Torque3D/Engine/source/T3D/lighting/reflectionProbe.cpp
Areloch b19a4b22c8 Implementation of reflection and skylight probes.
Moves lighting math to the diffuse/specular two-channel logic.
2018-09-16 22:15:07 -05:00

1285 lines
38 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "T3D/lighting/reflectionProbe.h"
#include "math/mathIO.h"
#include "scene/sceneRenderState.h"
#include "console/consoleTypes.h"
#include "core/stream/bitStream.h"
#include "materials/baseMatInstance.h"
#include "console/engineAPI.h"
#include "gfx/gfxDrawUtil.h"
#include "gfx/gfxDebugEvent.h"
#include "gfx/gfxTransformSaver.h"
#include "math/mathUtils.h"
#include "gfx/bitmap/gBitmap.h"
#include "core/stream/fileStream.h"
#include "core/fileObject.h"
#include "core/resourceManager.h"
#include "console/simPersistId.h"
#include <string>
#include "T3D/gameFunctions.h"
#include "postFx/postEffect.h"
#include "renderInstance/renderProbeMgr.h"
#include "lighting/probeManager.h"
#include "math/util/sphereMesh.h"
#include "materials/materialManager.h"
#include "math/util/matrixSet.h"
#include "gfx/bitmap/cubemapSaver.h"
#include "materials/materialFeatureTypes.h"
#include "gfx/gfxTextureManager.h"
#include "T3D/lighting/IBLUtilities.h"
extern bool gEditingMission;
extern ColorI gCanvasClearColor;
bool ReflectionProbe::smRenderReflectionProbes = true;
bool ReflectionProbe::smRenderPreviewProbes = true;
IMPLEMENT_CO_NETOBJECT_V1(ReflectionProbe);
ConsoleDocClass(ReflectionProbe,
"@brief An example scene object which renders a mesh.\n\n"
"This class implements a basic SceneObject that can exist in the world at a "
"3D position and render itself. There are several valid ways to render an "
"object in Torque. This class implements the preferred rendering method which "
"is to submit a MeshRenderInst along with a Material, vertex buffer, "
"primitive buffer, and transform and allow the RenderMeshMgr handle the "
"actual setup and rendering for you.\n\n"
"See the C++ code for implementation details.\n\n"
"@ingroup Examples\n");
ImplementEnumType(ReflectProbeType,
"Type of mesh data available in a shape.\n"
"@ingroup gameObjects")
{ ProbeInfo::Sphere, "Sphere", "Sphere shaped" },
{ ProbeInfo::Box, "Box", "Box shape" }
EndImplementEnumType;
ImplementEnumType(IndrectLightingModeEnum,
"Type of mesh data available in a shape.\n"
"@ingroup gameObjects")
{ ReflectionProbe::NoIndirect, "No Lighting", "This probe does not provide any local indirect lighting data" },
{ ReflectionProbe::AmbientColor, "Ambient Color", "Adds a flat color to act as the local indirect lighting" },
{ ReflectionProbe::SphericalHarmonics, "Spherical Harmonics", "Creates spherical harmonics data based off the reflection data" },
EndImplementEnumType;
ImplementEnumType(ReflectionModeEnum,
"Type of mesh data available in a shape.\n"
"@ingroup gameObjects")
{ ReflectionProbe::NoReflection, "No Reflections", "This probe does not provide any local reflection data"},
{ ReflectionProbe::StaticCubemap, "Static Cubemap", "Uses a static CubemapData" },
{ ReflectionProbe::BakedCubemap, "Baked Cubemap", "Uses a cubemap baked from the probe's current position" },
//{ ReflectionProbe::DynamicCubemap, "Dynamic Cubemap", "Uses a cubemap baked from the probe's current position, updated at a set rate" },
EndImplementEnumType;
//-----------------------------------------------------------------------------
// Object setup and teardown
//-----------------------------------------------------------------------------
ReflectionProbe::ReflectionProbe()
{
// Flag this object so that it will always
// be sent across the network to clients
mNetFlags.set(Ghostable | ScopeAlways);
mTypeMask = LightObjectType | MarkerObjectType;
mProbeShapeType = ProbeInfo::Sphere;
mIndrectLightingModeType = NoIndirect;
mAmbientColor = LinearColorF(1, 1, 1, 1);
mSphericalHarmonics = LinearColorF(0, 0, 0, 1);
mReflectionModeType = BakedCubemap;
mEnabled = true;
mBake = false;
mDirty = false;
mRadius = 10;
mUseCubemap = false;
mCubemap = NULL;
mReflectionPath = "";
mProbeUniqueID = "";
mEditorShapeInst = NULL;
mEditorShape = NULL;
mRefreshRateMS = 200;
mDynamicLastBakeMS = 0;
mMaxDrawDistance = 75;
mResourcesCreated = false;
mProbeInfo = new ProbeInfo();
mPrefilterSize = 64;
mPrefilterMipLevels = mLog2(F32(mPrefilterSize));
}
ReflectionProbe::~ReflectionProbe()
{
if (mEditorShapeInst)
SAFE_DELETE(mEditorShapeInst);
if (mReflectionModeType != StaticCubemap && mCubemap)
mCubemap->deleteObject();
}
//-----------------------------------------------------------------------------
// Object Editing
//-----------------------------------------------------------------------------
void ReflectionProbe::initPersistFields()
{
addGroup("Rendering");
addProtectedField("enabled", TypeBool, Offset(mEnabled, ReflectionProbe),
&_setEnabled, &defaultProtectedGetFn, "Regenerate Voxel Grid");
addField("ProbeShape", TypeReflectProbeType, Offset(mProbeShapeType, ReflectionProbe),
"The type of mesh data to use for collision queries.");
addField("radius", TypeF32, Offset(mRadius, ReflectionProbe), "The name of the material used to render the mesh.");
endGroup("Rendering");
/*addGroup("IndirectLighting");
addField("IndirectLightMode", TypeIndrectLightingModeEnum, Offset(mIndrectLightingModeType, ReflectionProbe),
"The type of mesh data to use for collision queries.");
addField("IndirectLight", TypeColorF, Offset(mAmbientColor, ReflectionProbe), "Path of file to save and load results.");
endGroup("IndirectLighting");*/
addGroup("Reflection");
addField("ReflectionMode", TypeReflectionModeEnum, Offset(mReflectionModeType, ReflectionProbe),
"The type of mesh data to use for collision queries.");
addField("reflectionPath", TypeImageFilename, Offset(mReflectionPath, ReflectionProbe),
"The type of mesh data to use for collision queries.");
addField("StaticCubemap", TypeCubemapName, Offset(mCubemapName, ReflectionProbe), "Cubemap used instead of reflection texture if fullReflect is off.");
addProtectedField("Bake", TypeBool, Offset(mBake, ReflectionProbe),
&_doBake, &defaultProtectedGetFn, "Regenerate Voxel Grid", AbstractClassRep::FieldFlags::FIELD_ComponentInspectors);
endGroup("Reflection");
Con::addVariable("$Light::renderReflectionProbes", TypeBool, &ReflectionProbe::smRenderReflectionProbes,
"Toggles rendering of light frustums when the light is selected in the editor.\n\n"
"@note Only works for shadow mapped lights.\n\n"
"@ingroup Lighting");
Con::addVariable("$Light::renderPreviewProbes", TypeBool, &ReflectionProbe::smRenderPreviewProbes,
"Toggles rendering of light frustums when the light is selected in the editor.\n\n"
"@note Only works for shadow mapped lights.\n\n"
"@ingroup Lighting");
/*addGroup("Internal");
addProtectedField("SHTerm", TypeRealString, NULL, &protectedSetSHTerms, &defaultProtectedGetFn,
"Do not modify, for internal use.", AbstractClassRep::FIELD_HideInInspectors);
addProtectedField("SHConsts", TypeRealString, NULL, &protectedSetSHConsts, &defaultProtectedGetFn,
"Do not modify, for internal use.", AbstractClassRep::FIELD_HideInInspectors);
endGroup("Internal");*/
// SceneObject already handles exposing the transform
Parent::initPersistFields();
}
bool ReflectionProbe::protectedSetSHTerms(void *object, const char *index, const char *data)
{
ReflectionProbe *probe = static_cast< ReflectionProbe* >(object);
LinearColorF term;
U32 idx;
dSscanf(data, "%i %g %g %g", &idx, &term.red, &term.green, &term.blue);
probe->mProbeInfo->mSHTerms[idx] = term;
return false;
}
bool ReflectionProbe::protectedSetSHConsts(void *object, const char *index, const char *data)
{
ReflectionProbe *probe = static_cast< ReflectionProbe* >(object);
dSscanf(data, "%g %g %g %g %g", &probe->mProbeInfo->mSHConstants[0],
&probe->mProbeInfo->mSHConstants[1], &probe->mProbeInfo->mSHConstants[2], &probe->mProbeInfo->mSHConstants[3], &probe->mProbeInfo->mSHConstants[4]);
return false;
}
void ReflectionProbe::writeFields(Stream &stream, U32 tabStop)
{
Parent::writeFields(stream, tabStop);
if (mIndrectLightingModeType != SphericalHarmonics)
return;
// Now write all planes.
stream.write(2, "\r\n");
for (U32 i = 0; i < 9; i++)
{
const LinearColorF shTerm = mProbeInfo->mSHTerms[i];
stream.writeTabs(tabStop);
char buffer[1024];
dMemset(buffer, 0, 1024);
dSprintf(buffer, 1024, "SHTerm = \"%i %g %g %g\";", i, shTerm.red, shTerm.green, shTerm.blue);
stream.writeLine((const U8*)buffer);
}
stream.writeTabs(tabStop);
char buffer[1024];
dMemset(buffer, 0, 1024);
dSprintf(buffer, 1024, "SHConsts = \"%g %g %g %g %g\";", mProbeInfo->mSHConstants[0],
mProbeInfo->mSHConstants[1], mProbeInfo->mSHConstants[2], mProbeInfo->mSHConstants[3], mProbeInfo->mSHConstants[4]);
stream.writeLine((const U8*)buffer);
}
bool ReflectionProbe::writeField(StringTableEntry fieldname, const char *value)
{
if (fieldname == StringTable->insert("SHTerm") || fieldname == StringTable->insert("SHConsts"))
return false;
return Parent::writeField(fieldname, value);
}
void ReflectionProbe::inspectPostApply()
{
Parent::inspectPostApply();
mDirty = true;
// Flag the network mask to send the updates
// to the client object
setMaskBits(-1);
}
bool ReflectionProbe::_setEnabled(void *object, const char *index, const char *data)
{
ReflectionProbe* probe = reinterpret_cast< ReflectionProbe* >(object);
probe->mEnabled = dAtob(data);
probe->setMaskBits(-1);
return true;
}
bool ReflectionProbe::_doBake(void *object, const char *index, const char *data)
{
ReflectionProbe* probe = reinterpret_cast< ReflectionProbe* >(object);
if (probe->mDirty)
probe->bake(probe->mReflectionPath, 256);
return false;
}
bool ReflectionProbe::onAdd()
{
if (!Parent::onAdd())
return false;
mObjBox.minExtents.set(-1, -1, -1);
mObjBox.maxExtents.set(1, 1, 1);
mObjScale.set(mRadius/2, mRadius/2, mRadius/2);
// Skip our transform... it just dirties mask bits.
Parent::setTransform(mObjToWorld);
resetWorldBox();
// Add this object to the scene
addToScene();
if (isServerObject())
{
if (!mPersistentId)
mPersistentId = getOrCreatePersistentId();
mProbeUniqueID = std::to_string(mPersistentId->getUUID().getHash()).c_str();
}
// Refresh this object's material (if any)
if (isClientObject())
updateMaterial();
setMaskBits(-1);
return true;
}
void ReflectionProbe::onRemove()
{
// Remove this object from the scene
removeFromScene();
Parent::onRemove();
}
void ReflectionProbe::setTransform(const MatrixF & mat)
{
// Let SceneObject handle all of the matrix manipulation
Parent::setTransform(mat);
mDirty = true;
// Dirty our network mask so that the new transform gets
// transmitted to the client object
setMaskBits(TransformMask);
}
U32 ReflectionProbe::packUpdate(NetConnection *conn, U32 mask, BitStream *stream)
{
// Allow the Parent to get a crack at writing its info
U32 retMask = Parent::packUpdate(conn, mask, stream);
// Write our transform information
if (stream->writeFlag(mask & TransformMask))
{
mathWrite(*stream, getTransform());
mathWrite(*stream, getScale());
}
if (stream->writeFlag(mask & ShapeTypeMask))
{
stream->write((U32)mProbeShapeType);
}
if (stream->writeFlag(mask & UpdateMask))
{
stream->write(mAmbientColor);
stream->write(mRadius);
}
if (stream->writeFlag(mask & BakeInfoMask))
{
stream->write(mReflectionPath);
stream->write(mProbeUniqueID);
}
if (stream->writeFlag(mask & EnabledMask))
{
stream->writeFlag(mEnabled);
}
if (stream->writeFlag(mask & ModeMask))
{
stream->write((U32)mIndrectLightingModeType);
stream->write((U32)mReflectionModeType);
}
if (stream->writeFlag(mask & CubemapMask))
{
stream->writeFlag(mUseCubemap);
stream->write(mCubemapName);
}
return retMask;
}
void ReflectionProbe::unpackUpdate(NetConnection *conn, BitStream *stream)
{
// Let the Parent read any info it sent
Parent::unpackUpdate(conn, stream);
if (stream->readFlag()) // TransformMask
{
mathRead(*stream, &mObjToWorld);
mathRead(*stream, &mObjScale);
setTransform(mObjToWorld);
}
if (stream->readFlag()) // ShapeTypeMask
{
U32 shapeType = ProbeInfo::Sphere;
stream->read(&shapeType);
mProbeShapeType = (ProbeInfo::ProbeShapeType)shapeType;
createGeometry();
}
if (stream->readFlag()) // UpdateMask
{
stream->read(&mAmbientColor);
stream->read(&mRadius);
}
if (stream->readFlag()) // BakeInfoMask
{
stream->read(&mReflectionPath);
stream->read(&mProbeUniqueID);
}
if (stream->readFlag()) // EnabledMask
{
mEnabled = stream->readFlag();
}
bool isMaterialDirty = false;
if (stream->readFlag()) // ModeMask
{
U32 indirectModeType = AmbientColor;
stream->read(&indirectModeType);
mIndrectLightingModeType = (IndrectLightingModeType)indirectModeType;
U32 reflectModeType = BakedCubemap;
stream->read(&reflectModeType);
mReflectionModeType = (ReflectionModeType)reflectModeType;
isMaterialDirty = true;
}
if (stream->readFlag()) // CubemapMask
{
mUseCubemap = stream->readFlag();
stream->read(&mCubemapName);
isMaterialDirty = true;
}
updateProbeParams();
if(isMaterialDirty)
updateMaterial();
}
void ReflectionProbe::createGeometry()
{
// Clean up our previous shape
if (mEditorShapeInst)
SAFE_DELETE(mEditorShapeInst);
mEditorShape = NULL;
String shapeFile = "tools/resources/ReflectProbeSphere.dae";
// Attempt to get the resource from the ResourceManager
mEditorShape = ResourceManager::get().load(shapeFile);
if (mEditorShape)
{
mEditorShapeInst = new TSShapeInstance(mEditorShape, isClientObject());
}
}
//-----------------------------------------------------------------------------
// Object Rendering
//-----------------------------------------------------------------------------
void ReflectionProbe::updateProbeParams()
{
if (mProbeInfo == nullptr)
return;
if (mIndrectLightingModeType == AmbientColor)
{
mProbeInfo->mAmbient = mAmbientColor;
}
else
{
mProbeInfo->mAmbient = LinearColorF(0, 0, 0, 0);
}
mProbeInfo->mProbeShapeType = mProbeShapeType;
mProbeInfo->setPosition(getPosition());
//Update the bounds
mObjBox.minExtents.set(-1, -1, -1);
mObjBox.maxExtents.set(1, 1, 1);
mObjScale.set(mRadius / 2, mRadius / 2, mRadius / 2);
// Skip our transform... it just dirties mask bits.
Parent::setTransform(mObjToWorld);
resetWorldBox();
mProbeInfo->mBounds = mWorldBox;
mProbeInfo->mRadius = mRadius;
mProbeInfo->mIsSkylight = false;
}
void ReflectionProbe::updateMaterial()
{
if (mReflectionModeType != DynamicCubemap)
{
if ((mReflectionModeType == BakedCubemap) && !mProbeUniqueID.isEmpty())
{
bool validCubemap = true;
char fileName[256];
dSprintf(fileName, 256, "%s%s.DDS", mReflectionPath.c_str(), mProbeUniqueID.c_str());
Vector<FileName> fileNames;
if (Platform::isFile(fileName))
{
if (!mCubemap)
{
mCubemap = new CubemapData();
mCubemap->registerObject();
}
mCubemap->setCubemapFile(FileName(fileName));
}
else
{
validCubemap = false;
}
if (validCubemap)
{
if (mCubemap->mCubemap)
mCubemap->updateFaces();
else
mCubemap->createMap();
mDirty = false;
mProbeInfo->mCubemap = &mCubemap->mCubemap;
}
}
else if (mReflectionModeType == StaticCubemap && !mCubemapName.isEmpty())
{
Sim::findObject(mCubemapName, mCubemap);
mProbeInfo->mCubemap = &mCubemap->mCubemap;
}
}
else if (mReflectionModeType == DynamicCubemap && !mDynamicCubemap.isNull())
{
mProbeInfo->mCubemap = &mDynamicCubemap;
}
generateTextures();
if (mPrefilterMap.isValid())
{
mProbeInfo->mCubemap = &mPrefilterMap;
mProbeInfo->mIrradianceCubemap = &mIrridianceMap;
mProbeInfo->mBRDFTexture = &mBrdfTexture;
}
//calculateSHTerms();
}
bool ReflectionProbe::createClientResources()
{
//irridiance resources
mIrridianceMap = GFX->createCubemap();
mIrridianceMap->initDynamic(128, GFXFormatR16G16B16A16F,1);
//prefilter resources - we share the irridiance stateblock
mPrefilterMap = GFX->createCubemap();
mPrefilterMap->initDynamic(mPrefilterSize, GFXFormatR16G16B16A16F, mPrefilterMipLevels);
//brdf lookup resources
//make the brdf lookup texture the same size as the prefilter texture
mBrdfTexture = TEXMGR->createTexture(mPrefilterSize, mPrefilterSize, GFXFormatR16G16B16A16F, &GFXRenderTargetProfile, 1, 0);
mResourcesCreated = true;
return true;
}
void ReflectionProbe::generateTextures()
{
if (!mCubemap)
return;
if (!mResourcesCreated)
{
if (!createClientResources())
{
Con::errorf("SkyLight::createIrridianceMap: Failed to create resources");
return;
}
}
GFXTextureTargetRef renderTarget = GFX->allocRenderToTextureTarget(false);
//create irridiance cubemap
IBLUtilities::GenerateIrradianceMap(renderTarget, mCubemap->mCubemap, mIrridianceMap);
//create prefilter cubemap (radiance)
IBLUtilities::GeneratePrefilterMap(renderTarget, mCubemap->mCubemap, mPrefilterMipLevels, mPrefilterMap);
//create brdf lookup
IBLUtilities::GenerateBRDFTexture(mBrdfTexture);
}
void ReflectionProbe::prepRenderImage(SceneRenderState *state)
{
if (!mEnabled || !ReflectionProbe::smRenderReflectionProbes)
return;
Point3F distVec = getRenderPosition() - state->getCameraPosition();
F32 dist = distVec.len();
//Culling distance. Can be adjusted for performance options considerations via the scalar
if (dist > mMaxDrawDistance * Con::getFloatVariable("$pref::GI::ProbeDrawDistScale", 1.0))
return;
if (mReflectionModeType == DynamicCubemap && mRefreshRateMS < (Platform::getRealMilliseconds() - mDynamicLastBakeMS))
{
bake("", 32);
mDynamicLastBakeMS = Platform::getRealMilliseconds();
}
//Submit our probe to actually do the probe action
// Get a handy pointer to our RenderPassmanager
//RenderPassManager *renderPass = state->getRenderPass();
//Update our score based on our radius, distance
mProbeInfo->mScore = mProbeInfo->mRadius/mMax(dist,1.0f);
Point3F vect = distVec;
vect.normalizeSafe();
mProbeInfo->mScore *= mMax(mAbs(mDot(vect, state->getCameraTransform().getForwardVector())),0.001f);
//Register
PROBEMGR->registerProbe(mProbeInfo, this);
if (ReflectionProbe::smRenderPreviewProbes && gEditingMission && mEditorShapeInst && mCubemap != nullptr)
{
GFXTransformSaver saver;
// Calculate the distance of this object from the camera
Point3F cameraOffset;
getRenderTransform().getColumn(3, &cameraOffset);
cameraOffset -= state->getDiffuseCameraPosition();
F32 dist = cameraOffset.len();
if (dist < 0.01f)
dist = 0.01f;
// Set up the LOD for the shape
F32 invScale = (1.0f / getMax(getMax(mObjScale.x, mObjScale.y), mObjScale.z));
mEditorShapeInst->setDetailFromDistance(state, dist * invScale);
// Make sure we have a valid level of detail
if (mEditorShapeInst->getCurrentDetail() < 0)
return;
BaseMatInstance* probePrevMat = mEditorShapeInst->getMaterialList()->getMaterialInst(0);
setPreviewMatParameters(state, probePrevMat);
// GFXTransformSaver is a handy helper class that restores
// the current GFX matrices to their original values when
// it goes out of scope at the end of the function
// Set up our TS render state
TSRenderState rdata;
rdata.setSceneState(state);
rdata.setFadeOverride(1.0f);
if(mReflectionModeType != DynamicCubemap)
rdata.setCubemap(mCubemap->mCubemap);
else
rdata.setCubemap(mDynamicCubemap);
// We might have some forward lit materials
// so pass down a query to gather lights.
LightQuery query;
query.init(getWorldSphere());
rdata.setLightQuery(&query);
// Set the world matrix to the objects render transform
MatrixF mat = getRenderTransform();
mat.scale(Point3F(1, 1, 1));
GFX->setWorldMatrix(mat);
// Animate the the shape
mEditorShapeInst->animate();
// Allow the shape to submit the RenderInst(s) for itself
mEditorShapeInst->render(rdata);
saver.restore();
}
// If the light is selected or light visualization
// is enabled then register the callback.
const bool isSelectedInEditor = (gEditingMission && isSelected());
if (isSelectedInEditor)
{
ObjectRenderInst *ri = state->getRenderPass()->allocInst<ObjectRenderInst>();
ri->renderDelegate.bind(this, &ReflectionProbe::_onRenderViz);
ri->type = RenderPassManager::RIT_Editor;
state->getRenderPass()->addInst(ri);
}
}
void ReflectionProbe::_onRenderViz(ObjectRenderInst *ri,
SceneRenderState *state,
BaseMatInstance *overrideMat)
{
if (!ReflectionProbe::smRenderReflectionProbes)
return;
GFXDrawUtil *draw = GFX->getDrawUtil();
GFXStateBlockDesc desc;
desc.setZReadWrite(true, false);
desc.setCullMode(GFXCullNone);
desc.setBlend(true);
// Base the sphere color on the light color.
ColorI color = ColorI::WHITE;
color.alpha = 50;
if (mProbeShapeType == ProbeInfo::Sphere)
{
draw->drawSphere(desc, mRadius, getPosition(), color);
}
else
{
Box3F cube(mRadius);
cube.setCenter(getPosition());
draw->drawCube(desc, cube, color);
}
}
void ReflectionProbe::setPreviewMatParameters(SceneRenderState* renderState, BaseMatInstance* mat)
{
if (!mat->getFeatures().hasFeature(MFT_isDeferred))
return;
//Set up the params
MaterialParameters *matParams = mat->getMaterialParameters();
//Get the deferred render target
NamedTexTarget* deferredTexTarget = NamedTexTarget::find("deferred");
GFXTextureObject *deferredTexObject = deferredTexTarget->getTexture();
if (!deferredTexObject)
return;
GFX->setTexture(0, deferredTexObject);
//Set the cubemap
GFX->setCubeTexture(1, mCubemap->mCubemap);
//Set the invViewMat
MatrixSet &matrixSet = renderState->getRenderPass()->getMatrixSet();
const MatrixF &worldToCameraXfm = matrixSet.getWorldToCamera();
MaterialParameterHandle *invViewMat = mat->getMaterialParameterHandle("$invViewMat");
matParams->setSafe(invViewMat, worldToCameraXfm);
}
LinearColorF ReflectionProbe::decodeSH(Point3F normal)
{
float x = normal.x;
float y = normal.y;
float z = normal.z;
LinearColorF l00 = mProbeInfo->mSHTerms[0];
LinearColorF l10 = mProbeInfo->mSHTerms[1];
LinearColorF l11 = mProbeInfo->mSHTerms[2];
LinearColorF l12 = mProbeInfo->mSHTerms[3];
LinearColorF l20 = mProbeInfo->mSHTerms[4];
LinearColorF l21 = mProbeInfo->mSHTerms[5];
LinearColorF l22 = mProbeInfo->mSHTerms[6];
LinearColorF l23 = mProbeInfo->mSHTerms[7];
LinearColorF l24 = mProbeInfo->mSHTerms[8];
LinearColorF result = (
l00 * mProbeInfo->mSHConstants[0] +
l12 * mProbeInfo->mSHConstants[1] * x +
l10 * mProbeInfo->mSHConstants[1] * y +
l11 * mProbeInfo->mSHConstants[1] * z +
l20 * mProbeInfo->mSHConstants[2] * x*y +
l21 * mProbeInfo->mSHConstants[2] * y*z +
l22 * mProbeInfo->mSHConstants[3] * (3.0*z*z - 1.0) +
l23 * mProbeInfo->mSHConstants[2] * x*z +
l24 * mProbeInfo->mSHConstants[4] * (x*x - y*y)
);
return LinearColorF(mMax(result.red, 0), mMax(result.green, 0), mMax(result.blue, 0));
}
MatrixF ReflectionProbe::getSideMatrix(U32 side)
{
// Standard view that will be overridden below.
VectorF vLookatPt(0.0f, 0.0f, 0.0f), vUpVec(0.0f, 0.0f, 0.0f), vRight(0.0f, 0.0f, 0.0f);
switch (side)
{
case 0: // D3DCUBEMAP_FACE_POSITIVE_X:
vLookatPt = VectorF(1.0f, 0.0f, 0.0f);
vUpVec = VectorF(0.0f, 1.0f, 0.0f);
break;
case 1: // D3DCUBEMAP_FACE_NEGATIVE_X:
vLookatPt = VectorF(-1.0f, 0.0f, 0.0f);
vUpVec = VectorF(0.0f, 1.0f, 0.0f);
break;
case 2: // D3DCUBEMAP_FACE_POSITIVE_Y:
vLookatPt = VectorF(0.0f, 1.0f, 0.0f);
vUpVec = VectorF(0.0f, 0.0f, -1.0f);
break;
case 3: // D3DCUBEMAP_FACE_NEGATIVE_Y:
vLookatPt = VectorF(0.0f, -1.0f, 0.0f);
vUpVec = VectorF(0.0f, 0.0f, 1.0f);
break;
case 4: // D3DCUBEMAP_FACE_POSITIVE_Z:
vLookatPt = VectorF(0.0f, 0.0f, 1.0f);
vUpVec = VectorF(0.0f, 1.0f, 0.0f);
break;
case 5: // D3DCUBEMAP_FACE_NEGATIVE_Z:
vLookatPt = VectorF(0.0f, 0.0f, -1.0f);
vUpVec = VectorF(0.0f, 1.0f, 0.0f);
break;
}
// create camera matrix
VectorF cross = mCross(vUpVec, vLookatPt);
cross.normalizeSafe();
MatrixF rotMat(true);
rotMat.setColumn(0, cross);
rotMat.setColumn(1, vLookatPt);
rotMat.setColumn(2, vUpVec);
//rotMat.inverse();
return rotMat;
}
F32 ReflectionProbe::harmonics(U32 termId, Point3F normal)
{
F32 x = normal.x;
F32 y = normal.y;
F32 z = normal.z;
switch(termId)
{
case 0:
return 1.0;
case 1:
return y;
case 2:
return z;
case 3:
return x;
case 4:
return x*y;
case 5:
return y*z;
case 6:
return 3.0*z*z - 1.0;
case 7:
return x*z;
default:
return x*x - y*y;
}
}
LinearColorF ReflectionProbe::sampleSide(U32 termindex, U32 sideIndex)
{
MatrixF sideRot = getSideMatrix(sideIndex);
LinearColorF result = LinearColorF::ZERO;
F32 divider = 0;
for (int y = 0; y<mCubemapResolution; y++)
{
for (int x = 0; x<mCubemapResolution; x++)
{
Point2F sidecoord = ((Point2F(x, y) + Point2F(0.5, 0.5)) / Point2F(mCubemapResolution, mCubemapResolution))*2.0 - Point2F(1.0, 1.0);
Point3F normal = Point3F(sidecoord.x, sidecoord.y, -1.0);
normal.normalize();
F32 minBrightness = Con::getFloatVariable("$pref::GI::Cubemap_Sample_MinBrightness", 0.001f);
LinearColorF texel = mCubeFaceBitmaps[sideIndex]->sampleTexel(y, x);
texel = LinearColorF(mMax(texel.red, minBrightness), mMax(texel.green, minBrightness), mMax(texel.blue, minBrightness)) * Con::getFloatVariable("$pref::GI::Cubemap_Gain", 1.5);
Point3F dir;
sideRot.mulP(normal, &dir);
result += texel * harmonics(termindex,dir) * -normal.z;
divider += -normal.z;
}
}
result /= divider;
return result;
}
//
//SH Calculations
// From http://sunandblackcat.com/tipFullView.php?l=eng&topicid=32&topic=Spherical-Harmonics-From-Cube-Texture
// With shader decode logic from https://github.com/nicknikolov/cubemap-sh
void ReflectionProbe::calculateSHTerms()
{
if (!mCubemap || !mCubemap->mCubemap)
return;
const VectorF cubemapFaceNormals[6] =
{
// D3DCUBEMAP_FACE_POSITIVE_X:
VectorF(1.0f, 0.0f, 0.0f),
// D3DCUBEMAP_FACE_NEGATIVE_X:
VectorF(-1.0f, 0.0f, 0.0f),
// D3DCUBEMAP_FACE_POSITIVE_Y:
VectorF(0.0f, 1.0f, 0.0f),
// D3DCUBEMAP_FACE_NEGATIVE_Y:
VectorF(0.0f, -1.0f, 0.0f),
// D3DCUBEMAP_FACE_POSITIVE_Z:
VectorF(0.0f, 0.0f, 1.0f),
// D3DCUBEMAP_FACE_NEGATIVE_Z:
VectorF(0.0f, 0.0f, -1.0f),
};
mCubemapResolution = mCubemap->mCubemap->getSize();
for (U32 i = 0; i < 6; i++)
{
mCubeFaceBitmaps[i] = new GBitmap(mCubemapResolution, mCubemapResolution, false, GFXFormatR8G8B8);
}
//If we fail to parse the cubemap for whatever reason, we really can't continue
if (!CubemapSaver::getBitmaps(mCubemap->mCubemap, GFXFormatR8G8B8, mCubeFaceBitmaps))
return;
//Set up our constants
F32 L0 = Con::getFloatVariable("$pref::GI::SH_Term_L0", 1.0f);
F32 L1 = Con::getFloatVariable("$pref::GI::SH_Term_L1", 1.8f);
F32 L2 = Con::getFloatVariable("$pref::GI::SH_Term_L2", 0.83f);
F32 L2m2_L2m1_L21 = Con::getFloatVariable("$pref::GI::SH_Term_L2m2", 2.9f);
F32 L20 = Con::getFloatVariable("$pref::GI::SH_Term_L20", 0.58f);
F32 L22 = Con::getFloatVariable("$pref::GI::SH_Term_L22", 1.1f);
mProbeInfo->mSHConstants[0] = L0;
mProbeInfo->mSHConstants[1] = L1;
mProbeInfo->mSHConstants[2] = L2 * L2m2_L2m1_L21;
mProbeInfo->mSHConstants[3] = L2 * L20;
mProbeInfo->mSHConstants[4] = L2 * L22;
for (U32 i = 0; i < 9; i++)
{
//Clear it, just to be sure
mProbeInfo->mSHTerms[i] = LinearColorF(0.f, 0.f, 0.f);
//Now, encode for each side
mProbeInfo->mSHTerms[i] = sampleSide(i, 0); //POS_X
mProbeInfo->mSHTerms[i] += sampleSide(i, 1); //NEG_X
mProbeInfo->mSHTerms[i] += sampleSide(i, 2); //POS_Y
mProbeInfo->mSHTerms[i] += sampleSide(i, 3); //NEG_Y
mProbeInfo->mSHTerms[i] += sampleSide(i, 4); //POS_Z
mProbeInfo->mSHTerms[i] += sampleSide(i, 5); //NEG_Z
//Average
mProbeInfo->mSHTerms[i] /= 6;
}
for (U32 i = 0; i < 6; i++)
SAFE_DELETE(mCubeFaceBitmaps[i]);
bool mExportSHTerms = false;
if (mExportSHTerms)
{
for (U32 f = 0; f < 6; f++)
{
char fileName[256];
dSprintf(fileName, 256, "%s%s_DecodedFaces_%d.png", mReflectionPath.c_str(),
mProbeUniqueID.c_str(), f);
LinearColorF color = decodeSH(cubemapFaceNormals[f]);
FileStream stream;
if (stream.open(fileName, Torque::FS::File::Write))
{
GBitmap bitmap(mCubemapResolution, mCubemapResolution, false, GFXFormatR8G8B8);
bitmap.fill(color.toColorI());
bitmap.writeBitmap("png", stream);
}
}
for (U32 f = 0; f < 9; f++)
{
char fileName[256];
dSprintf(fileName, 256, "%s%s_SHTerms_%d.png", mReflectionPath.c_str(),
mProbeUniqueID.c_str(), f);
LinearColorF color = mProbeInfo->mSHTerms[f];
FileStream stream;
if (stream.open(fileName, Torque::FS::File::Write))
{
GBitmap bitmap(mCubemapResolution, mCubemapResolution, false, GFXFormatR8G8B8);
bitmap.fill(color.toColorI());
bitmap.writeBitmap("png", stream);
}
}
}
}
F32 ReflectionProbe::texelSolidAngle(F32 aU, F32 aV, U32 width, U32 height)
{
// transform from [0..res - 1] to [- (1 - 1 / res) .. (1 - 1 / res)]
// ( 0.5 is for texel center addressing)
const F32 U = (2.0 * (aU + 0.5) / width) - 1.0;
const F32 V = (2.0 * (aV + 0.5) / height) - 1.0;
// shift from a demi texel, mean 1.0 / size with U and V in [-1..1]
const F32 invResolutionW = 1.0 / width;
const F32 invResolutionH = 1.0 / height;
// U and V are the -1..1 texture coordinate on the current face.
// get projected area for this texel
const F32 x0 = U - invResolutionW;
const F32 y0 = V - invResolutionH;
const F32 x1 = U + invResolutionW;
const F32 y1 = V + invResolutionH;
const F32 angle = areaElement(x0, y0) - areaElement(x0, y1) - areaElement(x1, y0) + areaElement(x1, y1);
return angle;
}
F32 ReflectionProbe::areaElement(F32 x, F32 y)
{
return mAtan2(x * y, (F32)mSqrt(x * x + y * y + 1.0));
}
DefineEngineMethod(ReflectionProbe, postApply, void, (), ,
"A utility method for forcing a network update.\n")
{
object->inspectPostApply();
}
void ReflectionProbe::bake(String outputPath, S32 resolution)
{
GFXDEBUGEVENT_SCOPE(ReflectionProbe_Bake, ColorI::WHITE);
PostEffect *preCapture = dynamic_cast<PostEffect*>(Sim::findObject("AL_PreCapture"));
PostEffect *deferredShading = dynamic_cast<PostEffect*>(Sim::findObject("AL_DeferredShading"));
if (preCapture)
preCapture->enable();
if (deferredShading)
deferredShading->disable();
//if (mReflectionModeType == StaticCubemap || mReflectionModeType == BakedCubemap || mReflectionModeType == SkyLight)
{
if (!mCubemap)
{
mCubemap = new CubemapData();
mCubemap->registerObject();
}
}
if (mReflectionModeType == DynamicCubemap && mDynamicCubemap.isNull())
{
//mCubemap->createMap();
mDynamicCubemap = GFX->createCubemap();
mDynamicCubemap->initDynamic(resolution, GFXFormatR8G8B8);
}
else if (mReflectionModeType != DynamicCubemap)
{
if (mReflectionPath.isEmpty() || !mPersistentId)
{
if (!mPersistentId)
mPersistentId = getOrCreatePersistentId();
mReflectionPath = outputPath.c_str();
mProbeUniqueID = std::to_string(mPersistentId->getUUID().getHash()).c_str();
}
}
bool validCubemap = true;
// Save the current transforms so we can restore
// it for child control rendering below.
GFXTransformSaver saver;
//bool saveEditingMission = gEditingMission;
//gEditingMission = false;
//Set this to true to use the prior method where it goes through the SPT_Reflect path for the bake
bool probeRenderState = ReflectionProbe::smRenderReflectionProbes;
ReflectionProbe::smRenderReflectionProbes = false;
for (U32 i = 0; i < 6; ++i)
{
GFXTexHandle blendTex;
blendTex.set(resolution, resolution, GFXFormatR8G8B8A8, &GFXRenderTargetProfile, "");
GFXTextureTargetRef mBaseTarget = GFX->allocRenderToTextureTarget();
GFX->clearTextureStateImmediate(0);
if (mReflectionModeType == DynamicCubemap)
mBaseTarget->attachTexture(GFXTextureTarget::Color0, mDynamicCubemap, i);
else
mBaseTarget->attachTexture(GFXTextureTarget::Color0, blendTex);
// Standard view that will be overridden below.
VectorF vLookatPt(0.0f, 0.0f, 0.0f), vUpVec(0.0f, 0.0f, 0.0f), vRight(0.0f, 0.0f, 0.0f);
switch (i)
{
case 0: // D3DCUBEMAP_FACE_POSITIVE_X:
vLookatPt = VectorF(1.0f, 0.0f, 0.0f);
vUpVec = VectorF(0.0f, 1.0f, 0.0f);
break;
case 1: // D3DCUBEMAP_FACE_NEGATIVE_X:
vLookatPt = VectorF(-1.0f, 0.0f, 0.0f);
vUpVec = VectorF(0.0f, 1.0f, 0.0f);
break;
case 2: // D3DCUBEMAP_FACE_POSITIVE_Y:
vLookatPt = VectorF(0.0f, 1.0f, 0.0f);
vUpVec = VectorF(0.0f, 0.0f, -1.0f);
break;
case 3: // D3DCUBEMAP_FACE_NEGATIVE_Y:
vLookatPt = VectorF(0.0f, -1.0f, 0.0f);
vUpVec = VectorF(0.0f, 0.0f, 1.0f);
break;
case 4: // D3DCUBEMAP_FACE_POSITIVE_Z:
vLookatPt = VectorF(0.0f, 0.0f, 1.0f);
vUpVec = VectorF(0.0f, 1.0f, 0.0f);
break;
case 5: // D3DCUBEMAP_FACE_NEGATIVE_Z:
vLookatPt = VectorF(0.0f, 0.0f, -1.0f);
vUpVec = VectorF(0.0f, 1.0f, 0.0f);
break;
}
// create camera matrix
VectorF cross = mCross(vUpVec, vLookatPt);
cross.normalizeSafe();
MatrixF matView(true);
matView.setColumn(0, cross);
matView.setColumn(1, vLookatPt);
matView.setColumn(2, vUpVec);
matView.setPosition(getPosition());
matView.inverse();
// set projection to 90 degrees vertical and horizontal
F32 left, right, top, bottom;
F32 nearPlane = 0.01f;
F32 farDist = 1000.f;
MathUtils::makeFrustum(&left, &right, &top, &bottom, M_HALFPI_F, 1.0f, nearPlane);
Frustum frustum(false, left, right, top, bottom, nearPlane, farDist);
renderFrame(&mBaseTarget, matView, frustum, StaticObjectType | StaticShapeObjectType & EDITOR_RENDER_TYPEMASK, gCanvasClearColor);
mBaseTarget->resolve();
mCubemap->setCubeFaceTexture(i, blendTex);
}
/*if (mReflectionModeType != DynamicCubemap)
{
char fileName[256];
dSprintf(fileName, 256, "%s%s_%i.png", mReflectionPath.c_str(),
mProbeUniqueID.c_str(), i);
FileStream stream;
if (!stream.open(fileName, Torque::FS::File::Write))
{
Con::errorf("ReflectionProbe::bake(): Couldn't open cubemap face file fo writing " + String(fileName));
if (preCapture)
preCapture->disable();
if (deferredShading)
deferredShading->enable();
return;
}
GBitmap bitmap(blendTex->getWidth(), blendTex->getHeight(), false, GFXFormatR8G8B8);
blendTex->copyToBmp(&bitmap);
bitmap.writeBitmap("png", stream);
if (Platform::isFile(fileName) && mCubemap)
mCubemap->setCubeFaceFile(i, FileName(fileName));
else
validCubemap = false;
bitmap.deleteImage();
}
}*/
if (mReflectionModeType != DynamicCubemap && validCubemap)
{
if (mCubemap->mCubemap)
mCubemap->updateFaces();
else
mCubemap->createMap();
char fileName[256];
dSprintf(fileName, 256, "%s%s.DDS", mReflectionPath.c_str(), mProbeUniqueID.c_str());
CubemapSaver::save(mCubemap->mCubemap, fileName);
if (!Platform::isFile(fileName))
{
validCubemap = false; //if we didn't save right, just
Con::errorf("Failed to properly save out the skylight baked cubemap!");
}
mDirty = false;
}
//calculateSHTerms();
ReflectionProbe::smRenderReflectionProbes = probeRenderState;
setMaskBits(-1);
if (preCapture)
preCapture->disable();
if (deferredShading)
deferredShading->enable();
}
DefineEngineMethod(ReflectionProbe, Bake, void, (String outputPath, S32 resolution), ("", 256),
"@brief returns true if control object is inside the fog\n\n.")
{
object->bake(outputPath, resolution);
}