Torque3D/Engine/source/shaderGen/HLSL/bumpHLSL.cpp

506 lines
18 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "shaderGen/HLSL/bumpHLSL.h"
#include "shaderGen/shaderOp.h"
#include "gfx/gfxDevice.h"
#include "materials/matInstance.h"
#include "materials/processedMaterial.h"
#include "materials/materialFeatureTypes.h"
#include "shaderGen/shaderGenVars.h"
void BumpFeatHLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
MultiLine *meta = new MultiLine;
output = meta;
const bool useTexAnim = fd.features[MFT_TexAnim];
// Output the texture coord.
getOutTexCoord( "texCoord",
"float2",
true,
useTexAnim,
meta,
componentList );
if ( fd.features.hasFeature( MFT_DetailNormalMap ) )
addOutDetailTexCoord( componentList,
meta,
useTexAnim );
// Also output the worldToTanget transform which
// we use to create the world space normal.
getOutWorldToTangent( componentList, meta, fd );
}
void BumpFeatHLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
MultiLine *meta = new MultiLine;
output = meta;
// Get the texture coord.
Var *texCoord = getInTexCoord( "texCoord", "float2", true, componentList );
// Sample the bumpmap.
Var *bumpMap = getNormalMapTex();
LangElement *texOp = NULL;
//if it's D3D11 let's create the texture object
Var* bumpMapTex = NULL;
if (mIsDirect3D11)
{
bumpMapTex = (Var*)LangElement::find("bumpMapTex");
}
// Handle atlased textures
// http://www.infinity-universe.com/Infinity/index.php?option=com_content&task=view&id=65&Itemid=47
if(fd.features[MFT_NormalMapAtlas])
{
// This is a big block of code, so put a comment in the shader code
meta->addStatement( new GenOp( " // Atlased texture coordinate calculation (see BumpFeat*LSL for details)\r\n") );
Var *atlasedTex = new Var;
atlasedTex->setName("atlasedBumpCoord");
atlasedTex->setType( "float2" );
LangElement *atDecl = new DecOp( atlasedTex );
// Parameters of the texture atlas
Var *atParams = new Var;
atParams->setType( "float4" );
atParams->setName("bumpAtlasParams");
atParams->uniform = true;
atParams->constSortPos = cspPotentialPrimitive;
// Parameters of the texture (tile) this object is using in the atlas
Var *tileParams = new Var;
tileParams->setType( "float4" );
tileParams->setName("bumpAtlasTileParams");
tileParams->uniform = true;
tileParams->constSortPos = cspPotentialPrimitive;
const bool is_sm3 = (GFX->getPixelShaderVersion() > 2.0f);
if(is_sm3)
{
// Figure out the mip level
meta->addStatement( new GenOp( " float2 _dx_bump = ddx(@ * @.z);\r\n", texCoord, atParams ) );
meta->addStatement( new GenOp( " float2 _dy_bump = ddy(@ * @.z);\r\n", texCoord, atParams ) );
meta->addStatement( new GenOp( " float mipLod_bump = 0.5 * log2(max(dot(_dx_bump, _dx_bump), dot(_dy_bump, _dy_bump)));\r\n" ) );
meta->addStatement( new GenOp( " mipLod_bump = clamp(mipLod_bump, 0.0, @.w);\r\n", atParams ) );
// And the size of the mip level
meta->addStatement( new GenOp( " float mipPixSz_bump = pow(2.0, @.w - mipLod_bump);\r\n", atParams ) );
meta->addStatement( new GenOp( " float2 mipSz_bump = mipPixSz_bump / @.xy;\r\n", atParams ) );
}
else
{
meta->addStatement(new GenOp(" float2 mipSz = float2(1.0, 1.0);\r\n"));
}
// Tiling mode
if( true ) // Wrap
meta->addStatement( new GenOp( " @ = frac(@);\r\n", atDecl, texCoord ) );
else // Clamp
meta->addStatement( new GenOp( " @ = saturate(@);\r\n", atDecl, texCoord ) );
// Finally scale/offset, and correct for filtering
meta->addStatement( new GenOp( " @ = @ * ((mipSz_bump * @.xy - 1.0) / mipSz_bump) + 0.5 / mipSz_bump + @.xy * @.xy;\r\n",
atlasedTex, atlasedTex, atParams, atParams, tileParams ) );
// Add a newline
meta->addStatement( new GenOp( "\r\n" ) );
if (mIsDirect3D11)
{
texOp = new GenOp("@.SampleLevel(@, @, mipLod_bump)", bumpMapTex, bumpMap, texCoord);
}
else if (is_sm3)
{
texOp = new GenOp("tex2Dlod(@, float4(@, 0.0, mipLod_bump))", bumpMap, texCoord);
}
else
{
texOp = new GenOp("tex2D(@, @)", bumpMap, texCoord);
}
}
else
{
if (mIsDirect3D11)
texOp = new GenOp("@.Sample(@, @)", bumpMapTex, bumpMap, texCoord);
else
texOp = new GenOp("tex2D(@, @)", bumpMap, texCoord);
}
Var *bumpNorm = new Var( "bumpNormal", "float4" );
meta->addStatement( expandNormalMap( texOp, new DecOp( bumpNorm ), bumpNorm, fd ) );
// If we have a detail normal map we add the xy coords of
// it to the base normal map. This gives us the effect we
// want with few instructions and minial artifacts.
if ( fd.features.hasFeature( MFT_DetailNormalMap ) )
{
bumpMap = new Var;
bumpMap->setType( "sampler2D" );
bumpMap->setName( "detailBumpMap" );
bumpMap->uniform = true;
bumpMap->sampler = true;
bumpMap->constNum = Var::getTexUnitNum();
Var* detailBumpTex = NULL;
if (mIsDirect3D11)
{
bumpMap->setType("SamplerState");
detailBumpTex = new Var;
detailBumpTex->setName("detailBumpTex");
detailBumpTex->setType("Texture2D");
detailBumpTex->uniform = true;
detailBumpTex->texture = true;
detailBumpTex->constNum = bumpMap->constNum;
}
else
bumpMap->setType("sampler2D");
texCoord = getInTexCoord( "detCoord", "float2", true, componentList );
if (mIsDirect3D11)
texOp = new GenOp("@.Sample(@, @)", detailBumpTex, bumpMap, texCoord);
else
texOp = new GenOp("tex2D(@, @)", bumpMap, texCoord);
Var *detailBump = new Var;
detailBump->setName( "detailBump" );
detailBump->setType( "float4" );
meta->addStatement( expandNormalMap( texOp, new DecOp( detailBump ), detailBump, fd ) );
Var *detailBumpScale = new Var;
detailBumpScale->setType( "float" );
detailBumpScale->setName( "detailBumpStrength" );
detailBumpScale->uniform = true;
detailBumpScale->constSortPos = cspPass;
meta->addStatement( new GenOp( " @.xy += @.xy * @;\r\n", bumpNorm, detailBump, detailBumpScale ) );
}
// We transform it into world space by reversing the
// multiplication by the worldToTanget transform.
Var *wsNormal = new Var( "wsNormal", "float3" );
Var *worldToTanget = getInWorldToTangent( componentList );
meta->addStatement( new GenOp( " @ = normalize( mul( @.xyz, @ ) );\r\n", new DecOp( wsNormal ), bumpNorm, worldToTanget ) );
}
ShaderFeature::Resources BumpFeatHLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
// If we have no parallax then we bring on the normal tex.
if ( !fd.features[MFT_Parallax] )
res.numTex = 1;
// Only the parallax or diffuse map will add texture
// coords other than us.
if ( !fd.features[MFT_Parallax] &&
!fd.features[MFT_DiffuseMap] &&
!fd.features[MFT_OverlayMap] &&
!fd.features[MFT_DetailMap] )
res.numTexReg++;
// We pass the world to tanget space transform.
res.numTexReg += 3;
// Do we have detail normal mapping?
if ( fd.features[MFT_DetailNormalMap] )
{
res.numTex++;
if ( !fd.features[MFT_DetailMap] )
res.numTexReg++;
}
return res;
}
void BumpFeatHLSL::setTexData( Material::StageData &stageDat,
const MaterialFeatureData &fd,
RenderPassData &passData,
U32 &texIndex )
{
// If we had a parallax feature then it takes
// care of hooking up the normal map texture.
if ( fd.features[MFT_Parallax] )
return;
if ( fd.features[MFT_NormalMap] )
{
passData.mTexType[ texIndex ] = Material::Bump;
passData.mSamplerNames[ texIndex ] = "bumpMap";
passData.mTexSlot[ texIndex++ ].texObject = stageDat.getTex( MFT_NormalMap );
}
if ( fd.features[ MFT_DetailNormalMap ] )
{
passData.mTexType[ texIndex ] = Material::DetailBump;
passData.mSamplerNames[ texIndex ] = "detailBumpMap";
passData.mTexSlot[ texIndex++ ].texObject = stageDat.getTex( MFT_DetailNormalMap );
}
}
ParallaxFeatHLSL::ParallaxFeatHLSL()
: mIncludeDep(String(Con::getVariable("$Core::CommonShaderPath")) + String("/torque.hlsl" ))
{
addDependency( &mIncludeDep );
}
Var* ParallaxFeatHLSL::_getUniformVar( const char *name, const char *type, ConstantSortPosition csp )
{
Var *theVar = (Var*)LangElement::find( name );
if ( !theVar )
{
theVar = new Var;
theVar->setType( type );
theVar->setName( name );
theVar->uniform = true;
theVar->constSortPos = csp;
}
return theVar;
}
void ParallaxFeatHLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
AssertFatal( GFX->getPixelShaderVersion() >= 2.0,
"ParallaxFeatHLSL::processVert - We don't support SM 1.x!" );
MultiLine *meta = new MultiLine;
// Add the texture coords.
getOutTexCoord( "texCoord",
"float2",
true,
fd.features[MFT_TexAnim],
meta,
componentList );
// Grab the input position.
Var *inPos = (Var*)LangElement::find( "inPosition" );
if ( !inPos )
inPos = (Var*)LangElement::find( "position" );
// Get the object space eye position and the
// object to tangent space transform.
Var *eyePos = _getUniformVar( "eyePos", "float3", cspPrimitive );
Var *objToTangentSpace = getOutObjToTangentSpace( componentList, meta, fd );
// Now send the negative view vector in tangent space to the pixel shader.
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *outNegViewTS = connectComp->getElement( RT_TEXCOORD );
outNegViewTS->setName( "outNegViewTS" );
outNegViewTS->setStructName( "OUT" );
outNegViewTS->setType( "float3" );
meta->addStatement( new GenOp( " @ = mul( @, float3( @.xyz - @ ) );\r\n",
outNegViewTS, objToTangentSpace, inPos, eyePos ) );
// If we have texture anim matrix the tangent
// space view vector may need to be rotated.
Var *texMat = (Var*)LangElement::find( "texMat" );
if ( texMat )
{
meta->addStatement( new GenOp( " @ = mul(@, float4(@,0)).xyz;\r\n",
outNegViewTS, texMat, outNegViewTS ) );
}
output = meta;
}
void ParallaxFeatHLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
AssertFatal( GFX->getPixelShaderVersion() >= 2.0,
"ParallaxFeatHLSL::processPix - We don't support SM 1.x!" );
MultiLine *meta = new MultiLine;
// Order matters... get this first!
Var *texCoord = getInTexCoord( "texCoord", "float2", true, componentList );
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
// We need the negative tangent space view vector
// as in parallax mapping we step towards the camera.
Var *negViewTS = (Var*)LangElement::find( "negViewTS" );
if ( !negViewTS )
{
Var *inNegViewTS = (Var*)LangElement::find( "outNegViewTS" );
if ( !inNegViewTS )
{
inNegViewTS = connectComp->getElement( RT_TEXCOORD );
inNegViewTS->setName( "outNegViewTS" );
inNegViewTS->setStructName( "IN" );
inNegViewTS->setType( "float3" );
}
negViewTS = new Var( "negViewTS", "float3" );
meta->addStatement( new GenOp( " @ = normalize( @ );\r\n", new DecOp( negViewTS ), inNegViewTS ) );
}
// Get the rest of our inputs.
Var *parallaxInfo = _getUniformVar( "parallaxInfo", "float", cspPotentialPrimitive );
Var *normalMap = getNormalMapTex();
Var *bumpMapTexture = (Var*)LangElement::find("bumpMapTex");
// Call the library function to do the rest.
if (fd.features.hasFeature(MFT_IsDXTnm, getProcessIndex()))
{
if (mIsDirect3D11)
meta->addStatement(new GenOp(" @.xy += parallaxOffsetDxtnm( @, @, @.xy, @, @ );\r\n",
texCoord, bumpMapTexture, normalMap, texCoord, negViewTS, parallaxInfo));
else
meta->addStatement(new GenOp(" @.xy += parallaxOffsetDxtnm( @, @.xy, @, @ );\r\n",
texCoord, normalMap, texCoord, negViewTS, parallaxInfo));
}
else
{
if (mIsDirect3D11)
meta->addStatement(new GenOp(" @.xy += parallaxOffset( @, @, @.xy, @, @ );\r\n",
texCoord, bumpMapTexture, normalMap, texCoord, negViewTS, parallaxInfo));
else
meta->addStatement(new GenOp(" @.xy += parallaxOffset( @, @.xy, @, @ );\r\n",
texCoord, normalMap, texCoord, negViewTS, parallaxInfo));
}
// TODO: Fix second UV maybe?
output = meta;
}
ShaderFeature::Resources ParallaxFeatHLSL::getResources( const MaterialFeatureData &fd )
{
AssertFatal( GFX->getPixelShaderVersion() >= 2.0,
"ParallaxFeatHLSL::getResources - We don't support SM 1.x!" );
Resources res;
// We add the outViewTS to the outputstructure.
res.numTexReg = 1;
// If this isn't a deferred then we will be
// creating the normal map here.
if ( !fd.features.hasFeature( MFT_DeferredConditioner ) )
res.numTex = 1;
return res;
}
void ParallaxFeatHLSL::setTexData( Material::StageData &stageDat,
const MaterialFeatureData &fd,
RenderPassData &passData,
U32 &texIndex )
{
AssertFatal( GFX->getPixelShaderVersion() >= 2.0,
"ParallaxFeatHLSL::setTexData - We don't support SM 1.x!" );
GFXTextureObject *tex = stageDat.getTex( MFT_NormalMap );
if ( tex )
{
passData.mSamplerNames[ texIndex ] = "bumpMap";
passData.mTexType[ texIndex ] = Material::Bump;
passData.mTexSlot[ texIndex++ ].texObject = tex;
}
}
void NormalsOutFeatHLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// If we have normal maps then we can count
// on it to generate the world space normal.
if ( fd.features[MFT_NormalMap] )
return;
MultiLine *meta = new MultiLine;
output = meta;
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *outNormal = connectComp->getElement( RT_TEXCOORD );
outNormal->setName( "wsNormal" );
outNormal->setStructName( "OUT" );
outNormal->setType( "float3" );
outNormal->mapsToSampler = false;
// Find the incoming vertex normal.
Var *inNormal = (Var*)LangElement::find( "normal" );
if ( inNormal )
{
// Transform the normal to world space.
Var *objTrans = getObjTrans( componentList, fd.features[MFT_UseInstancing], meta );
meta->addStatement( new GenOp( " @ = mul( @, normalize( @ ) );\r\n", outNormal, objTrans, inNormal ) );
}
else
{
// If we don't have a vertex normal... just pass the
// camera facing normal to the pixel shader.
meta->addStatement( new GenOp( " @ = float3( 0.0, 0.0, 1.0 );\r\n", outNormal ) );
}
}
void NormalsOutFeatHLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
MultiLine *meta = new MultiLine;
output = meta;
Var *wsNormal = (Var*)LangElement::find( "wsNormal" );
if ( !wsNormal )
{
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
wsNormal = connectComp->getElement( RT_TEXCOORD );
wsNormal->setName( "wsNormal" );
wsNormal->setStructName( "IN" );
wsNormal->setType( "float3" );
// If we loaded the normal its our resposibility
// to normalize it... the interpolators won't.
//
// Note we cast to half here to get partial precision
// optimized code which is an acceptable loss of
// precision for normals and performs much better
// on older Geforce cards.
//
meta->addStatement( new GenOp( " @ = normalize( half3( @ ) );\r\n", wsNormal, wsNormal ) );
}
LangElement *normalOut;
Var *outColor = (Var*)LangElement::find( "col" );
if ( outColor && !fd.features[MFT_AlphaTest] )
normalOut = new GenOp( "float4( ( -@ + 1 ) * 0.5, @.a )", wsNormal, outColor );
else
normalOut = new GenOp( "float4( ( -@ + 1 ) * 0.5, 1 )", wsNormal );
meta->addStatement( new GenOp( " @;\r\n",
assignColor( normalOut, Material::None ) ) );
}