Torque3D/Engine/source/platform/input/openVR/openVRProvider.cpp

1018 lines
29 KiB
C++

#include "platform/input/openVR/openVRProvider.h"
#include "platform/platformInput.h"
#include "core/module.h"
#include "console/engineAPI.h"
#include "T3D/gameBase/gameConnection.h"
#include "gui/core/guiCanvas.h"
#include "postFx/postEffectCommon.h"
#include "gfx/D3D11/gfxD3D11Device.h"
#include "gfx/D3D11/gfxD3D11TextureObject.h"
#include "gfx/D3D11/gfxD3D11EnumTranslate.h"
#include "gfx/gfxStringEnumTranslate.h"
#include "gfx/D3D9/gfxD3D9Device.h"
#include "gfx/D3D9/gfxD3D9TextureObject.h"
#include "gfx/D3D9/gfxD3D9EnumTranslate.h"
/*
#include "gfx/gl/gfxGLDevice.h"
#include "gfx/gl/gfxGLTextureObject.h"
#include "gfx/gl/gfxGLEnumTranslate.h"
*/
namespace OpenVRUtil
{
/// Convert an OVR sensor's rotation to a Torque 3D matrix
void convertRotation(const F32 inRotMat[4][4], MatrixF& outRotation)
{
// Set rotation. We need to convert from sensor coordinates to
// Torque coordinates. The sensor matrix is stored row-major.
// The conversion is:
//
// Sensor Torque
// a b c a b c a -c b
// d e f --> -g -h -i --> -g i -h
// g h i d e f d -f e
outRotation.setColumn(0, Point4F( inRotMat[0][0], -inRotMat[2][0], inRotMat[1][0], 0.0f));
outRotation.setColumn(1, Point4F(-inRotMat[0][2], inRotMat[2][2], -inRotMat[1][2], 0.0f));
outRotation.setColumn(2, Point4F( inRotMat[0][1], -inRotMat[2][1], inRotMat[1][1], 0.0f));
outRotation.setPosition(Point3F::Zero);
}
}
//------------------------------------------------------------
U32 OpenVRProvider::OVR_SENSORROT[vr::k_unMaxTrackedDeviceCount] = { 0 };
U32 OpenVRProvider::OVR_SENSORROTANG[vr::k_unMaxTrackedDeviceCount] = { 0 };
U32 OpenVRProvider::OVR_SENSORVELOCITY[vr::k_unMaxTrackedDeviceCount] = { 0 };
U32 OpenVRProvider::OVR_SENSORANGVEL[vr::k_unMaxTrackedDeviceCount] = { 0 };
U32 OpenVRProvider::OVR_SENSORMAGNETOMETER[vr::k_unMaxTrackedDeviceCount] = { 0 };
U32 OpenVRProvider::OVR_SENSORPOSITION[vr::k_unMaxTrackedDeviceCount] = { 0 };
U32 OpenVRProvider::OVR_BUTTONPRESSED[vr::k_unMaxTrackedDeviceCount];
U32 OpenVRProvider::OVR_BUTTONTOUCHED[vr::k_unMaxTrackedDeviceCount];
U32 OpenVRProvider::OVR_AXISNONE[vr::k_unMaxTrackedDeviceCount] = { 0 };
U32 OpenVRProvider::OVR_AXISTRACKPAD[vr::k_unMaxTrackedDeviceCount] = { 0 };
U32 OpenVRProvider::OVR_AXISJOYSTICK[vr::k_unMaxTrackedDeviceCount] = { 0 };
U32 OpenVRProvider::OVR_AXISTRIGGER[vr::k_unMaxTrackedDeviceCount] = { 0 };
static String GetTrackedDeviceString(vr::IVRSystem *pHmd, vr::TrackedDeviceIndex_t unDevice, vr::TrackedDeviceProperty prop, vr::TrackedPropertyError *peError = NULL)
{
uint32_t unRequiredBufferLen = pHmd->GetStringTrackedDeviceProperty(unDevice, prop, NULL, 0, peError);
if (unRequiredBufferLen == 0)
return "";
char *pchBuffer = new char[unRequiredBufferLen];
unRequiredBufferLen = pHmd->GetStringTrackedDeviceProperty(unDevice, prop, pchBuffer, unRequiredBufferLen, peError);
String sResult = pchBuffer;
delete[] pchBuffer;
return sResult;
}
static MatrixF ConvertSteamVRAffineMatrixToMatrixFPlain(const vr::HmdMatrix34_t &mat)
{
MatrixF outMat(1);
outMat.setColumn(0, Point4F(mat.m[0][0], mat.m[1][0], mat.m[2][0], 0.0));
outMat.setColumn(1, Point4F(mat.m[0][1], mat.m[1][1], mat.m[2][1], 0.0));
outMat.setColumn(2, Point4F(mat.m[0][2], mat.m[1][2], mat.m[2][2], 0.0));
outMat.setColumn(3, Point4F(mat.m[0][3], mat.m[1][3], mat.m[2][3], 1.0f)); // pos
return outMat;
}
MODULE_BEGIN(OpenVRProvider)
MODULE_INIT_AFTER(InputEventManager)
MODULE_SHUTDOWN_BEFORE(InputEventManager)
MODULE_INIT
{
OpenVRProvider::staticInit();
ManagedSingleton< OpenVRProvider >::createSingleton();
}
MODULE_SHUTDOWN
{
ManagedSingleton< OpenVRProvider >::deleteSingleton();
}
MODULE_END;
bool OpenVRRenderState::setupRenderTargets(U32 mode)
{
if (!mHMD)
return false;
U32 sizeX, sizeY;
Point2I newRTSize;
mHMD->GetRecommendedRenderTargetSize(&sizeX, &sizeY);
mEyeViewport[0] = RectI(Point2I(0, 0), Point2I(sizeX, sizeY));
mEyeViewport[1] = RectI(Point2I(0, 0), Point2I(sizeX, sizeY));
newRTSize.x = sizeX;
newRTSize.y = sizeY;
GFXTexHandle stereoTexture;
stereoTexture.set(newRTSize.x, newRTSize.y, GFXFormatR8G8B8A8, &VRTextureProfile, "OpenVR Stereo RT Color");
mStereoRenderTextures[0] = mStereoRenderTextures[1] = stereoTexture;
GFXTexHandle stereoDepthTexture;
stereoDepthTexture.set(newRTSize.x, newRTSize.y, GFXFormatD24S8, &VRDepthProfile, "OpenVR Depth");
mStereoDepthTextures[0] = mStereoDepthTextures[1] = stereoDepthTexture;
mStereoRT = GFX->allocRenderToTextureTarget();
mStereoRT->attachTexture(GFXTextureTarget::Color0, stereoTexture);
mStereoRT->attachTexture(GFXTextureTarget::DepthStencil, stereoDepthTexture);
mEyeRT[0] = mEyeRT[1] = mStereoRT;
mOutputEyeTextures[0].init(newRTSize.x, newRTSize.y, GFXFormatR8G8B8A8, &VRTextureProfile, "OpenVR Stereo RT Color OUTPUT");
mOutputEyeTextures[1].init(newRTSize.x, newRTSize.y, GFXFormatR8G8B8A8, &VRTextureProfile, "OpenVR Stereo RT Color OUTPUT");
return true;
}
void OpenVRRenderState::setupDistortion()
{
if (!mHMD)
return;
U16 m_iLensGridSegmentCountH = 43;
U16 m_iLensGridSegmentCountV = 43;
float w = (float)(1.0 / float(m_iLensGridSegmentCountH - 1));
float h = (float)(1.0 / float(m_iLensGridSegmentCountV - 1));
float u, v = 0;
Vector<GFXVertexPTTT> vVerts(0);
GFXVertexPTTT *vert;
vVerts.reserve((m_iLensGridSegmentCountV * m_iLensGridSegmentCountH) * 2);
mDistortionVerts.set(GFX, (m_iLensGridSegmentCountV * m_iLensGridSegmentCountH) * 2, GFXBufferTypeStatic);
vert = mDistortionVerts.lock();
//left eye distortion verts
float Xoffset = -1;
for (int y = 0; y < m_iLensGridSegmentCountV; y++)
{
for (int x = 0; x < m_iLensGridSegmentCountH; x++)
{
u = x*w; v = 1 - y*h;
vert->point = Point3F(Xoffset + u, -1 + 2 * y*h, 0.0f);
vr::DistortionCoordinates_t dc0 = mHMD->ComputeDistortion(vr::Eye_Left, u, v);
vert->texCoord1 = Point2F(dc0.rfRed[0], 1 - dc0.rfRed[1]); // r
vert->texCoord2 = Point2F(dc0.rfGreen[0], 1 - dc0.rfGreen[1]); // g
vert->texCoord3 = Point2F(dc0.rfBlue[0], 1 - dc0.rfBlue[1]); // b
vert++;
}
}
//right eye distortion verts
Xoffset = 0;
for (int y = 0; y < m_iLensGridSegmentCountV; y++)
{
for (int x = 0; x < m_iLensGridSegmentCountH; x++)
{
u = x*w; v = 1 - y*h;
vert->point = Point3F(Xoffset + u, -1 + 2 * y*h, 0.0f);
vr::DistortionCoordinates_t dc0 = mHMD->ComputeDistortion(vr::Eye_Right, u, v);
vert->texCoord1 = Point2F(dc0.rfRed[0], 1 - dc0.rfRed[1]);
vert->texCoord2 = Point2F(dc0.rfGreen[0], 1 - dc0.rfGreen[1]);
vert->texCoord3 = Point2F(dc0.rfBlue[0], 1 - dc0.rfBlue[1]);
vert++;
}
}
mDistortionVerts.unlock();
mDistortionInds.set(GFX, m_iLensGridSegmentCountV * m_iLensGridSegmentCountH * 6 * 2, 0, GFXBufferTypeStatic);
GFXPrimitive *prim;
U16 *index;
mDistortionInds.lock(&index, &prim);
U16 a, b, c, d;
U16 offset = 0;
for (U16 y = 0; y < m_iLensGridSegmentCountV - 1; y++)
{
for (U16 x = 0; x < m_iLensGridSegmentCountH - 1; x++)
{
a = m_iLensGridSegmentCountH*y + x + offset;
b = m_iLensGridSegmentCountH*y + x + 1 + offset;
c = (y + 1)*m_iLensGridSegmentCountH + x + 1 + offset;
d = (y + 1)*m_iLensGridSegmentCountH + x + offset;
*index++ = a;
*index++ = b;
*index++ = c;
*index++ = a;
*index++ = c;
*index++ = d;
}
}
offset = (m_iLensGridSegmentCountH)*(m_iLensGridSegmentCountV);
for (U16 y = 0; y < m_iLensGridSegmentCountV - 1; y++)
{
for (U16 x = 0; x < m_iLensGridSegmentCountH - 1; x++)
{
a = m_iLensGridSegmentCountH*y + x + offset;
b = m_iLensGridSegmentCountH*y + x + 1 + offset;
c = (y + 1)*m_iLensGridSegmentCountH + x + 1 + offset;
d = (y + 1)*m_iLensGridSegmentCountH + x + offset;
*index++ = a;
*index++ = b;
*index++ = c;
*index++ = a;
*index++ = c;
*index++ = d;
}
}
mDistortionInds.unlock();
}
void OpenVRRenderState::renderDistortion(U32 eye)
{
// Updates distortion for an eye (this should only be the case for backend APIS where image should be predistorted)
/*
glDisable(GL_DEPTH_TEST);
glViewport( 0, 0, m_nWindowWidth, m_nWindowHeight );
glBindVertexArray( m_unLensVAO );
glUseProgram( m_unLensProgramID );
//render left lens (first half of index array )
glBindTexture(GL_TEXTURE_2D, leftEyeDesc.m_nResolveTextureId );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR );
glDrawElements( GL_TRIANGLES, m_uiIndexSize/2, GL_UNSIGNED_SHORT, 0 );
//render right lens (second half of index array )
glBindTexture(GL_TEXTURE_2D, rightEyeDesc.m_nResolveTextureId );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR );
glDrawElements( GL_TRIANGLES, m_uiIndexSize/2, GL_UNSIGNED_SHORT, (const void *)(m_uiIndexSize) );
glBindVertexArray( 0 );
glUseProgram( 0 );
*/
}
void OpenVRRenderState::renderPreview()
{
}
void OpenVRRenderState::reset(vr::IVRSystem* hmd)
{
mHMD = hmd;
mStereoRT = NULL;
mEyeRT[0] = mEyeRT[1] = NULL;
mStereoRenderTextures[0] = mStereoRenderTextures[1] = NULL;
mStereoDepthTextures[0] = mStereoDepthTextures[1] = NULL;
mDistortionVerts = NULL;
mDistortionInds = NULL;
mOutputEyeTextures[0].clear();
mOutputEyeTextures[1].clear();
if (!mHMD)
return;
vr::HmdMatrix34_t mat = mHMD->GetEyeToHeadTransform(vr::Eye_Left);
mEyePose[0] = ConvertSteamVRAffineMatrixToMatrixFPlain(mat);
mEyePose[0].inverse();
mat = mHMD->GetEyeToHeadTransform(vr::Eye_Right);
mEyePose[1] = ConvertSteamVRAffineMatrixToMatrixFPlain(mat);
mEyePose[1].inverse();
mHMD->GetProjectionRaw(vr::Eye_Left, &mEyeFov[0].leftTan, &mEyeFov[0].rightTan, &mEyeFov[0].upTan, &mEyeFov[0].downTan);
mHMD->GetProjectionRaw(vr::Eye_Right, &mEyeFov[1].leftTan, &mEyeFov[1].rightTan, &mEyeFov[1].upTan, &mEyeFov[1].downTan);
mEyeFov[0].upTan = -mEyeFov[0].upTan;
mEyeFov[0].leftTan = -mEyeFov[0].leftTan;
mEyeFov[1].upTan = -mEyeFov[1].upTan;
mEyeFov[1].leftTan = -mEyeFov[1].leftTan;
}
OpenVRProvider::OpenVRProvider() :
mHMD(NULL),
mRenderModels(NULL),
mDrawCanvas(NULL),
mGameConnection(NULL)
{
dStrcpy(mName, "openvr");
mDeviceType = INPUTMGR->getNextDeviceType();
buildInputCodeTable();
GFXDevice::getDeviceEventSignal().notify(this, &OpenVRProvider::_handleDeviceEvent);
INPUTMGR->registerDevice(this);
dMemset(&mLUID, '\0', sizeof(mLUID));
}
OpenVRProvider::~OpenVRProvider()
{
}
void OpenVRProvider::staticInit()
{
// TODO: Add console vars
}
bool OpenVRProvider::enable()
{
disable();
// Load openvr runtime
vr::EVRInitError eError = vr::VRInitError_None;
mHMD = vr::VR_Init(&eError, vr::VRApplication_Scene);
dMemset(mDeviceClassChar, '\0', sizeof(mDeviceClassChar));
if (eError != vr::VRInitError_None)
{
mHMD = NULL;
char buf[1024];
sprintf_s(buf, sizeof(buf), "Unable to init VR runtime: %s", vr::VR_GetVRInitErrorAsEnglishDescription(eError));
Con::printf(buf);
return false;
}
dMemset(&mLUID, '\0', sizeof(mLUID));
#ifdef TORQUE_OS_WIN32
// For windows we need to lookup the DXGI record for this and grab the LUID for the display adapter. We need the LUID since
// T3D uses EnumAdapters1 not EnumAdapters whereas openvr uses EnumAdapters.
int32_t AdapterIdx;
IDXGIAdapter* EnumAdapter;
IDXGIFactory1* DXGIFactory;
mHMD->GetDXGIOutputInfo(&AdapterIdx);
// Get the LUID of the device
HRESULT hr = CreateDXGIFactory1(__uuidof(IDXGIFactory1), reinterpret_cast<void**>(&DXGIFactory));
if (FAILED(hr))
AssertFatal(false, "OpenVRProvider::enable -> CreateDXGIFactory1 call failure");
hr = DXGIFactory->EnumAdapters(AdapterIdx, &EnumAdapter);
if (FAILED(hr))
{
Con::warnf("VR: HMD device has an invalid adapter.");
}
else
{
DXGI_ADAPTER_DESC desc;
hr = EnumAdapter->GetDesc(&desc);
if (FAILED(hr))
{
Con::warnf("VR: HMD device has an invalid adapter.");
}
else
{
dMemcpy(&mLUID, &desc.AdapterLuid, sizeof(mLUID));
}
SAFE_RELEASE(EnumAdapter);
}
SAFE_RELEASE(DXGIFactory);
#endif
mRenderModels = (vr::IVRRenderModels *)vr::VR_GetGenericInterface(vr::IVRRenderModels_Version, &eError);
if (!mRenderModels)
{
mHMD = NULL;
vr::VR_Shutdown();
char buf[1024];
sprintf_s(buf, sizeof(buf), "Unable to get render model interface: %s", vr::VR_GetVRInitErrorAsEnglishDescription(eError));
Con::printf(buf);
return false;
}
mDriver = GetTrackedDeviceString(mHMD, vr::k_unTrackedDeviceIndex_Hmd, vr::Prop_TrackingSystemName_String);
mDisplay = GetTrackedDeviceString(mHMD, vr::k_unTrackedDeviceIndex_Hmd, vr::Prop_SerialNumber_String);
mHMDRenderState.reset(mHMD);
mHMD->ResetSeatedZeroPose();
dMemset(mPreviousInputTrackedDevicePose, '\0', sizeof(mPreviousInputTrackedDevicePose));
mEnabled = true;
return true;
}
bool OpenVRProvider::disable()
{
if (mHMD)
{
mHMD = NULL;
mRenderModels = NULL;
mHMDRenderState.reset(NULL);
vr::VR_Shutdown();
}
mEnabled = false;
return true;
}
void OpenVRProvider::buildInputCodeTable()
{
// Obtain all of the device codes
for (U32 i = 0; i < vr::k_unMaxTrackedDeviceCount; ++i)
{
OVR_SENSORROT[i] = INPUTMGR->getNextDeviceCode();
OVR_SENSORROTANG[i] = INPUTMGR->getNextDeviceCode();
OVR_SENSORVELOCITY[i] = INPUTMGR->getNextDeviceCode();
OVR_SENSORANGVEL[i] = INPUTMGR->getNextDeviceCode();
OVR_SENSORMAGNETOMETER[i] = INPUTMGR->getNextDeviceCode();
OVR_SENSORPOSITION[i] = INPUTMGR->getNextDeviceCode();
OVR_BUTTONPRESSED[i] = INPUTMGR->getNextDeviceCode();
OVR_BUTTONTOUCHED[i] = INPUTMGR->getNextDeviceCode();
OVR_AXISNONE[i] = INPUTMGR->getNextDeviceCode();
OVR_AXISTRACKPAD[i] = INPUTMGR->getNextDeviceCode();
OVR_AXISJOYSTICK[i] = INPUTMGR->getNextDeviceCode();
OVR_AXISTRIGGER[i] = INPUTMGR->getNextDeviceCode();
}
// Build out the virtual map
char buffer[64];
for (U32 i = 0; i < vr::k_unMaxTrackedDeviceCount; ++i)
{
dSprintf(buffer, 64, "opvr_sensorrot%d", i);
INPUTMGR->addVirtualMap(buffer, SI_ROT, OVR_SENSORROT[i]);
dSprintf(buffer, 64, "opvr_sensorrotang%d", i);
INPUTMGR->addVirtualMap(buffer, SI_POS, OVR_SENSORROTANG[i]);
dSprintf(buffer, 64, "opvr_sensorvelocity%d", i);
INPUTMGR->addVirtualMap(buffer, SI_POS, OVR_SENSORVELOCITY[i]);
dSprintf(buffer, 64, "opvr_sensorangvel%d", i);
INPUTMGR->addVirtualMap(buffer, SI_POS, OVR_SENSORANGVEL[i]);
dSprintf(buffer, 64, "opvr_sensormagnetometer%d", i);
INPUTMGR->addVirtualMap(buffer, SI_POS, OVR_SENSORMAGNETOMETER[i]);
dSprintf(buffer, 64, "opvr_sensorpos%d", i);
INPUTMGR->addVirtualMap(buffer, SI_POS, OVR_SENSORPOSITION[i]);
dSprintf(buffer, 64, "opvr_buttonpressed%d", i);
INPUTMGR->addVirtualMap(buffer, SI_INT, OVR_BUTTONPRESSED[i]);
dSprintf(buffer, 64, "opvr_buttontouched%d", i);
INPUTMGR->addVirtualMap(buffer, SI_INT, OVR_BUTTONTOUCHED[i]);
dSprintf(buffer, 64, "opvr_axis_none%d", i);
INPUTMGR->addVirtualMap(buffer, SI_POS, OVR_AXISNONE[i]);
dSprintf(buffer, 64, "opvr_axis_trackpad%d", i);
INPUTMGR->addVirtualMap(buffer, SI_POS, OVR_AXISTRACKPAD[i]);
dSprintf(buffer, 64, "opvr_axis_joystick%d", i);
INPUTMGR->addVirtualMap(buffer, SI_POS, OVR_AXISJOYSTICK[i]);
dSprintf(buffer, 64, "opvr_axis_trigger%d", i);
INPUTMGR->addVirtualMap(buffer, SI_INT, OVR_AXISTRIGGER[i]);
}
}
bool OpenVRProvider::process()
{
if (!mHMD)
return true;
if (!vr::VRCompositor())
return true;
// Process SteamVR events
vr::VREvent_t event;
while (mHMD->PollNextEvent(&event, sizeof(event)))
{
processVREvent(event);
}
// Process SteamVR controller state
for (vr::TrackedDeviceIndex_t unDevice = 0; unDevice < vr::k_unMaxTrackedDeviceCount; unDevice++)
{
vr::VRControllerState_t state;
if (mHMD->GetControllerState(unDevice, &state))
{
// TODO
}
}
// Update input poses
updateTrackedPoses();
submitInputChanges();
return true;
}
bool OpenVRProvider::providesFrameEyePose() const
{
return mHMD != NULL;
}
inline Point3F OpenVRVecToTorqueVec(vr::HmdVector3_t vec)
{
return Point3F(-vec.v[0], vec.v[2], -vec.v[1]);
}
void OpenVRTransformToRotPos(MatrixF mat, QuatF &outRot, Point3F &outPos)
{
// Directly set the rotation and position from the eye transforms
MatrixF torqueMat(1);
F32 inRotMat[4][4];
Point4F col0; mat.getColumn(0, &col0);
Point4F col1; mat.getColumn(1, &col1);
Point4F col2; mat.getColumn(2, &col2);
Point4F col3; mat.getColumn(3, &col3);
inRotMat[0][0] = col0.x;
inRotMat[0][1] = col0.y;
inRotMat[0][2] = col0.z;
inRotMat[0][3] = col0.w;
inRotMat[1][0] = col1.x;
inRotMat[1][1] = col1.y;
inRotMat[1][2] = col1.z;
inRotMat[1][3] = col1.w;
inRotMat[2][0] = col2.x;
inRotMat[2][1] = col2.y;
inRotMat[2][2] = col2.z;
inRotMat[2][3] = col2.w;
inRotMat[3][0] = col3.x;
inRotMat[3][1] = col3.y;
inRotMat[3][2] = col3.z;
inRotMat[3][3] = col3.w;
OpenVRUtil::convertRotation(inRotMat, torqueMat);
Point3F pos = torqueMat.getPosition();
outRot = QuatF(torqueMat);
outPos = Point3F(-pos.x, pos.z, -pos.y);
}
void OpenVRProvider::getFrameEyePose(IDevicePose *pose, U32 eye) const
{
AssertFatal(eye >= 0 && eye < 2, "Out of bounds eye");
MatrixF mat = mHMDRenderState.mHMDPose * mHMDRenderState.mEyePose[eye];
OpenVRTransformToRotPos(mat, pose->orientation, pose->position);
pose->velocity = Point3F(0);
pose->angularVelocity = Point3F(0);
}
bool OpenVRProvider::providesEyeOffsets() const
{
return mHMD != NULL;
}
/// Returns eye offset not taking into account any position tracking info
void OpenVRProvider::getEyeOffsets(Point3F *dest) const
{
dest[0] = mHMDRenderState.mEyePose[0].getPosition();
dest[1] = mHMDRenderState.mEyePose[1].getPosition();
}
bool OpenVRProvider::providesFovPorts() const
{
return mHMD != NULL;
}
void OpenVRProvider::getFovPorts(FovPort *out) const
{
dMemcpy(out, mHMDRenderState.mEyeFov, sizeof(mHMDRenderState.mEyeFov));
}
bool OpenVRProvider::providesProjectionOffset() const
{
return mHMD != NULL;
}
const Point2F& OpenVRProvider::getProjectionOffset() const
{
return Point2F(0, 0);
}
void OpenVRProvider::getStereoViewports(RectI *out) const
{
out[0] = mHMDRenderState.mEyeViewport[0];
out[1] = mHMDRenderState.mEyeViewport[1];
}
void OpenVRProvider::getStereoTargets(GFXTextureTarget **out) const
{
out[0] = mHMDRenderState.mEyeRT[0];
out[1] = mHMDRenderState.mEyeRT[1];
}
void OpenVRProvider::setDrawCanvas(GuiCanvas *canvas)
{
vr::EVRInitError peError = vr::VRInitError_None;
if (!vr::VRCompositor())
{
Con::errorf("VR: Compositor initialization failed. See log file for details\n");
return;
}
if (mDrawCanvas != canvas || mHMDRenderState.mHMD == NULL)
{
mHMDRenderState.setupRenderTargets(0);
}
mDrawCanvas = canvas;
}
void OpenVRProvider::setCurrentConnection(GameConnection *connection)
{
mGameConnection = connection;
}
GameConnection* OpenVRProvider::getCurrentConnection()
{
return mGameConnection;
}
GFXTexHandle OpenVRProvider::getPreviewTexture()
{
return mHMDRenderState.mStereoRenderTextures[0]; // TODO: render distortion preview
}
void OpenVRProvider::onStartFrame()
{
if (!mHMD)
return;
}
void OpenVRProvider::onEndFrame()
{
if (!mHMD)
return;
}
void OpenVRProvider::onEyeRendered(U32 index)
{
if (!mHMD)
return;
vr::EVRCompositorError err = vr::VRCompositorError_None;
GFXTexHandle eyeTex = mHMDRenderState.mOutputEyeTextures[index].getTextureHandle();
mHMDRenderState.mEyeRT[0]->resolveTo(eyeTex);
mHMDRenderState.mOutputEyeTextures[index].advance();
if (GFX->getAdapterType() == Direct3D11)
{
GFXFormat fmt1 = eyeTex->getFormat();
vr::Texture_t eyeTexture = { (void*)static_cast<GFXD3D11TextureObject*>(eyeTex.getPointer())->get2DTex(), vr::API_DirectX, vr::ColorSpace_Gamma };
err = vr::VRCompositor()->Submit((vr::EVREye)(vr::Eye_Left + index), &eyeTexture);
}
else if (GFX->getAdapterType() == Direct3D9)
{
//vr::Texture_t eyeTexture = { (void*)static_cast<GFXD3D9TextureObject*>(mHMDRenderState.mStereoRenderTextures[index].getPointer())->get2DTex(), vr::API_DirectX, vr::ColorSpace_Gamma };
//err = vr::VRCompositor()->Submit((vr::EVREye)(vr::Eye_Left + index), &eyeTexture);
}
else if (GFX->getAdapterType() == OpenGL)
{/*
vr::Texture_t eyeTexture = { (void*)static_cast<GFXGLTextureObject*>(mHMDRenderState.mStereoRenderTextures[index].getPointer())->getHandle(), vr::API_OpenGL, vr::ColorSpace_Gamma };
vr::VRCompositor()->Submit((vr::EVREye)(vr::Eye_Left + index), &eyeTexture);*/
}
AssertFatal(err == vr::VRCompositorError_None, "VR compositor error!");
}
bool OpenVRProvider::_handleDeviceEvent(GFXDevice::GFXDeviceEventType evt)
{
if (!ManagedSingleton<OpenVRProvider>::instanceOrNull())
{
return true;
}
switch (evt)
{
case GFXDevice::deStartOfFrame:
// Start of frame
onStartFrame();
break;
case GFXDevice::dePostFrame:
// End of frame
onEndFrame();
break;
case GFXDevice::deDestroy:
// Need to reinit rendering
break;
case GFXDevice::deLeftStereoFrameRendered:
//
onEyeRendered(0);
break;
case GFXDevice::deRightStereoFrameRendered:
//
onEyeRendered(1);
break;
default:
break;
}
return true;
}
S32 OpenVRProvider::getDisplayDeviceId() const
{
return -1;
#ifdef TORQUE_OS_WIN32
if (GFX->getAdapterType() == Direct3D11)
{
Vector<GFXAdapter*> adapterList;
GFXD3D11Device::enumerateAdapters(adapterList);
for (U32 i = 0, sz = adapterList.size(); i < sz; i++)
{
GFXAdapter* adapter = adapterList[i];
if (dMemcmp(&adapter->mLUID, &mLUID, sizeof(mLUID)) == 0)
{
return adapter->mIndex;
}
}
}
#endif
return -1;
}
void OpenVRProvider::processVREvent(const vr::VREvent_t & event)
{
switch (event.eventType)
{
case vr::VREvent_TrackedDeviceActivated:
{
// Setup render model
}
break;
case vr::VREvent_TrackedDeviceDeactivated:
{
// Deactivated
}
break;
case vr::VREvent_TrackedDeviceUpdated:
{
// Updated
}
break;
}
}
void OpenVRProvider::updateTrackedPoses()
{
if (!mHMD)
return;
vr::VRCompositor()->WaitGetPoses(mTrackedDevicePose, vr::k_unMaxTrackedDeviceCount, NULL, 0);
mValidPoseCount = 0;
for (int nDevice = 0; nDevice < vr::k_unMaxTrackedDeviceCount; ++nDevice)
{
IDevicePose &inPose = mCurrentDevicePose[nDevice];
if (mTrackedDevicePose[nDevice].bPoseIsValid)
{
mValidPoseCount++;
MatrixF mat = ConvertSteamVRAffineMatrixToMatrixFPlain(mTrackedDevicePose[nDevice].mDeviceToAbsoluteTracking);
mat.inverse();
if (nDevice == vr::k_unTrackedDeviceIndex_Hmd)
{
mHMDRenderState.mHMDPose = mat;
}
vr::TrackedDevicePose_t &outPose = mTrackedDevicePose[nDevice];
OpenVRTransformToRotPos(mat, inPose.orientation, inPose.position);
inPose.state = outPose.eTrackingResult;
inPose.valid = outPose.bPoseIsValid;
inPose.connected = outPose.bDeviceIsConnected;
inPose.velocity = OpenVRVecToTorqueVec(outPose.vVelocity);
inPose.angularVelocity = OpenVRVecToTorqueVec(outPose.vAngularVelocity);
}
else
{
inPose.valid = false;
}
}
}
void OpenVRProvider::submitInputChanges()
{
// Diff current frame with previous frame
for (U32 i = 0; i < vr::k_unMaxTrackedDeviceCount; i++)
{
IDevicePose curPose = mCurrentDevicePose[i];
IDevicePose prevPose = mPreviousInputTrackedDevicePose[i];
if (!curPose.valid || !curPose.connected)
continue;
if (curPose.orientation != prevPose.orientation)
{
AngAxisF axisAA(curPose.orientation);
INPUTMGR->buildInputEvent(mDeviceType, 0, SI_ROT, OVR_SENSORROT[i], SI_MOVE, axisAA);
}
if (curPose.position != prevPose.position)
{
INPUTMGR->buildInputEvent(mDeviceType, 0, SI_POS, OVR_SENSORPOSITION[i], SI_MOVE, curPose.position);
}
if (curPose.velocity != prevPose.velocity)
{
// Convert angles to degrees
VectorF angles;
angles.x = curPose.velocity.x;
angles.y = curPose.velocity.y;
angles.z = curPose.velocity.z;
INPUTMGR->buildInputEvent(mDeviceType, 0, SI_POS, OVR_SENSORVELOCITY[i], SI_MOVE, angles);
}
if (curPose.angularVelocity != prevPose.angularVelocity)
{
// Convert angles to degrees
VectorF angles;
angles[0] = mRadToDeg(curPose.velocity.x);
angles[1] = mRadToDeg(curPose.velocity.y);
angles[2] = mRadToDeg(curPose.velocity.z);
INPUTMGR->buildInputEvent(mDeviceType, 0, SI_POS, OVR_SENSORANGVEL[i], SI_MOVE, angles);
}
/*
if (curPose.connected != prevPose.connected)
{
if (Con::isFunction("onOVRConnectionChanged"))
{
Con::executef("onOVRConnectionStatus", curPose.connected);
}
}*/
if (curPose.state != prevPose.state)
{
if (Con::isFunction("onOVRStateChanged"))
{
Con::executef("onOVRStateChanged", curPose.state);
}
}
}
dMemcpy(mPreviousInputTrackedDevicePose, mCurrentDevicePose, sizeof(mPreviousInputTrackedDevicePose));
}
void OpenVRProvider::resetSensors()
{
if (mHMD)
{
mHMD->ResetSeatedZeroPose();
}
}
DefineEngineFunction(isOpenVRDeviceActive, bool, (), ,
"@brief Used to determine if the OpenVR input device is active\n\n"
"The OpenVR device is considered active when the library has been "
"initialized and either a real of simulated HMD is present.\n\n"
"@return True if the OpenVR input device is active.\n"
"@ingroup Game")
{
if (!ManagedSingleton<OpenVRProvider>::instanceOrNull())
{
return false;
}
return OCULUSVRDEV->getActive();
}
DefineEngineFunction(OpenVRSetEnabled, bool, (bool value), ,
"@brief Used to determine if the OpenVR input device is active\n\n"
"The OpenVR device is considered active when the library has been "
"initialized and either a real of simulated HMD is present.\n\n"
"@return True if the OpenVR input device is active.\n"
"@ingroup Game")
{
if (!ManagedSingleton<OpenVRProvider>::instanceOrNull())
{
return false;
}
return value ? ManagedSingleton<OpenVRProvider>::instance()->enable() : ManagedSingleton<OpenVRProvider>::instance()->disable();
}
DefineEngineFunction(setOpenVRHMDAsGameConnectionDisplayDevice, bool, (GameConnection* conn), ,
"@brief Sets the first HMD to be a GameConnection's display device\n\n"
"@param conn The GameConnection to set.\n"
"@return True if the GameConnection display device was set.\n"
"@ingroup Game")
{
if (!ManagedSingleton<OpenVRProvider>::instanceOrNull())
{
Con::errorf("setOVRHMDAsGameConnectionDisplayDevice(): No Oculus VR Device present.");
return false;
}
if (!conn)
{
Con::errorf("setOVRHMDAsGameConnectionDisplayDevice(): Invalid GameConnection.");
return false;
}
conn->setDisplayDevice(ManagedSingleton<OpenVRProvider>::instance());
return true;
}
DefineEngineFunction(OpenVRGetDisplayDeviceId, S32, (), ,
"@brief MacOS display ID.\n\n"
"@param index The HMD index.\n"
"@return The ID of the HMD display device, if any.\n"
"@ingroup Game")
{
if (!ManagedSingleton<OpenVRProvider>::instanceOrNull())
{
return -1;
}
return ManagedSingleton<OpenVRProvider>::instance()->getDisplayDeviceId();
}
DefineEngineFunction(OpenVRResetSensors, void, (), ,
"@brief Resets all Oculus VR sensors.\n\n"
"This resets all sensor orientations such that their 'normal' rotation "
"is defined when this function is called. This defines an HMD's forwards "
"and up direction, for example."
"@ingroup Game")
{
if (!ManagedSingleton<OpenVRProvider>::instanceOrNull())
{
return;
}
ManagedSingleton<OpenVRProvider>::instance()->resetSensors();
}