
|
CalcAzIndices(field, lowerElevFake, az, &a2, &a3, &af1);
|
|
std::array<double,4> blend{{
|
|
(1.0-ef) * (1.0-af0),
|
|
(1.0-ef) * ( af0),
|
|
( ef) * (1.0-af1),
|
|
( ef) * ( af1)
|
|
}};
|
|
|
|
for(uint ti{0u};ti < channels;ti++)
|
|
{
|
|
field.mEvs[ei].mAzs[ai].mDelays[ti] =
|
|
field.mEvs[upperElevReal].mAzs[a0].mDelays[ti]*blend[0] +
|
|
field.mEvs[upperElevReal].mAzs[a1].mDelays[ti]*blend[1] +
|
|
field.mEvs[lowerElevFake].mAzs[a2].mDelays[ti]*blend[2] +
|
|
field.mEvs[lowerElevFake].mAzs[a3].mDelays[ti]*blend[3];
|
|
}
|
|
}
|
|
}
|
|
};
|
|
std::for_each(hData->mFds.begin(), hData->mFds.end(), proc_field);
|
|
}
|
|
|
|
/* Attempt to synthesize any missing HRIRs at the bottom elevations of each
|
|
* field. Right now this just blends the lowest elevation HRIRs together and
|
|
* applies a low-pass filter to simulate body occlusion. It is a simple, if
|
|
* inaccurate model.
|
|
*/
|
|
void SynthesizeHrirs(HrirDataT *hData)
|
|
{
|
|
const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
|
|
auto htemp = std::vector<complex_d>(hData->mFftSize);
|
|
const uint m{hData->mFftSize/2u + 1u};
|
|
auto filter = std::vector<double>(m);
|
|
const double beta{3.5e-6 * hData->mIrRate};
|
|
|
|
auto proc_field = [channels,m,beta,&htemp,&filter](HrirFdT &field) -> void
|
|
{
|
|
const uint oi{field.mEvStart};
|
|
if(oi <= 0) return;
|
|
|
|
for(uint ti{0u};ti < channels;ti++)
|
|
{
|
|
uint a0, a1;
|
|
double af;
|
|
|
|
/* Use the lowest immediate-left response for the left ear and
|
|
* lowest immediate-right response for the right ear. Given no comb
|
|
* effects as a result of the left response reaching the right ear
|
|
* and vice-versa, this produces a decent phantom-center response
|
|
* underneath the head.
|
|
*/
|
|
CalcAzIndices(field, oi, al::numbers::pi / ((ti==0) ? -2.0 : 2.0), &a0, &a1, &af);
|
|
for(uint i{0u};i < m;i++)
|
|
{
|
|
field.mEvs[0].mAzs[0].mIrs[ti][i] = Lerp(field.mEvs[oi].mAzs[a0].mIrs[ti][i],
|
|
field.mEvs[oi].mAzs[a1].mIrs[ti][i], af);
|
|
}
|
|
}
|
|
|
|
for(uint ei{1u};ei < field.mEvStart;ei++)
|
|
{
|
|
const double of{static_cast<double>(ei) / field.mEvStart};
|
|
const double b{(1.0 - of) * beta};
|
|
std::array<double,4> lp{};
|
|
|
|
/* Calculate a low-pass filter to simulate body occlusion. */
|
|
lp[0] = Lerp(1.0, lp[0], b);
|
|
lp[1] = Lerp(lp[0], lp[1], b);
|
|
lp[2] = Lerp(lp[1], lp[2], b);
|
|
lp[3] = Lerp(lp[2], lp[3], b);
|
|
htemp[0] = lp[3];
|
|
for(size_t i{1u};i < htemp.size();i++)
|
|
{
|
|
lp[0] = Lerp(0.0, lp[0], b);
|
|
lp[1] = Lerp(lp[0], lp[1], b);
|
|
lp[2] = Lerp(lp[1], lp[2], b);
|
|
lp[3] = Lerp(lp[2], lp[3], b);
|
|
htemp[i] = lp[3];
|
|
}
|
|
/* Get the filter's frequency-domain response and extract the
|
|
* frequency magnitudes (phase will be reconstructed later)).
|
|
*/
|
|
FftForward(static_cast<uint>(htemp.size()), htemp.data());
|
|
std::transform(htemp.cbegin(), htemp.cbegin()+m, filter.begin(),
|
|
[](const complex_d c) -> double { return std::abs(c); });
|
|
|
|
for(uint ai{0u};ai < field.mEvs[ei].mAzs.size();ai++)
|
|
{
|
|
uint a0, a1;
|
|
double af;
|
|
|
|
CalcAzIndices(field, oi, field.mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af);
|
|
for(uint ti{0u};ti < channels;ti++)
|
|
{
|
|
for(uint i{0u};i < m;i++)
|
|
{
|
|
/* Blend the two defined HRIRs closest to this azimuth,
|
|
* then blend that with the synthesized -90 elevation.
|
|
*/
|
|
const double s1{Lerp(field.mEvs[oi].mAzs[a0].mIrs[ti][i],
|
|
field.mEvs[oi].mAzs[a1].mIrs[ti][i], af)};
|
|
const double s{Lerp(field.mEvs[0].mAzs[0].mIrs[ti][i], s1, of)};
|
|
field.mEvs[ei].mAzs[ai].mIrs[ti][i] = s * filter[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
const double b{beta};
|
|
std::array<double,4> lp{};
|
|
lp[0] = Lerp(1.0, lp[0], b);
|
|
lp[1] = Lerp(lp[0], lp[1], b);
|
|
lp[2] = Lerp(lp[1], lp[2], b);
|
|
lp[3] = Lerp(lp[2], lp[3], b);
|
|
htemp[0] = lp[3];
|
|
for(size_t i{1u};i < htemp.size();i++)
|
|
{
|
|
lp[0] = Lerp(0.0, lp[0], b);
|
|
lp[1] = Lerp(lp[0], lp[1], b);
|
|
lp[2] = Lerp(lp[1], lp[2], b);
|
|
lp[3] = Lerp(lp[2], lp[3], b);
|
|
htemp[i] = lp[3];
|
|
}
|
|
FftForward(static_cast<uint>(htemp.size()), htemp.data());
|
|
std::transform(htemp.cbegin(), htemp.cbegin()+m, filter.begin(),
|
|
[](const complex_d c) -> double { return std::abs(c); });
|
|
|
|
for(uint ti{0u};ti < channels;ti++)
|
|
{
|
|
for(uint i{0u};i < m;i++)
|
|
field.mEvs[0].mAzs[0].mIrs[ti][i] *= filter[i];
|
|
}
|
|
};
|
|
std::for_each(hData->mFds.begin(), hData->mFds.end(), proc_field);
|
|
}
|
|
|
|
// The following routines assume a full set of HRIRs for all elevations.
|
|
|
|
/* Perform minimum-phase reconstruction using the magnitude responses of the
|
|
* HRIR set. Work is delegated to this struct, which runs asynchronously on one
|
|
* or more threads (sharing the same reconstructor object).
|
|
*/
|
|
struct HrirReconstructor {
|
|
std::vector<al::span<double>> mIrs;
|
|
std::atomic<size_t> mCurrent{};
|
|
std::atomic<size_t> mDone{};
|
|
uint mFftSize{};
|
|
uint mIrPoints{};
|
|
|
|
void Worker()
|
|
{
|
|
auto h = std::vector<complex_d>(mFftSize);
|
|
auto mags = std::vector<double>(mFftSize);
|
|
size_t m{(mFftSize/2) + 1};
|
|
|
|
while(true)
|
|
{
|
|
/* Load the current index to process. */
|
|
size_t idx{mCurrent.load()};
|
|
do {
|
|
/* If the index is at the end, we're done. */
|
|
if(idx >= mIrs.size())
|
|
return;
|
|
/* Otherwise, increment the current index atomically so other
|
|
* threads know to go to the next one. If this call fails, the
|
|
* current index was just changed by another thread and the new
|
|
* value is loaded into idx, which we'll recheck.
|
|
*/
|
|
} while(!mCurrent.compare_exchange_weak(idx, idx+1, std::memory_order_relaxed));
|
|
|
|
/* Now do the reconstruction, and apply the inverse FFT to get the
|
|
* time-domain response.
|
|
*/
|
|
for(size_t i{0};i < m;++i)
|
|
mags[i] = std::max(mIrs[idx][i], Epsilon);
|
|
MinimumPhase(mags, h);
|
|
FftInverse(mFftSize, h.data());
|
|
for(uint i{0u};i < mIrPoints;++i)
|
|
mIrs[idx][i] = h[i].real();
|
|
|
|
/* Increment the number of IRs done. */
|
|
mDone.fetch_add(1);
|
|
}
|
|
}
|
|
};
|
|
|
|
void ReconstructHrirs(const HrirDataT *hData, const uint numThreads)
|
|
{
|
|
const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
|
|
|
|
/* Set up the reconstructor with the needed size info and pointers to the
|
|
* IRs to process.
|
|
*/
|
|
HrirReconstructor reconstructor;
|
|
reconstructor.mCurrent.store(0, std::memory_order_relaxed);
|
|
reconstructor.mDone.store(0, std::memory_order_relaxed);
|
|
reconstructor.mFftSize = hData->mFftSize;
|
|
reconstructor.mIrPoints = hData->mIrPoints;
|
|
for(const auto &field : hData->mFds)
|
|
{
|
|
for(auto &elev : field.mEvs)
|
|
{
|
|
for(const auto &azd : elev.mAzs)
|
|
{
|
|
for(uint ti{0u};ti < channels;ti++)
|
|
reconstructor.mIrs.push_back(azd.mIrs[ti]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Launch threads to work on reconstruction. */
|
|
std::vector<std::thread> thrds;
|
|
thrds.reserve(numThreads);
|
|
for(size_t i{0};i < numThreads;++i)
|
|
thrds.emplace_back(std::mem_fn(&HrirReconstructor::Worker), &reconstructor);
|
|
|
|
/* Keep track of the number of IRs done, periodically reporting it. */
|
|
size_t count;
|
|
do {
|
|
std::this_thread::sleep_for(std::chrono::milliseconds{50});
|
|
|
|
count = reconstructor.mDone.load();
|
|
size_t pcdone{count * 100 / reconstructor.mIrs.size()};
|
|
|
|
printf("\r%3zu%% done (%zu of %zu)", pcdone, count, reconstructor.mIrs.size());
|
|
fflush(stdout);
|
|
} while(count < reconstructor.mIrs.size());
|
|
fputc('\n', stdout);
|
|
|
|
for(auto &thrd : thrds)
|
|
{
|
|
if(thrd.joinable())
|
|
thrd.join();
|
|
}
|
|
}
|
|
|
|
// Normalize the HRIR set and slightly attenuate the result.
|
|
void NormalizeHrirs(HrirDataT *hData)
|
|
{
|
|
const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
|
|
const uint irSize{hData->mIrPoints};
|
|
|
|
/* Find the maximum amplitude and RMS out of all the IRs. */
|
|
struct LevelPair { double amp, rms; };
|
|
auto mesasure_channel = [irSize](const LevelPair levels, al::span<const double> ir)
|
|
{
|
|
/* Calculate the peak amplitude and RMS of this IR. */
|
|
ir = ir.first(irSize);
|
|
auto current = std::accumulate(ir.cbegin(), ir.cend(), LevelPair{0.0, 0.0},
|
|
[](const LevelPair cur, const double impulse)
|
|
{
|
|
return LevelPair{std::max(std::abs(impulse), cur.amp), cur.rms + impulse*impulse};
|
|
});
|
|
current.rms = std::sqrt(current.rms / irSize);
|
|
|
|
/* Accumulate levels by taking the maximum amplitude and RMS. */
|
|
return LevelPair{std::max(current.amp, levels.amp), std::max(current.rms, levels.rms)};
|
|
};
|
|
auto measure_azi = [channels,mesasure_channel](const LevelPair levels, const HrirAzT &azi)
|
|
{ return std::accumulate(azi.mIrs.begin(), azi.mIrs.begin()+channels, levels, mesasure_channel); };
|
|
auto measure_elev = [measure_azi](const LevelPair levels, const HrirEvT &elev)
|
|
{ return std::accumulate(elev.mAzs.cbegin(), elev.mAzs.cend(), levels, measure_azi); };
|
|
auto measure_field = [measure_elev](const LevelPair levels, const HrirFdT &field)
|
|
{ return std::accumulate(field.mEvs.cbegin(), field.mEvs.cend(), levels, measure_elev); };
|
|
|
|
const auto maxlev = std::accumulate(hData->mFds.begin(), hData->mFds.end(),
|
|
LevelPair{0.0, 0.0}, measure_field);
|
|
|
|
/* Normalize using the maximum RMS of the HRIRs. The RMS measure for the
|
|
* non-filtered signal is of an impulse with equal length (to the filter):
|
|
*
|
|
* rms_impulse = sqrt(sum([ 1^2, 0^2, 0^2, ... ]) / n)
|
|
* = sqrt(1 / n)
|
|
*
|
|
* This helps keep a more consistent volume between the non-filtered signal
|
|
* and various data sets.
|
|
*/
|
|
double factor{std::sqrt(1.0 / irSize) / maxlev.rms};
|
|
|
|
/* Also ensure the samples themselves won't clip. */
|
|
factor = std::min(factor, 0.99/maxlev.amp);
|
|
|
|
/* Now scale all IRs by the given factor. */
|
|
auto proc_channel = [irSize,factor](al::span<double> ir)
|
|
{
|
|
ir = ir.first(irSize);
|
|
std::transform(ir.cbegin(), ir.cend(), ir.begin(),
|
|
[factor](double s) { return s * factor; });
|
|
};
|
|
auto proc_azi = [channels,proc_channel](HrirAzT &azi)
|
|
{ std::for_each(azi.mIrs.begin(), azi.mIrs.begin()+channels, proc_channel); };
|
|
auto proc_elev = [proc_azi](HrirEvT &elev)
|
|
{ std::for_each(elev.mAzs.begin(), elev.mAzs.end(), proc_azi); };
|
|
auto proc1_field = [proc_elev](HrirFdT &field)
|
|
{ std::for_each(field.mEvs.begin(), field.mEvs.end(), proc_elev); };
|
|
|
|
std::for_each(hData->mFds.begin(), hData->mFds.end(), proc1_field);
|
|
}
|
|
|
|
// Calculate the left-ear time delay using a spherical head model.
|
|
double CalcLTD(const double ev, const double az, const double rad, const double dist)
|
|
{
|
|
double azp, dlp, l, al;
|
|
|
|
azp = std::asin(std::cos(ev) * std::sin(az));
|
|
dlp = std::sqrt((dist*dist) + (rad*rad) + (2.0*dist*rad*sin(azp)));
|
|
l = std::sqrt((dist*dist) - (rad*rad));
|
|
al = (0.5 * al::numbers::pi) + azp;
|
|
if(dlp > l)
|
|
dlp = l + (rad * (al - std::acos(rad / dist)));
|
|
return dlp / 343.3;
|
|
}
|
|
|
|
// Calculate the effective head-related time delays for each minimum-phase
|
|
// HRIR. This is done per-field since distance delay is ignored.
|
|
void CalculateHrtds(const HeadModelT model, const double radius, HrirDataT *hData)
|
|
{
|
|
uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
|
|
double customRatio{radius / hData->mRadius};
|
|
uint ti;
|
|
|
|
if(model == HM_Sphere)
|
|
{
|
|
for(auto &field : hData->mFds)
|
|
{
|
|
for(auto &elev : field.mEvs)
|
|
{
|
|
for(auto &azd : elev.mAzs)
|
|
{
|
|
for(ti = 0;ti < channels;ti++)
|
|
azd.mDelays[ti] = CalcLTD(elev.mElevation, azd.mAzimuth, radius, field.mDistance);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if(customRatio != 1.0)
|
|
{
|
|
for(auto &field : hData->mFds)
|
|
{
|
|
for(auto &elev : field.mEvs)
|
|
{
|
|
for(auto &azd : elev.mAzs)
|
|
{
|
|
for(ti = 0;ti < channels;ti++)
|
|
azd.mDelays[ti] *= customRatio;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
double maxHrtd{0.0};
|
|
for(auto &field : hData->mFds)
|
|
{
|
|
double minHrtd{std::numeric_limits<double>::infinity()};
|
|
for(auto &elev : field.mEvs)
|
|
{
|
|
for(auto &azd : elev.mAzs)
|
|
{
|
|
for(ti = 0;ti < channels;ti++)
|
|
minHrtd = std::min(azd.mDelays[ti], minHrtd);
|
|
}
|
|
}
|
|
|
|
for(auto &elev : field.mEvs)
|
|
{
|
|
for(auto &azd : elev.mAzs)
|
|
{
|
|
for(ti = 0;ti < channels;ti++)
|
|
{
|
|
azd.mDelays[ti] = (azd.mDelays[ti]-minHrtd) * hData->mIrRate;
|
|
maxHrtd = std::max(maxHrtd, azd.mDelays[ti]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if(maxHrtd > MaxHrtd)
|
|
{
|
|
fprintf(stdout, " Scaling for max delay of %f samples to %f\n...\n", maxHrtd, MaxHrtd);
|
|
const double scale{MaxHrtd / maxHrtd};
|
|
for(auto &field : hData->mFds)
|
|
{
|
|
for(auto &elev : field.mEvs)
|
|
{
|
|
for(auto &azd : elev.mAzs)
|
|
{
|
|
for(ti = 0;ti < channels;ti++)
|
|
azd.mDelays[ti] *= scale;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// Allocate and configure dynamic HRIR structures.
|
|
bool PrepareHrirData(const al::span<const double> distances,
|
|
const al::span<const uint,MAX_FD_COUNT> evCounts,
|
|
const al::span<const std::array<uint,MAX_EV_COUNT>,MAX_FD_COUNT> azCounts, HrirDataT *hData)
|
|
{
|
|
uint evTotal{0}, azTotal{0};
|
|
|
|
for(size_t fi{0};fi < distances.size();++fi)
|
|
{
|
|
evTotal += evCounts[fi];
|
|
for(size_t ei{0};ei < evCounts[fi];++ei)
|
|
azTotal += azCounts[fi][ei];
|
|
}
|
|
if(!evTotal || !azTotal)
|
|
return false;
|
|
|
|
hData->mEvsBase.resize(evTotal);
|
|
hData->mAzsBase.resize(azTotal);
|
|
hData->mFds.resize(distances.size());
|
|
hData->mIrCount = azTotal;
|
|
evTotal = 0;
|
|
azTotal = 0;
|
|
for(size_t fi{0};fi < distances.size();++fi)
|
|
{
|
|
hData->mFds[fi].mDistance = distances[fi];
|
|
hData->mFds[fi].mEvStart = 0;
|
|
hData->mFds[fi].mEvs = al::span{hData->mEvsBase}.subspan(evTotal, evCounts[fi]);
|
|
evTotal += evCounts[fi];
|
|
for(uint ei{0};ei < evCounts[fi];++ei)
|
|
{
|
|
uint azCount = azCounts[fi][ei];
|
|
|
|
hData->mFds[fi].mEvs[ei].mElevation = -al::numbers::pi / 2.0 + al::numbers::pi * ei /
|
|
(evCounts[fi] - 1);
|
|
hData->mFds[fi].mEvs[ei].mAzs = al::span{hData->mAzsBase}.subspan(azTotal, azCount);
|
|
for(uint ai{0};ai < azCount;ai++)
|
|
{
|
|
hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth = 2.0 * al::numbers::pi * ai / azCount;
|
|
hData->mFds[fi].mEvs[ei].mAzs[ai].mIndex = azTotal + ai;
|
|
hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[0] = 0.0;
|
|
hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[1] = 0.0;
|
|
hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[0] = {};
|
|
hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[1] = {};
|
|
}
|
|
azTotal += azCount;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
/* Parse the data set definition and process the source data, storing the
|
|
* resulting data set as desired. If the input name is NULL it will read
|
|
* from standard input.
|
|
*/
|
|
bool ProcessDefinition(std::string_view inName, const uint outRate, const ChannelModeT chanMode,
|
|
const bool farfield, const uint numThreads, const uint fftSize, const bool equalize,
|
|
const bool surface, const double limit, const uint truncSize, const HeadModelT model,
|
|
const double radius, const std::string_view outName)
|
|
{
|
|
HrirDataT hData;
|
|
|
|
fprintf(stdout, "Using %u thread%s.\n", numThreads, (numThreads==1)?"":"s");
|
|
if(inName.empty() || inName == "-"sv)
|
|
{
|
|
inName = "stdin"sv;
|
|
fprintf(stdout, "Reading HRIR definition from %.*s...\n", al::sizei(inName),
|
|
inName.data());
|
|
if(!LoadDefInput(std::cin, {}, inName, fftSize, truncSize, outRate, chanMode, &hData))
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
auto input = std::make_unique<std::ifstream>(std::filesystem::u8path(inName));
|
|
if(!input->is_open())
|
|
{
|
|
fprintf(stderr, "Error: Could not open input file '%.*s'\n", al::sizei(inName),
|
|
inName.data());
|
|
return false;
|
|
}
|
|
|
|
std::array<char,4> startbytes{};
|
|
input->read(startbytes.data(), startbytes.size());
|
|
if(input->gcount() != startbytes.size() || !input->good())
|
|
{
|
|
fprintf(stderr, "Error: Could not read input file '%.*s'\n", al::sizei(inName),
|
|
inName.data());
|
|
return false;
|
|
}
|
|
|
|
if(startbytes[0] == '\x89' && startbytes[1] == 'H' && startbytes[2] == 'D'
|
|
&& startbytes[3] == 'F')
|
|
{
|
|
input = nullptr;
|
|
fprintf(stdout, "Reading HRTF data from %.*s...\n", al::sizei(inName),
|
|
inName.data());
|
|
if(!LoadSofaFile(inName, numThreads, fftSize, truncSize, outRate, chanMode, &hData))
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
fprintf(stdout, "Reading HRIR definition from %.*s...\n", al::sizei(inName),
|
|
inName.data());
|
|
if(!LoadDefInput(*input, startbytes, inName, fftSize, truncSize, outRate, chanMode,
|
|
&hData))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if(equalize)
|
|
{
|
|
uint c{(hData.mChannelType == CT_STEREO) ? 2u : 1u};
|
|
uint m{hData.mFftSize/2u + 1u};
|
|
auto dfa = std::vector<double>(size_t{c} * m);
|
|
|
|
if(hData.mFds.size() > 1)
|
|
{
|
|
fprintf(stdout, "Balancing field magnitudes...\n");
|
|
BalanceFieldMagnitudes(&hData, c, m);
|
|
}
|
|
fprintf(stdout, "Calculating diffuse-field average...\n");
|
|
CalculateDiffuseFieldAverage(&hData, c, m, surface, limit, dfa);
|
|
fprintf(stdout, "Performing diffuse-field equalization...\n");
|
|
DiffuseFieldEqualize(c, m, dfa, &hData);
|
|
}
|
|
if(hData.mFds.size() > 1)
|
|
{
|
|
fprintf(stdout, "Sorting %zu fields...\n", hData.mFds.size());
|
|
std::sort(hData.mFds.begin(), hData.mFds.end(),
|
|
[](const HrirFdT &lhs, const HrirFdT &rhs) noexcept
|
|
{ return lhs.mDistance < rhs.mDistance; });
|
|
if(farfield)
|
|
{
|
|
fprintf(stdout, "Clearing %zu near field%s...\n", hData.mFds.size()-1,
|
|
(hData.mFds.size()-1 != 1) ? "s" : "");
|
|
hData.mFds.erase(hData.mFds.cbegin(), hData.mFds.cend()-1);
|
|
}
|
|
}
|
|
fprintf(stdout, "Synthesizing missing elevations...\n");
|
|
if(model == HM_Dataset)
|
|
SynthesizeOnsets(&hData);
|
|
SynthesizeHrirs(&hData);
|
|
fprintf(stdout, "Performing minimum phase reconstruction...\n");
|
|
ReconstructHrirs(&hData, numThreads);
|
|
fprintf(stdout, "Truncating minimum-phase HRIRs...\n");
|
|
hData.mIrPoints = truncSize;
|
|
fprintf(stdout, "Normalizing final HRIRs...\n");
|
|
NormalizeHrirs(&hData);
|
|
fprintf(stdout, "Calculating impulse delays...\n");
|
|
CalculateHrtds(model, (radius > DefaultCustomRadius) ? radius : hData.mRadius, &hData);
|
|
|
|
const auto rateStr = std::to_string(hData.mIrRate);
|
|
const auto expName = StrSubst(outName, "%r"sv, rateStr);
|
|
fprintf(stdout, "Creating MHR data set %s...\n", expName.c_str());
|
|
return StoreMhr(&hData, expName);
|
|
}
|
|
|
|
void PrintHelp(const std::string_view argv0, FILE *ofile)
|
|
{
|
|
fprintf(ofile, "Usage: %.*s [<option>...]\n\n", al::sizei(argv0), argv0.data());
|
|
fprintf(ofile, "Options:\n");
|
|
fprintf(ofile, " -r <rate> Change the data set sample rate to the specified value and\n");
|
|
fprintf(ofile, " resample the HRIRs accordingly.\n");
|
|
fprintf(ofile, " -m Change the data set to mono, mirroring the left ear for the\n");
|
|
fprintf(ofile, " right ear.\n");
|
|
fprintf(ofile, " -a Change the data set to single field, using the farthest field.\n");
|
|
fprintf(ofile, " -j <threads> Number of threads used to process HRIRs (default: 2).\n");
|
|
fprintf(ofile, " -f <points> Override the FFT window size (default: %u).\n", DefaultFftSize);
|
|
fprintf(ofile, " -e {on|off} Toggle diffuse-field equalization (default: %s).\n", (DefaultEqualize ? "on" : "off"));
|
|
fprintf(ofile, " -s {on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DefaultSurface ? "on" : "off"));
|
|
fprintf(ofile, " -l {<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n");
|
|
fprintf(ofile, " average (default: %.2f).\n", DefaultLimit);
|
|
fprintf(ofile, " -w <points> Specify the size of the truncation window that's applied\n");
|
|
fprintf(ofile, " after minimum-phase reconstruction (default: %u).\n", DefaultTruncSize);
|
|
fprintf(ofile, " -d {dataset| Specify the model used for calculating the head-delay timing\n");
|
|
fprintf(ofile, " sphere} values (default: %s).\n", ((HM_Default == HM_Dataset) ? "dataset" : "sphere"));
|
|
fprintf(ofile, " -c <radius> Use a customized head radius measured to-ear in meters.\n");
|
|
fprintf(ofile, " -i <filename> Specify an HRIR definition file to use (defaults to stdin).\n");
|
|
fprintf(ofile, " -o <filename> Specify an output file. Use of '%%r' will be substituted with\n");
|
|
fprintf(ofile, " the data set sample rate.\n");
|
|
}
|
|
|
|
// Standard command line dispatch.
|
|
int main(al::span<std::string_view> args)
|
|
{
|
|
if(args.size() < 2)
|
|
{
|
|
fprintf(stdout, "HRTF Processing and Composition Utility\n\n");
|
|
PrintHelp(args[0], stdout);
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
std::string_view outName{"./oalsoft_hrtf_%r.mhr"sv};
|
|
uint outRate{0};
|
|
ChannelModeT chanMode{CM_AllowStereo};
|
|
uint fftSize{DefaultFftSize};
|
|
bool equalize{DefaultEqualize};
|
|
bool surface{DefaultSurface};
|
|
double limit{DefaultLimit};
|
|
uint numThreads{2};
|
|
uint truncSize{DefaultTruncSize};
|
|
HeadModelT model{HM_Default};
|
|
double radius{DefaultCustomRadius};
|
|
bool farfield{false};
|
|
std::string_view inName;
|
|
|
|
const std::string_view optlist{"r:maj:f:e:s:l:w:d:c:e:i:o:h"sv};
|
|
const auto arg0 = args[0];
|
|
args = args.subspan(1);
|
|
std::string_view optarg;
|
|
size_t argplace{0};
|
|
|
|
auto getarg = [&args,&argplace,&optarg,optlist]
|
|
{
|
|
while(!args.empty() && argplace >= args[0].size())
|
|
{
|
|
argplace = 0;
|
|
args = args.subspan(1);
|
|
}
|
|
if(args.empty())
|
|
return 0;
|
|
|
|
if(argplace == 0)
|
|
{
|
|
if(args[0] == "--"sv)
|
|
return 0;
|
|
|
|
if(args[0][0] != '-' || args[0].size() == 1)
|
|
{
|
|
fprintf(stderr, "Invalid argument: %.*s\n", al::sizei(args[0]), args[0].data());
|
|
return -1;
|
|
}
|
|
++argplace;
|
|
}
|
|
|
|
const char nextopt{args[0][argplace]};
|
|
const auto listidx = optlist.find(nextopt);
|
|
if(listidx >= optlist.size())
|
|
{
|
|
fprintf(stderr, "Unknown argument: -%c\n", nextopt);
|
|
return -1;
|
|
}
|
|
const bool needsarg{listidx+1 < optlist.size() && optlist[listidx+1] == ':'};
|
|
if(needsarg && (argplace+1 < args[0].size() || args.size() < 2))
|
|
{
|
|
fprintf(stderr, "Missing parameter for argument: -%c\n", nextopt);
|
|
return -1;
|
|
}
|
|
if(++argplace == args[0].size())
|
|
{
|
|
if(needsarg)
|
|
optarg = args[1];
|
|
argplace = 0;
|
|
args = args.subspan(1u + needsarg);
|
|
}
|
|
|
|
return int{nextopt};
|
|
};
|
|
|
|
while(auto opt = getarg())
|
|
{
|
|
std::size_t endpos{};
|
|
switch(opt)
|
|
{
|
|
case 'r':
|
|
outRate = static_cast<uint>(std::stoul(std::string{optarg}, &endpos, 10));
|
|
if(endpos != optarg.size() || outRate < MIN_RATE || outRate > MAX_RATE)
|
|
{
|
|
fprintf(stderr, "\nError: Got unexpected value \"%.*s\" for option -%c, expected between %u to %u.\n",
|
|
al::sizei(optarg), optarg.data(), opt, MIN_RATE, MAX_RATE);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
break;
|
|
|
|
case 'm':
|
|
chanMode = CM_ForceMono;
|
|
break;
|
|
|
|
case 'a':
|
|
farfield = true;
|
|
break;
|
|
|
|
case 'j':
|
|
numThreads = static_cast<uint>(std::stoul(std::string{optarg}, &endpos, 10));
|
|
if(endpos != optarg.size() || numThreads > 64)
|
|
{
|
|
fprintf(stderr, "\nError: Got unexpected value \"%.*s\" for option -%c, expected between %u to %u.\n",
|
|
al::sizei(optarg), optarg.data(), opt, 0, 64);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if(numThreads == 0)
|
|
numThreads = std::thread::hardware_concurrency();
|
|
break;
|
|
|
|
case 'f':
|
|
fftSize = static_cast<uint>(std::stoul(std::string{optarg}, &endpos, 10));
|
|
if(endpos != optarg.size() || (fftSize&(fftSize-1)) || fftSize < MinFftSize
|
|
|| fftSize > MaxFftSize)
|
|
{
|
|
fprintf(stderr, "\nError: Got unexpected value \"%.*s\" for option -%c, expected a power-of-two between %u to %u.\n",
|
|
al::sizei(optarg), optarg.data(), opt, MinFftSize, MaxFftSize);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
break;
|
|
|
|
case 'e':
|
|
if(optarg == "on"sv)
|
|
equalize = true;
|
|
else if(optarg == "off"sv)
|
|
equalize = false;
|
|
else
|
|
{
|
|
fprintf(stderr, "\nError: Got unexpected value \"%.*s\" for option -%c, expected on or off.\n",
|
|
al::sizei(optarg), optarg.data(), opt);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
break;
|
|
|
|
case 's':
|
|
if(optarg == "on"sv)
|
|
surface = true;
|
|
else if(optarg == "off"sv)
|
|
surface = false;
|
|
else
|
|
{
|
|
fprintf(stderr, "\nError: Got unexpected value \"%.*s\" for option -%c, expected on or off.\n",
|
|
al::sizei(optarg), optarg.data(), opt);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
break;
|
|
|
|
case 'l':
|
|
if(optarg == "none"sv)
|
|
limit = 0.0;
|
|
else
|
|
{
|
|
limit = std::stod(std::string{optarg}, &endpos);
|
|
if(endpos != optarg.size() || limit < MinLimit || limit > MaxLimit)
|
|
{
|
|
fprintf(stderr, "\nError: Got unexpected value \"%.*s\" for option -%c, expected between %.0f to %.0f.\n",
|
|
al::sizei(optarg), optarg.data(), opt, MinLimit, MaxLimit);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 'w':
|
|
truncSize = static_cast<uint>(std::stoul(std::string{optarg}, &endpos, 10));
|
|
if(endpos != optarg.size() || truncSize < MinTruncSize || truncSize > MaxTruncSize)
|
|
{
|
|
fprintf(stderr, "\nError: Got unexpected value \"%.*s\" for option -%c, expected between %u to %u.\n",
|
|
al::sizei(optarg), optarg.data(), opt, MinTruncSize, MaxTruncSize);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
break;
|
|
|
|
case 'd':
|
|
if(optarg == "dataset"sv)
|
|
model = HM_Dataset;
|
|
else if(optarg == "sphere"sv)
|
|
model = HM_Sphere;
|
|
else
|
|
{
|
|
fprintf(stderr, "\nError: Got unexpected value \"%.*s\" for option -%c, expected dataset or sphere.\n",
|
|
al::sizei(optarg), optarg.data(), opt);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
break;
|
|
|
|
case 'c':
|
|
radius = std::stod(std::string{optarg}, &endpos);
|
|
if(endpos != optarg.size() || radius < MinCustomRadius || radius > MaxCustomRadius)
|
|
{
|
|
fprintf(stderr, "\nError: Got unexpected value \"%.*s\" for option -%c, expected between %.2f to %.2f.\n",
|
|
al::sizei(optarg), optarg.data(), opt, MinCustomRadius, MaxCustomRadius);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
break;
|
|
|
|
case 'i':
|
|
inName = optarg;
|
|
break;
|
|
|
|
case 'o':
|
|
outName = optarg;
|
|
break;
|
|
|
|
case 'h':
|
|
PrintHelp(arg0, stdout);
|
|
exit(EXIT_SUCCESS);
|
|
|
|
default: /* '?' */
|
|
PrintHelp(arg0, stderr);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
const int ret{ProcessDefinition(inName, outRate, chanMode, farfield, numThreads, fftSize,
|
|
equalize, surface, limit, truncSize, model, radius, outName)};
|
|
if(!ret) return -1;
|
|
fprintf(stdout, "Operation completed.\n");
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
} /* namespace */
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
assert(argc >= 0);
|
|
auto args = std::vector<std::string_view>(static_cast<unsigned int>(argc));
|
|
std::copy_n(argv, args.size(), args.begin());
|
|
return main(al::span{args});
|
|
}
|