Torque3D/Engine/lib/openal-soft/utils/makemhr/loaddef.cpp
2024-06-30 14:35:57 -05:00

2062 lines
64 KiB
C++

/*
* HRTF utility for producing and demonstrating the process of creating an
* OpenAL Soft compatible HRIR data set.
*
* Copyright (C) 2011-2019 Christopher Fitzgerald
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
*/
#include "loaddef.h"
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <filesystem>
#include <fstream>
#include <iterator>
#include <limits>
#include <memory>
#include <optional>
#include <string>
#include <string_view>
#include <vector>
#include "albit.h"
#include "almalloc.h"
#include "alnumeric.h"
#include "alspan.h"
#include "alstring.h"
#include "makemhr.h"
#include "polyphase_resampler.h"
#include "mysofa.h"
namespace {
// Constants for accessing the token reader's ring buffer.
constexpr uint TRRingBits{16};
constexpr uint TRRingSize{1 << TRRingBits};
constexpr uint TRRingMask{TRRingSize - 1};
// The token reader's load interval in bytes.
constexpr uint TRLoadSize{TRRingSize >> 2};
// Token reader state for parsing the data set definition.
struct TokenReaderT {
std::istream &mIStream;
std::string mName{};
uint mLine{};
uint mColumn{};
std::array<char,TRRingSize> mRing{};
std::streamsize mIn{};
std::streamsize mOut{};
TokenReaderT(std::istream &istream) noexcept : mIStream{istream} { }
TokenReaderT(const TokenReaderT&) = default;
};
// The maximum identifier length used when processing the data set
// definition.
constexpr uint MaxIdentLen{16};
// The limits for the listener's head 'radius' in the data set definition.
constexpr double MinRadius{0.05};
constexpr double MaxRadius{0.15};
// The maximum number of channels that can be addressed for a WAVE file
// source listed in the data set definition.
constexpr uint MaxWaveChannels{65535};
// The limits to the byte size for a binary source listed in the definition
// file.
enum : uint {
MinBinSize = 2,
MaxBinSize = 4
};
// The limits to the number of significant bits for an ASCII source listed in
// the data set definition.
enum : uint {
MinASCIIBits = 16,
MaxASCIIBits = 32
};
// The four-character-codes for RIFF/RIFX WAVE file chunks.
enum : uint {
FOURCC_RIFF = 0x46464952, // 'RIFF'
FOURCC_RIFX = 0x58464952, // 'RIFX'
FOURCC_WAVE = 0x45564157, // 'WAVE'
FOURCC_FMT = 0x20746D66, // 'fmt '
FOURCC_DATA = 0x61746164, // 'data'
FOURCC_LIST = 0x5453494C, // 'LIST'
FOURCC_WAVL = 0x6C766177, // 'wavl'
FOURCC_SLNT = 0x746E6C73, // 'slnt'
};
// The supported wave formats.
enum : uint {
WAVE_FORMAT_PCM = 0x0001,
WAVE_FORMAT_IEEE_FLOAT = 0x0003,
WAVE_FORMAT_EXTENSIBLE = 0xFFFE,
};
enum ByteOrderT {
BO_NONE,
BO_LITTLE,
BO_BIG
};
// Source format for the references listed in the data set definition.
enum SourceFormatT {
SF_NONE,
SF_ASCII, // ASCII text file.
SF_BIN_LE, // Little-endian binary file.
SF_BIN_BE, // Big-endian binary file.
SF_WAVE, // RIFF/RIFX WAVE file.
SF_SOFA // Spatially Oriented Format for Accoustics (SOFA) file.
};
// Element types for the references listed in the data set definition.
enum ElementTypeT {
ET_NONE,
ET_INT, // Integer elements.
ET_FP // Floating-point elements.
};
// Source reference state used when loading sources.
struct SourceRefT {
SourceFormatT mFormat;
ElementTypeT mType;
uint mSize;
int mBits;
uint mChannel;
double mAzimuth;
double mElevation;
double mRadius;
uint mSkip;
uint mOffset;
std::array<char,MAX_PATH_LEN+1> mPath;
};
/* Whitespace is not significant. It can process tokens as identifiers, numbers
* (integer and floating-point), strings, and operators. Strings must be
* encapsulated by double-quotes and cannot span multiple lines.
*/
// Setup the reader on the given file. The filename can be NULL if no error
// output is desired.
void TrSetup(const al::span<const char> startbytes, const std::string_view filename,
TokenReaderT *tr)
{
std::string_view namepart;
if(!filename.empty())
{
const auto fslashpos = filename.rfind('/');
const auto bslashpos = filename.rfind('\\');
const auto slashpos = (bslashpos >= filename.size()) ? fslashpos :
(fslashpos >= filename.size()) ? bslashpos :
std::max(fslashpos, bslashpos);
if(slashpos < filename.size())
namepart = filename.substr(slashpos+1);
}
tr->mName = namepart;
tr->mLine = 1;
tr->mColumn = 1;
tr->mIn = 0;
tr->mOut = 0;
if(!startbytes.empty())
{
assert(startbytes.size() <= tr->mRing.size());
std::copy(startbytes.cbegin(), startbytes.cend(), tr->mRing.begin());
tr->mIn += std::streamsize(startbytes.size());
}
}
// Prime the reader's ring buffer, and return a result indicating that there
// is text to process.
auto TrLoad(TokenReaderT *tr) -> int
{
std::istream &istream = tr->mIStream;
std::streamsize toLoad{TRRingSize - static_cast<std::streamsize>(tr->mIn - tr->mOut)};
if(toLoad >= TRLoadSize && istream.good())
{
// Load TRLoadSize (or less if at the end of the file) per read.
toLoad = TRLoadSize;
const auto in = tr->mIn&TRRingMask;
std::streamsize count{TRRingSize - in};
if(count < toLoad)
{
istream.read(al::to_address(tr->mRing.begin() + in), count);
tr->mIn += istream.gcount();
istream.read(tr->mRing.data(), toLoad-count);
tr->mIn += istream.gcount();
}
else
{
istream.read(al::to_address(tr->mRing.begin() + in), toLoad);
tr->mIn += istream.gcount();
}
if(tr->mOut >= TRRingSize)
{
tr->mOut -= TRRingSize;
tr->mIn -= TRRingSize;
}
}
if(tr->mIn > tr->mOut)
return 1;
return 0;
}
// Error display routine. Only displays when the base name is not NULL.
void TrErrorVA(const TokenReaderT *tr, uint line, uint column, const char *format, va_list argPtr)
{
if(tr->mName.empty())
return;
fprintf(stderr, "\nError (%s:%u:%u): ", tr->mName.c_str(), line, column);
vfprintf(stderr, format, argPtr);
}
// Used to display an error at a saved line/column.
void TrErrorAt(const TokenReaderT *tr, uint line, uint column, const char *format, ...)
{
/* NOLINTBEGIN(*-array-to-pointer-decay) */
va_list argPtr;
va_start(argPtr, format);
TrErrorVA(tr, line, column, format, argPtr);
va_end(argPtr);
/* NOLINTEND(*-array-to-pointer-decay) */
}
// Used to display an error at the current line/column.
void TrError(const TokenReaderT *tr, const char *format, ...)
{
/* NOLINTBEGIN(*-array-to-pointer-decay) */
va_list argPtr;
va_start(argPtr, format);
TrErrorVA(tr, tr->mLine, tr->mColumn, format, argPtr);
va_end(argPtr);
/* NOLINTEND(*-array-to-pointer-decay) */
}
// Skips to the next line.
void TrSkipLine(TokenReaderT *tr)
{
char ch;
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TRRingMask];
tr->mOut++;
if(ch == '\n')
{
tr->mLine++;
tr->mColumn = 1;
break;
}
tr->mColumn ++;
}
}
// Skips to the next token.
auto TrSkipWhitespace(TokenReaderT *tr) -> int
{
while(TrLoad(tr))
{
char ch{tr->mRing[tr->mOut&TRRingMask]};
if(isspace(ch))
{
tr->mOut++;
if(ch == '\n')
{
tr->mLine++;
tr->mColumn = 1;
}
else
tr->mColumn++;
}
else if(ch == '#')
TrSkipLine(tr);
else
return 1;
}
return 0;
}
// Get the line and/or column of the next token (or the end of input).
void TrIndication(TokenReaderT *tr, uint *line, uint *column)
{
TrSkipWhitespace(tr);
if(line) *line = tr->mLine;
if(column) *column = tr->mColumn;
}
// Checks to see if a token is (likely to be) an identifier. It does not
// display any errors and will not proceed to the next token.
auto TrIsIdent(TokenReaderT *tr) -> int
{
if(!TrSkipWhitespace(tr))
return 0;
char ch{tr->mRing[tr->mOut&TRRingMask]};
return ch == '_' || isalpha(ch);
}
// Checks to see if a token is the given operator. It does not display any
// errors and will not proceed to the next token.
auto TrIsOperator(TokenReaderT *tr, const std::string_view op) -> int
{
if(!TrSkipWhitespace(tr))
return 0;
auto out = tr->mOut;
size_t len{0};
while(len < op.size() && out < tr->mIn)
{
if(tr->mRing[out&TRRingMask] != op[len])
break;
++len;
++out;
}
if(len == op.size())
return 1;
return 0;
}
/* The TrRead*() routines obtain the value of a matching token type. They
* display type, form, and boundary errors and will proceed to the next
* token.
*/
// Reads and validates an identifier token.
auto TrReadIdent(TokenReaderT *tr, const al::span<char> ident) -> int
{
assert(!ident.empty());
const size_t maxLen{ident.size()-1};
uint col{tr->mColumn};
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
char ch{tr->mRing[tr->mOut&TRRingMask]};
if(ch == '_' || isalpha(ch))
{
size_t len{0};
do {
if(len < maxLen)
ident[len] = ch;
++len;
tr->mOut++;
if(!TrLoad(tr))
break;
ch = tr->mRing[tr->mOut&TRRingMask];
} while(ch == '_' || isdigit(ch) || isalpha(ch));
tr->mColumn += static_cast<uint>(len);
if(len < maxLen)
{
ident[len] = '\0';
return 1;
}
TrErrorAt(tr, tr->mLine, col, "Identifier is too long.\n");
return 0;
}
}
TrErrorAt(tr, tr->mLine, col, "Expected an identifier.\n");
return 0;
}
// Reads and validates (including bounds) an integer token.
auto TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value) -> int
{
uint col{tr->mColumn};
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
uint len{0};
std::array<char,64+1> temp{};
char ch{tr->mRing[tr->mOut&TRRingMask]};
if(ch == '+' || ch == '-')
{
temp[len] = ch;
len++;
tr->mOut++;
}
uint digis{0};
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TRRingMask];
if(!isdigit(ch)) break;
if(len < 64)
temp[len] = ch;
len++;
digis++;
tr->mOut++;
}
tr->mColumn += len;
if(digis > 0 && ch != '.' && !isalpha(ch))
{
if(len > 64)
{
TrErrorAt(tr, tr->mLine, col, "Integer is too long.");
return 0;
}
temp[len] = '\0';
*value = static_cast<int>(strtol(temp.data(), nullptr, 10));
if(*value < loBound || *value > hiBound)
{
TrErrorAt(tr, tr->mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound);
return 0;
}
return 1;
}
}
TrErrorAt(tr, tr->mLine, col, "Expected an integer.\n");
return 0;
}
// Reads and validates (including bounds) a float token.
auto TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value) -> int
{
uint col{tr->mColumn};
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
std::array<char,64+1> temp{};
uint len{0};
char ch{tr->mRing[tr->mOut&TRRingMask]};
if(ch == '+' || ch == '-')
{
temp[len] = ch;
len++;
tr->mOut++;
}
uint digis{0};
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TRRingMask];
if(!isdigit(ch)) break;
if(len < 64)
temp[len] = ch;
len++;
digis++;
tr->mOut++;
}
if(ch == '.')
{
if(len < 64)
temp[len] = ch;
len++;
tr->mOut++;
}
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TRRingMask];
if(!isdigit(ch)) break;
if(len < 64)
temp[len] = ch;
len++;
digis++;
tr->mOut++;
}
if(digis > 0)
{
if(ch == 'E' || ch == 'e')
{
if(len < 64)
temp[len] = ch;
len++;
digis = 0;
tr->mOut++;
if(ch == '+' || ch == '-')
{
if(len < 64)
temp[len] = ch;
len++;
tr->mOut++;
}
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TRRingMask];
if(!isdigit(ch)) break;
if(len < 64)
temp[len] = ch;
len++;
digis++;
tr->mOut++;
}
}
tr->mColumn += len;
if(digis > 0 && ch != '.' && !isalpha(ch))
{
if(len > 64)
{
TrErrorAt(tr, tr->mLine, col, "Float is too long.");
return 0;
}
temp[len] = '\0';
*value = strtod(temp.data(), nullptr);
if(*value < loBound || *value > hiBound)
{
TrErrorAt(tr, tr->mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound);
return 0;
}
return 1;
}
}
else
tr->mColumn += len;
}
TrErrorAt(tr, tr->mLine, col, "Expected a float.\n");
return 0;
}
// Reads and validates a string token.
auto TrReadString(TokenReaderT *tr, const al::span<char> text) -> int
{
assert(!text.empty());
const size_t maxLen{text.size()-1};
uint col{tr->mColumn};
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
if(char ch{tr->mRing[tr->mOut&TRRingMask]}; ch == '\"')
{
tr->mOut++;
size_t len{0};
while(TrLoad(tr))
{
ch = tr->mRing[tr->mOut&TRRingMask];
tr->mOut++;
if(ch == '\"')
break;
if(ch == '\n')
{
TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of line.\n");
return 0;
}
if(len < maxLen)
text[len] = ch;
len++;
}
if(ch != '\"')
{
tr->mColumn += static_cast<uint>(1 + len);
TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input.\n");
return 0;
}
tr->mColumn += static_cast<uint>(2 + len);
if(len > maxLen)
{
TrErrorAt(tr, tr->mLine, col, "String is too long.\n");
return 0;
}
text[len] = '\0';
return 1;
}
}
TrErrorAt(tr, tr->mLine, col, "Expected a string.\n");
return 0;
}
// Reads and validates the given operator.
auto TrReadOperator(TokenReaderT *tr, const std::string_view op) -> int
{
uint col{tr->mColumn};
if(TrSkipWhitespace(tr))
{
col = tr->mColumn;
size_t len{0};
while(len < op.size() && TrLoad(tr))
{
if(tr->mRing[tr->mOut&TRRingMask] != op[len])
break;
++len;
tr->mOut += 1;
}
tr->mColumn += static_cast<uint>(len);
if(len == op.size())
return 1;
}
TrErrorAt(tr, tr->mLine, col, "Expected '%s' operator.\n", op);
return 0;
}
/*************************
*** File source input ***
*************************/
// Read a binary value of the specified byte order and byte size from a file,
// storing it as a 32-bit unsigned integer.
auto ReadBin4(std::istream &istream, const char *filename, const ByteOrderT order,
const uint bytes, uint32_t *out) -> int
{
std::array<uint8_t,4> in{};
istream.read(reinterpret_cast<char*>(in.data()), static_cast<int>(bytes));
if(istream.gcount() != bytes)
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
return 0;
}
uint32_t accum{0};
switch(order)
{
case BO_LITTLE:
for(uint i = 0;i < bytes;i++)
accum = (accum<<8) | in[bytes - i - 1];
break;
case BO_BIG:
for(uint i = 0;i < bytes;i++)
accum = (accum<<8) | in[i];
break;
default:
break;
}
*out = accum;
return 1;
}
// Read a binary value of the specified byte order from a file, storing it as
// a 64-bit unsigned integer.
auto ReadBin8(std::istream &istream, const char *filename, const ByteOrderT order, uint64_t *out) -> int
{
std::array<uint8_t,8> in{};
istream.read(reinterpret_cast<char*>(in.data()), 8);
if(istream.gcount() != 8)
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
return 0;
}
uint64_t accum{};
switch(order)
{
case BO_LITTLE:
for(uint i{0};i < 8;++i)
accum = (accum<<8) | in[8 - i - 1];
break;
case BO_BIG:
for(uint i{0};i < 8;++i)
accum = (accum<<8) | in[i];
break;
default:
break;
}
*out = accum;
return 1;
}
/* Read a binary value of the specified type, byte order, and byte size from
* a file, converting it to a double. For integer types, the significant
* bits are used to normalize the result. The sign of bits determines
* whether they are padded toward the MSB (negative) or LSB (positive).
* Floating-point types are not normalized.
*/
auto ReadBinAsDouble(std::istream &istream, const char *filename, const ByteOrderT order,
const ElementTypeT type, const uint bytes, const int bits, double *out) -> int
{
*out = 0.0;
if(bytes > 4)
{
uint64_t val{};
if(!ReadBin8(istream, filename, order, &val))
return 0;
if(type == ET_FP)
*out = al::bit_cast<double>(val);
}
else
{
uint32_t val{};
if(!ReadBin4(istream, filename, order, bytes, &val))
return 0;
if(type == ET_FP)
*out = al::bit_cast<float>(val);
else
{
if(bits > 0)
val >>= (8*bytes) - (static_cast<uint>(bits));
else
val &= (0xFFFFFFFF >> (32+bits));
if(val&static_cast<uint>(1<<(std::abs(bits)-1)))
val |= (0xFFFFFFFF << std::abs(bits));
*out = static_cast<int32_t>(val) / static_cast<double>(1<<(std::abs(bits)-1));
}
}
return 1;
}
/* Read an ascii value of the specified type from a file, converting it to a
* double. For integer types, the significant bits are used to normalize the
* result. The sign of the bits should always be positive. This also skips
* up to one separator character before the element itself.
*/
auto ReadAsciiAsDouble(TokenReaderT *tr, const char *filename, const ElementTypeT type,
const uint bits, double *out) -> int
{
if(TrIsOperator(tr, ","))
TrReadOperator(tr, ",");
else if(TrIsOperator(tr, ":"))
TrReadOperator(tr, ":");
else if(TrIsOperator(tr, ";"))
TrReadOperator(tr, ";");
else if(TrIsOperator(tr, "|"))
TrReadOperator(tr, "|");
if(type == ET_FP)
{
if(!TrReadFloat(tr, -std::numeric_limits<double>::infinity(),
std::numeric_limits<double>::infinity(), out))
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
return 0;
}
}
else
{
int v;
if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v))
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", filename);
return 0;
}
*out = v / static_cast<double>((1<<(bits-1))-1);
}
return 1;
}
// Read the RIFF/RIFX WAVE format chunk from a file, validating it against
// the source parameters and data set metrics.
auto ReadWaveFormat(std::istream &istream, const ByteOrderT order, const uint hrirRate,
SourceRefT *src) -> int
{
uint32_t fourCC, chunkSize;
uint32_t format, channels, rate, dummy, block, size, bits;
chunkSize = 0;
do {
if(chunkSize > 0)
istream.seekg(static_cast<int>(chunkSize), std::ios::cur);
if(!ReadBin4(istream, src->mPath.data(), BO_LITTLE, 4, &fourCC)
|| !ReadBin4(istream, src->mPath.data(), order, 4, &chunkSize))
return 0;
} while(fourCC != FOURCC_FMT);
if(!ReadBin4(istream, src->mPath.data(), order, 2, &format)
|| !ReadBin4(istream, src->mPath.data(), order, 2, &channels)
|| !ReadBin4(istream, src->mPath.data(), order, 4, &rate)
|| !ReadBin4(istream, src->mPath.data(), order, 4, &dummy)
|| !ReadBin4(istream, src->mPath.data(), order, 2, &block))
return 0;
block /= channels;
if(chunkSize > 14)
{
if(!ReadBin4(istream, src->mPath.data(), order, 2, &size))
return 0;
size /= 8;
if(block > size)
size = block;
}
else
size = block;
if(format == WAVE_FORMAT_EXTENSIBLE)
{
istream.seekg(2, std::ios::cur);
if(!ReadBin4(istream, src->mPath.data(), order, 2, &bits))
return 0;
if(bits == 0)
bits = 8 * size;
istream.seekg(4, std::ios::cur);
if(!ReadBin4(istream, src->mPath.data(), order, 2, &format))
return 0;
istream.seekg(static_cast<int>(chunkSize - 26), std::ios::cur);
}
else
{
bits = 8 * size;
if(chunkSize > 14)
istream.seekg(static_cast<int>(chunkSize - 16), std::ios::cur);
else
istream.seekg(static_cast<int>(chunkSize - 14), std::ios::cur);
}
if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT)
{
fprintf(stderr, "\nError: Unsupported WAVE format in file '%s'.\n", src->mPath.data());
return 0;
}
if(src->mChannel >= channels)
{
fprintf(stderr, "\nError: Missing source channel in WAVE file '%s'.\n", src->mPath.data());
return 0;
}
if(rate != hrirRate)
{
fprintf(stderr, "\nError: Mismatched source sample rate in WAVE file '%s'.\n",
src->mPath.data());
return 0;
}
if(format == WAVE_FORMAT_PCM)
{
if(size < 2 || size > 4)
{
fprintf(stderr, "\nError: Unsupported sample size in WAVE file '%s'.\n",
src->mPath.data());
return 0;
}
if(bits < 16 || bits > (8*size))
{
fprintf(stderr, "\nError: Bad significant bits in WAVE file '%s'.\n",
src->mPath.data());
return 0;
}
src->mType = ET_INT;
}
else
{
if(size != 4 && size != 8)
{
fprintf(stderr, "\nError: Unsupported sample size in WAVE file '%s'.\n",
src->mPath.data());
return 0;
}
src->mType = ET_FP;
}
src->mSize = size;
src->mBits = static_cast<int>(bits);
src->mSkip = channels;
return 1;
}
// Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles.
auto ReadWaveData(std::istream &istream, const SourceRefT *src, const ByteOrderT order,
const al::span<double> hrir) -> int
{
auto pre = static_cast<int>(src->mSize * src->mChannel);
auto post = static_cast<int>(src->mSize * (src->mSkip - src->mChannel - 1));
auto skip = int{0};
for(size_t i{0};i < hrir.size();++i)
{
skip += pre;
if(skip > 0)
istream.seekg(skip, std::ios::cur);
if(!ReadBinAsDouble(istream, src->mPath.data(), order, src->mType, src->mSize, src->mBits,
&hrir[i]))
return 0;
skip = post;
}
if(skip > 0)
istream.seekg(skip, std::ios::cur);
return 1;
}
// Read the RIFF/RIFX WAVE list or data chunk, converting all elements to
// doubles.
auto ReadWaveList(std::istream &istream, const SourceRefT *src, const ByteOrderT order,
const al::span<double> hrir) -> int
{
uint32_t fourCC, chunkSize, listSize, count;
uint block, skip, offset, i;
double lastSample;
for(;;)
{
if(!ReadBin4(istream, src->mPath.data(), BO_LITTLE, 4, &fourCC)
|| !ReadBin4(istream, src->mPath.data(), order, 4, &chunkSize))
return 0;
if(fourCC == FOURCC_DATA)
{
block = src->mSize * src->mSkip;
count = chunkSize / block;
if(count < (src->mOffset + hrir.size()))
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", src->mPath.data());
return 0;
}
using off_type = std::istream::off_type;
istream.seekg(off_type(src->mOffset) * off_type(block), std::ios::cur);
if(!ReadWaveData(istream, src, order, hrir))
return 0;
return 1;
}
if(fourCC == FOURCC_LIST)
{
if(!ReadBin4(istream, src->mPath.data(), BO_LITTLE, 4, &fourCC))
return 0;
chunkSize -= 4;
if(fourCC == FOURCC_WAVL)
break;
}
if(chunkSize > 0)
istream.seekg(static_cast<long>(chunkSize), std::ios::cur);
}
listSize = chunkSize;
block = src->mSize * src->mSkip;
skip = src->mOffset;
offset = 0;
lastSample = 0.0;
while(offset < hrir.size() && listSize > 8)
{
if(!ReadBin4(istream, src->mPath.data(), BO_LITTLE, 4, &fourCC)
|| !ReadBin4(istream, src->mPath.data(), order, 4, &chunkSize))
return 0;
listSize -= 8 + chunkSize;
if(fourCC == FOURCC_DATA)
{
count = chunkSize / block;
if(count > skip)
{
using off_type = std::istream::off_type;
istream.seekg(off_type(skip) * off_type(block), std::ios::cur);
chunkSize -= skip * block;
count -= skip;
skip = 0;
if(count > (hrir.size() - offset))
count = static_cast<uint>(hrir.size() - offset);
if(!ReadWaveData(istream, src, order, hrir.subspan(offset, count)))
return 0;
chunkSize -= count * block;
offset += count;
lastSample = hrir[offset - 1];
}
else
{
skip -= count;
count = 0;
}
}
else if(fourCC == FOURCC_SLNT)
{
if(!ReadBin4(istream, src->mPath.data(), order, 4, &count))
return 0;
chunkSize -= 4;
if(count > skip)
{
count -= skip;
skip = 0;
if(count > (hrir.size() - offset))
count = static_cast<uint>(hrir.size() - offset);
for(i = 0; i < count; i ++)
hrir[offset + i] = lastSample;
offset += count;
}
else
{
skip -= count;
count = 0;
}
}
if(chunkSize > 0)
istream.seekg(static_cast<long>(chunkSize), std::ios::cur);
}
if(offset < hrir.size())
{
fprintf(stderr, "\nError: Bad read from file '%s'.\n", src->mPath.data());
return 0;
}
return 1;
}
// Load a source HRIR from an ASCII text file containing a list of elements
// separated by whitespace or common list operators (',', ';', ':', '|').
auto LoadAsciiSource(std::istream &istream, const SourceRefT *src, const al::span<double> hrir) -> int
{
TokenReaderT tr{istream};
TrSetup({}, {}, &tr);
for(uint i{0};i < src->mOffset;++i)
{
double dummy{};
if(!ReadAsciiAsDouble(&tr, src->mPath.data(), src->mType, static_cast<uint>(src->mBits),
&dummy))
return 0;
}
for(size_t i{0};i < hrir.size();++i)
{
if(!ReadAsciiAsDouble(&tr, src->mPath.data(), src->mType, static_cast<uint>(src->mBits),
&hrir[i]))
return 0;
for(uint j{0};j < src->mSkip;++j)
{
double dummy{};
if(!ReadAsciiAsDouble(&tr, src->mPath.data(), src->mType,
static_cast<uint>(src->mBits), &dummy))
return 0;
}
}
return 1;
}
// Load a source HRIR from a binary file.
auto LoadBinarySource(std::istream &istream, const SourceRefT *src, const ByteOrderT order,
const al::span<double> hrir) -> int
{
istream.seekg(static_cast<long>(src->mOffset), std::ios::beg);
for(size_t i{0};i < hrir.size();++i)
{
if(!ReadBinAsDouble(istream, src->mPath.data(), order, src->mType, src->mSize, src->mBits,
&hrir[i]))
return 0;
if(src->mSkip > 0)
istream.seekg(static_cast<long>(src->mSkip), std::ios::cur);
}
return 1;
}
// Load a source HRIR from a RIFF/RIFX WAVE file.
auto LoadWaveSource(std::istream &istream, SourceRefT *src, const uint hrirRate,
const al::span<double> hrir) -> int
{
uint32_t fourCC, dummy;
ByteOrderT order;
if(!ReadBin4(istream, src->mPath.data(), BO_LITTLE, 4, &fourCC)
|| !ReadBin4(istream, src->mPath.data(), BO_LITTLE, 4, &dummy))
return 0;
if(fourCC == FOURCC_RIFF)
order = BO_LITTLE;
else if(fourCC == FOURCC_RIFX)
order = BO_BIG;
else
{
fprintf(stderr, "\nError: No RIFF/RIFX chunk in file '%s'.\n", src->mPath.data());
return 0;
}
if(!ReadBin4(istream, src->mPath.data(), BO_LITTLE, 4, &fourCC))
return 0;
if(fourCC != FOURCC_WAVE)
{
fprintf(stderr, "\nError: Not a RIFF/RIFX WAVE file '%s'.\n", src->mPath.data());
return 0;
}
if(!ReadWaveFormat(istream, order, hrirRate, src))
return 0;
if(!ReadWaveList(istream, src, order, hrir))
return 0;
return 1;
}
struct SofaEasyDeleter {
void operator()(gsl::owner<MYSOFA_EASY*> sofa)
{
if(sofa->neighborhood) mysofa_neighborhood_free(sofa->neighborhood);
if(sofa->lookup) mysofa_lookup_free(sofa->lookup);
if(sofa->hrtf) mysofa_free(sofa->hrtf);
delete sofa;
}
};
using SofaEasyPtr = std::unique_ptr<MYSOFA_EASY,SofaEasyDeleter>;
struct SofaCacheEntry {
std::string mName;
uint mSampleRate{};
SofaEasyPtr mSofa;
};
std::vector<SofaCacheEntry> gSofaCache;
// Load a Spatially Oriented Format for Accoustics (SOFA) file.
auto LoadSofaFile(SourceRefT *src, const uint hrirRate, const uint n) -> MYSOFA_EASY*
{
const std::string_view srcname{src->mPath.data()};
auto iter = std::find_if(gSofaCache.begin(), gSofaCache.end(),
[srcname,hrirRate](SofaCacheEntry &entry) -> bool
{ return entry.mName == srcname && entry.mSampleRate == hrirRate; });
if(iter != gSofaCache.end()) return iter->mSofa.get();
SofaEasyPtr sofa{new(std::nothrow) MYSOFA_EASY{}};
if(!sofa)
{
fprintf(stderr, "\nError: Out of memory.\n");
return nullptr;
}
sofa->lookup = nullptr;
sofa->neighborhood = nullptr;
int err;
sofa->hrtf = mysofa_load(src->mPath.data(), &err);
if(!sofa->hrtf)
{
fprintf(stderr, "\nError: Could not load source file '%s' (error: %d).\n",
src->mPath.data(), err);
return nullptr;
}
/* NOTE: Some valid SOFA files are failing this check. */
err = mysofa_check(sofa->hrtf);
if(err != MYSOFA_OK)
fprintf(stderr, "\nWarning: Supposedly malformed source file '%s' (error: %d).\n",
src->mPath.data(), err);
if((src->mOffset + n) > sofa->hrtf->N)
{
fprintf(stderr, "\nError: Not enough samples in SOFA file '%s'.\n", src->mPath.data());
return nullptr;
}
if(src->mChannel >= sofa->hrtf->R)
{
fprintf(stderr, "\nError: Missing source receiver in SOFA file '%s'.\n",src->mPath.data());
return nullptr;
}
mysofa_tocartesian(sofa->hrtf);
sofa->lookup = mysofa_lookup_init(sofa->hrtf);
if(sofa->lookup == nullptr)
{
fprintf(stderr, "\nError: Out of memory.\n");
return nullptr;
}
gSofaCache.emplace_back(SofaCacheEntry{std::string{srcname}, hrirRate, std::move(sofa)});
return gSofaCache.back().mSofa.get();
}
// Copies the HRIR data from a particular SOFA measurement.
void ExtractSofaHrir(const MYSOFA_HRTF *hrtf, const size_t index, const size_t channel,
const size_t offset, const al::span<double> hrir)
{
const auto irValues = al::span{hrtf->DataIR.values, hrtf->DataIR.elements}
.subspan((index*hrtf->R + channel)*hrtf->N + offset);
std::copy_n(irValues.cbegin(), hrir.size(), hrir.begin());
}
// Load a source HRIR from a Spatially Oriented Format for Accoustics (SOFA)
// file.
auto LoadSofaSource(SourceRefT *src, const uint hrirRate, const al::span<double> hrir) -> int
{
MYSOFA_EASY *sofa{LoadSofaFile(src, hrirRate, static_cast<uint>(hrir.size()))};
if(sofa == nullptr) return 0;
/* NOTE: At some point it may be beneficial or necessary to consider the
various coordinate systems, listener/source orientations, and
directional vectors defined in the SOFA file.
*/
std::array target{
static_cast<float>(src->mAzimuth),
static_cast<float>(src->mElevation),
static_cast<float>(src->mRadius)
};
mysofa_s2c(target.data());
int nearest{mysofa_lookup(sofa->lookup, target.data())};
if(nearest < 0)
{
fprintf(stderr, "\nError: Lookup failed in source file '%s'.\n", src->mPath.data());
return 0;
}
al::span<float,3> coords = al::span{sofa->hrtf->SourcePosition.values, sofa->hrtf->M*3_uz}
.subspan(static_cast<uint>(nearest)*3_uz).first<3>();
if(std::abs(coords[0] - target[0]) > 0.001 || std::abs(coords[1] - target[1]) > 0.001
|| std::abs(coords[2] - target[2]) > 0.001)
{
fprintf(stderr, "\nError: No impulse response at coordinates (%.3fr, %.1fev, %.1faz) in file '%s'.\n",
src->mRadius, src->mElevation, src->mAzimuth, src->mPath.data());
target[0] = coords[0];
target[1] = coords[1];
target[2] = coords[2];
mysofa_c2s(target.data());
fprintf(stderr, " Nearest candidate at (%.3fr, %.1fev, %.1faz).\n", target[2],
target[1], target[0]);
return 0;
}
ExtractSofaHrir(sofa->hrtf, static_cast<uint>(nearest), src->mChannel, src->mOffset, hrir);
return 1;
}
// Load a source HRIR from a supported file type.
auto LoadSource(SourceRefT *src, const uint hrirRate, const al::span<double> hrir) -> int
{
std::unique_ptr<std::istream> istream;
if(src->mFormat != SF_SOFA)
{
if(src->mFormat == SF_ASCII)
istream = std::make_unique<std::ifstream>(std::filesystem::u8path(src->mPath.data()));
else
istream = std::make_unique<std::ifstream>(std::filesystem::u8path(src->mPath.data()),
std::ios::binary);
if(!istream->good())
{
fprintf(stderr, "\nError: Could not open source file '%s'.\n", src->mPath.data());
return 0;
}
}
switch(src->mFormat)
{
case SF_ASCII: return LoadAsciiSource(*istream, src, hrir);
case SF_BIN_LE: return LoadBinarySource(*istream, src, BO_LITTLE, hrir);
case SF_BIN_BE: return LoadBinarySource(*istream, src, BO_BIG, hrir);
case SF_WAVE: return LoadWaveSource(*istream, src, hrirRate, hrir);
case SF_SOFA: return LoadSofaSource(src, hrirRate, hrir);
case SF_NONE: break;
}
return 0;
}
// Match the channel type from a given identifier.
auto MatchChannelType(const char *ident) -> ChannelTypeT
{
if(al::strcasecmp(ident, "mono") == 0)
return CT_MONO;
if(al::strcasecmp(ident, "stereo") == 0)
return CT_STEREO;
return CT_NONE;
}
// Process the data set definition to read and validate the data set metrics.
auto ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize,
const ChannelModeT chanMode, HrirDataT *hData) -> int
{
int hasRate = 0, hasType = 0, hasPoints = 0, hasRadius = 0;
int hasDistance = 0, hasAzimuths = 0;
std::array<char,MaxIdentLen+1> ident{};
uint line, col;
double fpVal;
uint points;
int intVal;
std::array<double,MAX_FD_COUNT> distances{};
uint fdCount = 0;
std::array<uint,MAX_FD_COUNT> evCounts{};
auto azCounts = std::vector<std::array<uint,MAX_EV_COUNT>>(MAX_FD_COUNT);
for(auto &azs : azCounts) azs.fill(0u);
TrIndication(tr, &line, &col);
while(TrIsIdent(tr))
{
TrIndication(tr, &line, &col);
if(!TrReadIdent(tr, ident))
return 0;
if(al::strcasecmp(ident.data(), "rate") == 0)
{
if(hasRate)
{
TrErrorAt(tr, line, col, "Redefinition of 'rate'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal))
return 0;
hData->mIrRate = static_cast<uint>(intVal);
hasRate = 1;
}
else if(al::strcasecmp(ident.data(), "type") == 0)
{
std::array<char,MaxIdentLen+1> type{};
if(hasType)
{
TrErrorAt(tr, line, col, "Redefinition of 'type'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
if(!TrReadIdent(tr, type))
return 0;
hData->mChannelType = MatchChannelType(type.data());
if(hData->mChannelType == CT_NONE)
{
TrErrorAt(tr, line, col, "Expected a channel type.\n");
return 0;
}
if(hData->mChannelType == CT_STEREO)
{
if(chanMode == CM_ForceMono)
hData->mChannelType = CT_MONO;
}
hasType = 1;
}
else if(al::strcasecmp(ident.data(), "points") == 0)
{
if(hasPoints)
{
TrErrorAt(tr, line, col, "Redefinition of 'points'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
TrIndication(tr, &line, &col);
if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal))
return 0;
points = static_cast<uint>(intVal);
if(fftSize > 0 && points > fftSize)
{
TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size.\n");
return 0;
}
if(points < truncSize)
{
TrErrorAt(tr, line, col, "Value is below the truncation size.\n");
return 0;
}
hData->mIrPoints = points;
hData->mFftSize = fftSize;
hData->mIrSize = 1 + (fftSize / 2);
if(points > hData->mIrSize)
hData->mIrSize = points;
hasPoints = 1;
}
else if(al::strcasecmp(ident.data(), "radius") == 0)
{
if(hasRadius)
{
TrErrorAt(tr, line, col, "Redefinition of 'radius'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
if(!TrReadFloat(tr, MinRadius, MaxRadius, &fpVal))
return 0;
hData->mRadius = fpVal;
hasRadius = 1;
}
else if(al::strcasecmp(ident.data(), "distance") == 0)
{
uint count = 0;
if(hasDistance)
{
TrErrorAt(tr, line, col, "Redefinition of 'distance'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
for(;;)
{
if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal))
return 0;
if(count > 0 && fpVal <= distances[count - 1])
{
TrError(tr, "Distances are not ascending.\n");
return 0;
}
distances[count++] = fpVal;
if(!TrIsOperator(tr, ","))
break;
if(count >= MAX_FD_COUNT)
{
TrError(tr, "Exceeded the maximum of %d fields.\n", MAX_FD_COUNT);
return 0;
}
TrReadOperator(tr, ",");
}
if(fdCount != 0 && count != fdCount)
{
TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
return 0;
}
fdCount = count;
hasDistance = 1;
}
else if(al::strcasecmp(ident.data(), "azimuths") == 0)
{
uint count = 0;
if(hasAzimuths)
{
TrErrorAt(tr, line, col, "Redefinition of 'azimuths'.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
evCounts[0] = 0;
for(;;)
{
if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal))
return 0;
azCounts[count][evCounts[count]++] = static_cast<uint>(intVal);
if(TrIsOperator(tr, ","))
{
if(evCounts[count] >= MAX_EV_COUNT)
{
TrError(tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT);
return 0;
}
TrReadOperator(tr, ",");
}
else
{
if(evCounts[count] < MIN_EV_COUNT)
{
TrErrorAt(tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT);
return 0;
}
if(azCounts[count][0] != 1 || azCounts[count][evCounts[count] - 1] != 1)
{
TrError(tr, "Poles are not singular for field %d.\n", count - 1);
return 0;
}
count++;
if(!TrIsOperator(tr, ";"))
break;
if(count >= MAX_FD_COUNT)
{
TrError(tr, "Exceeded the maximum number of %d fields.\n", MAX_FD_COUNT);
return 0;
}
evCounts[count] = 0;
TrReadOperator(tr, ";");
}
}
if(fdCount != 0 && count != fdCount)
{
TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
return 0;
}
fdCount = count;
hasAzimuths = 1;
}
else
{
TrErrorAt(tr, line, col, "Expected a metric name.\n");
return 0;
}
TrSkipWhitespace(tr);
}
if(!(hasRate && hasPoints && hasRadius && hasDistance && hasAzimuths))
{
TrErrorAt(tr, line, col, "Expected a metric name.\n");
return 0;
}
if(distances[0] < hData->mRadius)
{
TrError(tr, "Distance cannot start below head radius.\n");
return 0;
}
if(hData->mChannelType == CT_NONE)
hData->mChannelType = CT_MONO;
const auto azs = al::span{azCounts}.first<MAX_FD_COUNT>();
if(!PrepareHrirData(al::span{distances}.first(fdCount), evCounts, azs, hData))
{
fprintf(stderr, "Error: Out of memory.\n");
exit(-1);
}
return 1;
}
// Parse an index triplet from the data set definition.
auto ReadIndexTriplet(TokenReaderT *tr, const HrirDataT *hData, uint *fi, uint *ei, uint *ai)->int
{
int intVal;
if(hData->mFds.size() > 1)
{
if(!TrReadInt(tr, 0, static_cast<int>(hData->mFds.size()-1), &intVal))
return 0;
*fi = static_cast<uint>(intVal);
if(!TrReadOperator(tr, ","))
return 0;
}
else
{
*fi = 0;
}
if(!TrReadInt(tr, 0, static_cast<int>(hData->mFds[*fi].mEvs.size()-1), &intVal))
return 0;
*ei = static_cast<uint>(intVal);
if(!TrReadOperator(tr, ","))
return 0;
if(!TrReadInt(tr, 0, static_cast<int>(hData->mFds[*fi].mEvs[*ei].mAzs.size()-1), &intVal))
return 0;
*ai = static_cast<uint>(intVal);
return 1;
}
// Match the source format from a given identifier.
auto MatchSourceFormat(const char *ident) -> SourceFormatT
{
if(al::strcasecmp(ident, "ascii") == 0)
return SF_ASCII;
if(al::strcasecmp(ident, "bin_le") == 0)
return SF_BIN_LE;
if(al::strcasecmp(ident, "bin_be") == 0)
return SF_BIN_BE;
if(al::strcasecmp(ident, "wave") == 0)
return SF_WAVE;
if(al::strcasecmp(ident, "sofa") == 0)
return SF_SOFA;
return SF_NONE;
}
// Match the source element type from a given identifier.
auto MatchElementType(const char *ident) -> ElementTypeT
{
if(al::strcasecmp(ident, "int") == 0)
return ET_INT;
if(al::strcasecmp(ident, "fp") == 0)
return ET_FP;
return ET_NONE;
}
// Parse and validate a source reference from the data set definition.
auto ReadSourceRef(TokenReaderT *tr, SourceRefT *src) -> int
{
std::array<char,MaxIdentLen+1> ident{};
uint line, col;
double fpVal;
int intVal;
TrIndication(tr, &line, &col);
if(!TrReadIdent(tr, ident))
return 0;
src->mFormat = MatchSourceFormat(ident.data());
if(src->mFormat == SF_NONE)
{
TrErrorAt(tr, line, col, "Expected a source format.\n");
return 0;
}
if(!TrReadOperator(tr, "("))
return 0;
if(src->mFormat == SF_SOFA)
{
if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal))
return 0;
src->mRadius = fpVal;
if(!TrReadOperator(tr, ","))
return 0;
if(!TrReadFloat(tr, -90.0, 90.0, &fpVal))
return 0;
src->mElevation = fpVal;
if(!TrReadOperator(tr, ","))
return 0;
if(!TrReadFloat(tr, -360.0, 360.0, &fpVal))
return 0;
src->mAzimuth = fpVal;
if(!TrReadOperator(tr, ":"))
return 0;
if(!TrReadInt(tr, 0, MaxWaveChannels, &intVal))
return 0;
src->mType = ET_NONE;
src->mSize = 0;
src->mBits = 0;
src->mChannel = static_cast<uint>(intVal);
src->mSkip = 0;
}
else if(src->mFormat == SF_WAVE)
{
if(!TrReadInt(tr, 0, MaxWaveChannels, &intVal))
return 0;
src->mType = ET_NONE;
src->mSize = 0;
src->mBits = 0;
src->mChannel = static_cast<uint>(intVal);
src->mSkip = 0;
}
else
{
TrIndication(tr, &line, &col);
if(!TrReadIdent(tr, ident))
return 0;
src->mType = MatchElementType(ident.data());
if(src->mType == ET_NONE)
{
TrErrorAt(tr, line, col, "Expected a source element type.\n");
return 0;
}
if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE)
{
if(!TrReadOperator(tr, ","))
return 0;
if(src->mType == ET_INT)
{
if(!TrReadInt(tr, MinBinSize, MaxBinSize, &intVal))
return 0;
src->mSize = static_cast<uint>(intVal);
if(!TrIsOperator(tr, ","))
src->mBits = static_cast<int>(8*src->mSize);
else
{
TrReadOperator(tr, ",");
TrIndication(tr, &line, &col);
if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
return 0;
if(std::abs(intVal) < int{MinBinSize}*8 || static_cast<uint>(std::abs(intVal)) > (8*src->mSize))
{
TrErrorAt(tr, line, col, "Expected a value of (+/-) %d to %d.\n", MinBinSize*8, 8*src->mSize);
return 0;
}
src->mBits = intVal;
}
}
else
{
TrIndication(tr, &line, &col);
if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
return 0;
if(intVal != 4 && intVal != 8)
{
TrErrorAt(tr, line, col, "Expected a value of 4 or 8.\n");
return 0;
}
src->mSize = static_cast<uint>(intVal);
src->mBits = 0;
}
}
else if(src->mFormat == SF_ASCII && src->mType == ET_INT)
{
if(!TrReadOperator(tr, ","))
return 0;
if(!TrReadInt(tr, MinASCIIBits, MaxASCIIBits, &intVal))
return 0;
src->mSize = 0;
src->mBits = intVal;
}
else
{
src->mSize = 0;
src->mBits = 0;
}
if(!TrIsOperator(tr, ";"))
src->mSkip = 0;
else
{
TrReadOperator(tr, ";");
if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
return 0;
src->mSkip = static_cast<uint>(intVal);
}
}
if(!TrReadOperator(tr, ")"))
return 0;
if(TrIsOperator(tr, "@"))
{
TrReadOperator(tr, "@");
if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
return 0;
src->mOffset = static_cast<uint>(intVal);
}
else
src->mOffset = 0;
if(!TrReadOperator(tr, ":"))
return 0;
if(!TrReadString(tr, src->mPath))
return 0;
return 1;
}
// Parse and validate a SOFA source reference from the data set definition.
auto ReadSofaRef(TokenReaderT *tr, SourceRefT *src) -> int
{
std::array<char,MaxIdentLen+1> ident{};
uint line, col;
int intVal;
TrIndication(tr, &line, &col);
if(!TrReadIdent(tr, ident))
return 0;
src->mFormat = MatchSourceFormat(ident.data());
if(src->mFormat != SF_SOFA)
{
TrErrorAt(tr, line, col, "Expected the SOFA source format.\n");
return 0;
}
src->mType = ET_NONE;
src->mSize = 0;
src->mBits = 0;
src->mChannel = 0;
src->mSkip = 0;
if(TrIsOperator(tr, "@"))
{
TrReadOperator(tr, "@");
if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
return 0;
src->mOffset = static_cast<uint>(intVal);
}
else
src->mOffset = 0;
if(!TrReadOperator(tr, ":"))
return 0;
if(!TrReadString(tr, src->mPath))
return 0;
return 1;
}
// Match the target ear (index) from a given identifier.
auto MatchTargetEar(const char *ident) -> int
{
if(al::strcasecmp(ident, "left") == 0)
return 0;
if(al::strcasecmp(ident, "right") == 0)
return 1;
return -1;
}
// Calculate the onset time of an HRIR and average it with any existing
// timing for its field, elevation, azimuth, and ear.
constexpr int OnsetRateMultiple{10};
auto AverageHrirOnset(PPhaseResampler &rs, al::span<double> upsampled, const uint rate,
const al::span<const double> hrir, const double f, const double onset) -> double
{
rs.process(hrir, upsampled);
auto abs_lt = [](const double lhs, const double rhs) -> bool
{ return std::abs(lhs) < std::abs(rhs); };
auto iter = std::max_element(upsampled.cbegin(), upsampled.cend(), abs_lt);
return Lerp(onset, static_cast<double>(std::distance(upsampled.cbegin(), iter))/(10*rate), f);
}
// Calculate the magnitude response of an HRIR and average it with any
// existing responses for its field, elevation, azimuth, and ear.
void AverageHrirMagnitude(const uint fftSize, const al::span<const double> hrir, const double f,
const al::span<double> mag)
{
const uint m{1 + (fftSize/2)};
std::vector<complex_d> h(fftSize);
std::vector<double> r(m);
auto hiter = std::copy(hrir.cbegin(), hrir.cend(), h.begin());
std::fill(hiter, h.end(), 0.0);
forward_fft(h);
MagnitudeResponse(h, r);
for(uint i{0};i < m;++i)
mag[i] = Lerp(mag[i], r[i], f);
}
// Process the list of sources in the data set definition.
auto ProcessSources(TokenReaderT *tr, HrirDataT *hData, const uint outRate) -> int
{
const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
hData->mHrirsBase.resize(size_t{channels} * hData->mIrCount * hData->mIrSize);
const auto hrirs = al::span<double>{hData->mHrirsBase};
auto hrir = std::vector<double>(hData->mIrSize);
uint line, col, fi, ei, ai;
std::vector<double> onsetSamples(size_t{OnsetRateMultiple} * hData->mIrPoints);
PPhaseResampler onsetResampler;
onsetResampler.init(hData->mIrRate, OnsetRateMultiple*hData->mIrRate);
std::optional<PPhaseResampler> resampler;
if(outRate && outRate != hData->mIrRate)
resampler.emplace().init(hData->mIrRate, outRate);
const double rateScale{outRate ? static_cast<double>(outRate) / hData->mIrRate : 1.0};
const uint irPoints{outRate
? std::min(static_cast<uint>(std::ceil(hData->mIrPoints*rateScale)), hData->mIrPoints)
: hData->mIrPoints};
printf("Loading sources...");
fflush(stdout);
int count{0};
while(TrIsOperator(tr, "["))
{
std::array factor{1.0, 1.0};
TrIndication(tr, &line, &col);
TrReadOperator(tr, "[");
if(TrIsOperator(tr, "*"))
{
TrReadOperator(tr, "*");
if(!TrReadOperator(tr, "]") || !TrReadOperator(tr, "="))
return 0;
TrIndication(tr, &line, &col);
SourceRefT src{};
if(!ReadSofaRef(tr, &src))
return 0;
if(hData->mChannelType == CT_STEREO)
{
std::array<char,MaxIdentLen+1> type{};
if(!TrReadIdent(tr, type))
return 0;
const ChannelTypeT channelType{MatchChannelType(type.data())};
switch(channelType)
{
case CT_NONE:
TrErrorAt(tr, line, col, "Expected a channel type.\n");
return 0;
case CT_MONO:
src.mChannel = 0;
break;
case CT_STEREO:
src.mChannel = 1;
break;
}
}
else
{
std::array<char,MaxIdentLen+1> type{};
if(!TrReadIdent(tr, type))
return 0;
ChannelTypeT channelType{MatchChannelType(type.data())};
if(channelType != CT_MONO)
{
TrErrorAt(tr, line, col, "Expected a mono channel type.\n");
return 0;
}
src.mChannel = 0;
}
MYSOFA_EASY *sofa{LoadSofaFile(&src, hData->mIrRate, hData->mIrPoints)};
if(!sofa) return 0;
const auto srcPosValues = al::span{sofa->hrtf->SourcePosition.values,
sofa->hrtf->M*3_uz};
for(uint si{0};si < sofa->hrtf->M;++si)
{
printf("\rLoading sources... %d of %d", si+1, sofa->hrtf->M);
fflush(stdout);
std::array aer{srcPosValues[3_uz*si], srcPosValues[3_uz*si + 1],
srcPosValues[3_uz*si + 2]};
mysofa_c2s(aer.data());
if(std::fabs(aer[1]) >= 89.999f)
aer[0] = 0.0f;
else
aer[0] = std::fmod(360.0f - aer[0], 360.0f);
auto field = std::find_if(hData->mFds.cbegin(), hData->mFds.cend(),
[&aer](const HrirFdT &fld) -> bool
{ return (std::abs(aer[2] - fld.mDistance) < 0.001); });
if(field == hData->mFds.cend())
continue;
fi = static_cast<uint>(std::distance(hData->mFds.cbegin(), field));
const double evscale{180.0 / static_cast<double>(field->mEvs.size()-1)};
double ef{(90.0 + aer[1]) / evscale};
ei = static_cast<uint>(std::round(ef));
ef = (ef - ei) * evscale;
if(std::abs(ef) >= 0.1)
continue;
const double azscale{360.0 / static_cast<double>(field->mEvs[ei].mAzs.size())};
double af{aer[0] / azscale};
ai = static_cast<uint>(std::round(af));
af = (af - ai) * azscale;
ai %= static_cast<uint>(field->mEvs[ei].mAzs.size());
if(std::abs(af) >= 0.1)
continue;
HrirAzT *azd = &field->mEvs[ei].mAzs[ai];
if(!azd->mIrs[0].empty())
{
TrErrorAt(tr, line, col, "Redefinition of source [ %d, %d, %d ].\n", fi, ei, ai);
return 0;
}
const auto hrirPoints = al::span{hrir}.first(hData->mIrPoints);
ExtractSofaHrir(sofa->hrtf, si, 0, src.mOffset, hrirPoints);
azd->mIrs[0] = hrirs.subspan(size_t{hData->mIrSize}*azd->mIndex, hData->mIrSize);
azd->mDelays[0] = AverageHrirOnset(onsetResampler, onsetSamples, hData->mIrRate,
hrirPoints, 1.0, azd->mDelays[0]);
if(resampler)
resampler->process(hrirPoints, hrir);
AverageHrirMagnitude(hData->mFftSize, al::span{hrir}.first(irPoints), 1.0,
azd->mIrs[0]);
if(src.mChannel == 1)
{
ExtractSofaHrir(sofa->hrtf, si, 1, src.mOffset, hrirPoints);
azd->mIrs[1] = hrirs.subspan(
(size_t{hData->mIrCount}+azd->mIndex) * hData->mIrSize, hData->mIrSize);
azd->mDelays[1] = AverageHrirOnset(onsetResampler, onsetSamples,
hData->mIrRate, hrirPoints, 1.0, azd->mDelays[1]);
if(resampler)
resampler->process(hrirPoints, hrir);
AverageHrirMagnitude(hData->mFftSize, al::span{hrir}.first(irPoints), 1.0,
azd->mIrs[1]);
}
// TODO: Since some SOFA files contain minimum phase HRIRs,
// it would be beneficial to check for per-measurement delays
// (when available) to reconstruct the HRTDs.
}
continue;
}
if(!ReadIndexTriplet(tr, hData, &fi, &ei, &ai))
return 0;
if(!TrReadOperator(tr, "]"))
return 0;
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
if(!azd->mIrs[0].empty())
{
TrErrorAt(tr, line, col, "Redefinition of source.\n");
return 0;
}
if(!TrReadOperator(tr, "="))
return 0;
while(true)
{
SourceRefT src{};
if(!ReadSourceRef(tr, &src))
return 0;
// TODO: Would be nice to display 'x of y files', but that would
// require preparing the source refs first to get a total count
// before loading them.
++count;
printf("\rLoading sources... %d file%s", count, (count==1)?"":"s");
fflush(stdout);
if(!LoadSource(&src, hData->mIrRate, al::span{hrir}.first(hData->mIrPoints)))
return 0;
uint ti{0};
if(hData->mChannelType == CT_STEREO)
{
std::array<char,MaxIdentLen+1> ident{};
if(!TrReadIdent(tr, ident))
return 0;
ti = static_cast<uint>(MatchTargetEar(ident.data()));
if(static_cast<int>(ti) < 0)
{
TrErrorAt(tr, line, col, "Expected a target ear.\n");
return 0;
}
}
const auto hrirPoints = al::span{hrir}.first(hData->mIrPoints);
azd->mIrs[ti] = hrirs.subspan((ti*size_t{hData->mIrCount}+azd->mIndex)*hData->mIrSize,
hData->mIrSize);
azd->mDelays[ti] = AverageHrirOnset(onsetResampler, onsetSamples, hData->mIrRate,
hrirPoints, 1.0/factor[ti], azd->mDelays[ti]);
if(resampler)
resampler->process(hrirPoints, hrir);
AverageHrirMagnitude(hData->mFftSize, al::span{hrir}.subspan(irPoints), 1.0/factor[ti],
azd->mIrs[ti]);
factor[ti] += 1.0;
if(!TrIsOperator(tr, "+"))
break;
TrReadOperator(tr, "+");
}
if(hData->mChannelType == CT_STEREO)
{
if(azd->mIrs[0].empty())
{
TrErrorAt(tr, line, col, "Missing left ear source reference(s).\n");
return 0;
}
if(azd->mIrs[1].empty())
{
TrErrorAt(tr, line, col, "Missing right ear source reference(s).\n");
return 0;
}
}
}
printf("\n");
hrir.clear();
if(resampler)
{
hData->mIrRate = outRate;
hData->mIrPoints = irPoints;
resampler.reset();
}
for(fi = 0;fi < hData->mFds.size();fi++)
{
for(ei = 0;ei < hData->mFds[fi].mEvs.size();ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
if(!azd->mIrs[0].empty())
break;
}
if(ai < hData->mFds[fi].mEvs[ei].mAzs.size())
break;
}
if(ei >= hData->mFds[fi].mEvs.size())
{
TrError(tr, "Missing source references [ %d, *, * ].\n", fi);
return 0;
}
hData->mFds[fi].mEvStart = ei;
for(;ei < hData->mFds[fi].mEvs.size();ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd->mIrs[0].empty())
{
TrError(tr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
return 0;
}
}
}
}
for(uint ti{0};ti < channels;ti++)
{
for(fi = 0;fi < hData->mFds.size();fi++)
{
for(ei = 0;ei < hData->mFds[fi].mEvs.size();ei++)
{
for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzs.size();ai++)
{
HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
azd->mIrs[ti] = hrirs.subspan(
(ti*size_t{hData->mIrCount} + azd->mIndex) * hData->mIrSize,
hData->mIrSize);
}
}
}
}
if(!TrLoad(tr))
{
gSofaCache.clear();
return 1;
}
TrError(tr, "Errant data at end of source list.\n");
gSofaCache.clear();
return 0;
}
} /* namespace */
bool LoadDefInput(std::istream &istream, const al::span<const char> startbytes,
const std::string_view filename, const uint fftSize, const uint truncSize, const uint outRate,
const ChannelModeT chanMode, HrirDataT *hData)
{
TokenReaderT tr{istream};
TrSetup(startbytes, filename, &tr);
if(!ProcessMetrics(&tr, fftSize, truncSize, chanMode, hData)
|| !ProcessSources(&tr, hData, outRate))
return false;
return true;
}