Torque3D/Engine/source/lighting/advanced/glsl/gBufferConditionerGLSL.cpp

411 lines
17 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "lighting/advanced/glsl/gBufferConditionerGLSL.h"
#include "shaderGen/featureMgr.h"
#include "gfx/gfxStringEnumTranslate.h"
#include "materials/materialFeatureTypes.h"
#include "materials/materialFeatureData.h"
#include "shaderGen/GLSL/shaderFeatureGLSL.h"
GBufferConditionerGLSL::GBufferConditionerGLSL( const GFXFormat bufferFormat, const NormalSpace nrmSpace ) :
Parent( bufferFormat )
{
// Figure out how we should store the normal data. These are the defaults.
mCanWriteNegativeValues = false;
mNormalStorageType = CartesianXYZ;
// Note: We clear to a depth 1 (the w component) so
// that the unrendered parts of the scene end up
// farthest to the camera.
const NormalStorage &twoCmpNrmStorageType = ( nrmSpace == WorldSpace ? Spherical : LambertAzimuthal );
switch(bufferFormat)
{
case GFXFormatR8G8B8A8:
mNormalStorageType = twoCmpNrmStorageType;
mBitsPerChannel = 8;
break;
case GFXFormatR16G16B16A16F:
// Floating point buffers don't need to encode negative values
mCanWriteNegativeValues = true;
mNormalStorageType = twoCmpNrmStorageType;
mBitsPerChannel = 16;
break;
// Store a 32bit depth with a sperical normal in the
// integer 16 format. This gives us perfect depth
// precision and high quality normals within a 64bit
// buffer format.
case GFXFormatR16G16B16A16:
mNormalStorageType = twoCmpNrmStorageType;
mBitsPerChannel = 16;
break;
case GFXFormatR32G32B32A32F:
mCanWriteNegativeValues = true;
mNormalStorageType = CartesianXYZ;
mBitsPerChannel = 32;
break;
default:
AssertFatal(false, "Unsupported G-Buffer format");
}
}
GBufferConditionerGLSL::~GBufferConditionerGLSL()
{
}
void GBufferConditionerGLSL::processVert( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// If we have a normal map then that feature will
// take care of passing gbNormal to the pixel shader.
if ( fd.features[MFT_NormalMap] )
return;
MultiLine *meta = new MultiLine;
output = meta;
// grab incoming vert normal
Var *inNormal = (Var*) LangElement::find( "normal" );
if (!inNormal)
{
inNormal = new Var("normal", "vec3");
meta->addStatement(new GenOp(" @ = vec3( 0.0, 0.0, 1.0 );\r\n", new DecOp(inNormal)));
Con::errorf("ShagerGen: Something went bad with ShaderGen. The normal should be already defined.");
}
AssertFatal( inNormal, "Something went bad with ShaderGen. The normal should be already defined." );
// grab output for gbuffer normal
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *outNormal = connectComp->getElement( RT_TEXCOORD );
outNormal->setName( "gbNormal" );
outNormal->setStructName( "OUT" );
outNormal->setType( "float3" );
if( !fd.features[MFT_ParticleNormal] )
{
// Kick out the view-space normal
// TODO: Total hack because Conditioner is directly derived
// from ShaderFeature and not from ShaderFeatureGLSL.
NamedFeatureGLSL dummy( String::EmptyString );
dummy.setInstancingFormat( mInstancingFormat );
Var *worldViewOnly = dummy.getWorldView( componentList, fd.features[MFT_UseInstancing], meta );
meta->addStatement( new GenOp(" @ = tMul(@, float4( normalize(@), 0.0 ) ).xyz;\r\n",
outNormal, worldViewOnly, inNormal ) );
}
else
{
// Assume the particle normal generator has already put this in view space
// and normalized it
meta->addStatement( new GenOp( " @ = @;\r\n", outNormal, inNormal ) );
}
}
void GBufferConditionerGLSL::processPix( Vector<ShaderComponent*> &componentList,
const MaterialFeatureData &fd )
{
// sanity
AssertFatal( fd.features[MFT_EyeSpaceDepthOut], "No depth-out feature enabled! Bad news!" );
MultiLine *meta = new MultiLine;
// grab connector normal
ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
Var *gbNormal = (Var*) LangElement::find( "gbNormal" );
if( !gbNormal )
{
gbNormal = connectComp->getElement( RT_TEXCOORD );
gbNormal->setName( "gbNormal" );
gbNormal->setStructName( "IN" );
gbNormal->setType( "float3" );
gbNormal->mapsToSampler = false;
gbNormal->uniform = false;
}
// find depth
ShaderFeature *depthFeat = FEATUREMGR->getByType( MFT_EyeSpaceDepthOut );
AssertFatal( depthFeat != NULL, "No eye space depth feature found!" );
Var *depth = (Var*) LangElement::find(depthFeat->getOutputVarName());
AssertFatal( depth, "Something went bad with ShaderGen. The depth should be already generated by the EyeSpaceDepthOut feature." );
Var *unconditionedOut = new Var;
unconditionedOut->setType("float4");
unconditionedOut->setName("normal_depth");
LangElement *outputDecl = new DecOp( unconditionedOut );
// If we're doing deferred blending then we need
// to steal away the alpha channel before the
// conditioner stomps on it.
Var *alphaVal = NULL;
if ( fd.features[ MFT_IsTranslucentZWrite ] )
{
alphaVal = new Var( "outAlpha", "float" );
meta->addStatement( new GenOp( " @ = OUT_col1.a; // MFT_IsTranslucentZWrite\r\n", new DecOp( alphaVal ) ) );
}
// If using interlaced normals, invert the normal
if(fd.features[MFT_InterlacedDeferred])
{
// NOTE: Its safe to not call ShaderFeatureGLSL::addOutVpos() in the vertex
// shader as for SM 3.0 nothing is needed there.
Var *Vpos = (Var*) LangElement::find( "gl_Position" ); //Var *Vpos = ShaderFeatureGLSL::getInVpos( meta, componentList );
Var *iGBNormal = new Var( "interlacedGBNormal", "float3" );
meta->addStatement(new GenOp(" @ = (frac(@.y * 0.5) < 0.1 ? reflect(@, float3(0.0, -1.0, 0.0)) : @);\r\n", new DecOp(iGBNormal), Vpos, gbNormal, gbNormal));
gbNormal = iGBNormal;
}
// NOTE: We renormalize the normal here as they
// will not stay normalized during interpolation.
meta->addStatement( new GenOp(" @ = @;", outputDecl, new GenOp( "float4(normalize(@), @)", gbNormal, depth ) ) );
meta->addStatement( assignOutput( unconditionedOut ) );
// If we have an alpha var then we're doing deferred lerp blending.
if ( alphaVal )
{
Var *outColor = (Var*)LangElement::find( getOutputTargetVarName( DefaultTarget ) );
meta->addStatement( new GenOp( " @.ba = float2( 0, @ ); // MFT_IsTranslucentZWrite\r\n", outColor, alphaVal ) );
}
output = meta;
}
ShaderFeature::Resources GBufferConditionerGLSL::getResources( const MaterialFeatureData &fd )
{
Resources res;
// Passing from VS->PS:
// - world space normal (gbNormal)
res.numTexReg = 1;
return res;
}
Var* GBufferConditionerGLSL::printMethodHeader( MethodType methodType, const String &methodName, Stream &stream, MultiLine *meta )
{
const bool isCondition = ( methodType == ConditionerFeature::ConditionMethod );
Var *retVal = NULL;
// The uncondition method inputs are changed
if( isCondition )
retVal = Parent::printMethodHeader( methodType, methodName, stream, meta );
else
{
Var *methodVar = new Var;
methodVar->setName(methodName);
methodVar->setType("float4");
DecOp *methodDecl = new DecOp(methodVar);
Var *deferredSampler = new Var;
deferredSampler->setName("deferredSamplerVar");
deferredSampler->setType("sampler2D");
DecOp *deferredSamplerDecl = new DecOp(deferredSampler);
Var *screenUV = new Var;
screenUV->setName("screenUVVar");
screenUV->setType("float2");
DecOp *screenUVDecl = new DecOp(screenUV);
Var *bufferSample = new Var;
bufferSample->setName("bufferSample");
bufferSample->setType("float4");
DecOp *bufferSampleDecl = new DecOp(bufferSample);
meta->addStatement( new GenOp( "@(@, @)\r\n", methodDecl, deferredSamplerDecl, screenUVDecl ) );
meta->addStatement( new GenOp( "{\r\n" ) );
meta->addStatement( new GenOp( " // Sampler g-buffer\r\n" ) );
#ifdef TORQUE_OS_XENON
meta->addStatement( new GenOp( " @;\r\n", bufferSampleDecl ) );
meta->addStatement( new GenOp( " asm { tfetch2D @, @, @, MagFilter = point, MinFilter = point, MipFilter = point };\r\n", bufferSample, screenUV, deferredSampler ) );
#else
// The gbuffer has no mipmaps, so use tex2dlod when
// possible so that the shader compiler can optimize.
meta->addStatement( new GenOp( " #if TORQUE_SM >= 30\r\n" ) );
meta->addStatement( new GenOp( " @ = tex2Dlod(@, float4(@,0,0));\r\n", bufferSampleDecl, deferredSampler, screenUV ) );
meta->addStatement( new GenOp( " #else\r\n" ) );
meta->addStatement( new GenOp( " @ = tex2D(@, @);\r\n", bufferSampleDecl, deferredSampler, screenUV ) );
meta->addStatement( new GenOp( " #endif\r\n\r\n" ) );
#endif
// We don't use this way of passing var's around, so this should cause a crash
// if something uses this improperly
retVal = bufferSample;
}
return retVal;
}
GenOp* GBufferConditionerGLSL::_posnegEncode( GenOp *val )
{
if(mNormalStorageType == LambertAzimuthal)
return mCanWriteNegativeValues ? val : new GenOp(avar("(%f * (@ + %f))", 1.0f/(M_SQRT2_F * 2.0f), M_SQRT2_F), val);
else
return mCanWriteNegativeValues ? val : new GenOp("(0.5 * (@ + 1.0))", val);
}
GenOp* GBufferConditionerGLSL::_posnegDecode( GenOp *val )
{
if(mNormalStorageType == LambertAzimuthal)
return mCanWriteNegativeValues ? val : new GenOp(avar("(@ * %f - %f)", M_SQRT2_F * 2.0f, M_SQRT2_F), val);
else
return mCanWriteNegativeValues ? val : new GenOp("(@ * 2.0 - 1.0)", val);
}
Var* GBufferConditionerGLSL::_conditionOutput( Var *unconditionedOutput, MultiLine *meta )
{
Var *retVar = new Var;
retVar->setType("float4");
retVar->setName("_gbConditionedOutput");
LangElement *outputDecl = new DecOp( retVar );
switch(mNormalStorageType)
{
case CartesianXYZ:
meta->addStatement( new GenOp( " // g-buffer conditioner: float4(normal.xyz, depth)\r\n" ) );
meta->addStatement( new GenOp( " @ = float4(@, @.a);\r\n", outputDecl,
_posnegEncode(new GenOp("@.xyz", unconditionedOutput)), unconditionedOutput ) );
break;
case CartesianXY:
meta->addStatement( new GenOp( " // g-buffer conditioner: float4(normal.xy, depth Hi + z-sign, depth Lo)\r\n" ) );
meta->addStatement( new GenOp( " @ = float4(@, @.a);", outputDecl,
_posnegEncode(new GenOp("float3(@.xy, sign(@.z))", unconditionedOutput, unconditionedOutput)), unconditionedOutput ) );
break;
case Spherical:
meta->addStatement( new GenOp( " // g-buffer conditioner: float4(normal.theta, normal.phi, depth Hi, depth Lo)\r\n" ) );
meta->addStatement( new GenOp( " @ = float4(@, 0.0, @.a);\r\n", outputDecl,
_posnegEncode(new GenOp("float2(atan2(@.y, @.x) / 3.14159265358979323846f, @.z)", unconditionedOutput, unconditionedOutput, unconditionedOutput ) ),
unconditionedOutput ) );
// HACK: This fixes the noise present when using a floating point
// gbuffer on Geforce cards and the "flat areas unlit" issues.
//
// We need work around atan2() above to fix this issue correctly
// without the extra overhead of this test.
//
meta->addStatement( new GenOp( " if ( abs( dot( @.xyz, float3( 0.0, 0.0, 1.0 ) ) ) > 0.999f ) @ = float4( 0, 1 * sign( @.z ), 0, @.a );\r\n",
unconditionedOutput, retVar, unconditionedOutput, unconditionedOutput ) );
break;
case LambertAzimuthal:
//http://en.wikipedia.org/wiki/Lambert_azimuthal_equal-area_projection
//
// Note we're casting to half to use partial precision
// sqrt which is much faster on older Geforces while
// still being acceptable for normals.
//
meta->addStatement( new GenOp( " // g-buffer conditioner: float4(normal.X, normal.Y, depth Hi, depth Lo)\r\n" ) );
meta->addStatement( new GenOp( " @ = float4(@, 0.0, @.a);\r\n", outputDecl,
_posnegEncode(new GenOp("sqrt(half(2.0/(1.0 - @.y))) * half2(@.xz)", unconditionedOutput, unconditionedOutput)),
unconditionedOutput ) );
break;
}
// Encode depth into two channels
if(mNormalStorageType != CartesianXYZ)
{
const U64 maxValPerChannel = (U64)1 << mBitsPerChannel;
meta->addStatement( new GenOp( " \r\n // Encode depth into hi/lo\r\n" ) );
meta->addStatement( new GenOp( avar( " float2 _tempDepth = frac(@.a * float2(1.0, %llu.0));\r\n", maxValPerChannel - 1 ),
unconditionedOutput ) );
meta->addStatement( new GenOp( avar( " @.zw = _tempDepth.xy - _tempDepth.yy * float2(1.0/%llu.0, 0.0);\r\n\r\n", maxValPerChannel - 1 ),
retVar ) );
}
AssertFatal( retVar != NULL, avar( "Cannot condition output to buffer format: %s", GFXStringTextureFormat[getBufferFormat()] ) );
return retVar;
}
Var* GBufferConditionerGLSL::_unconditionInput( Var *conditionedInput, MultiLine *meta )
{
Var *retVar = new Var;
retVar->setType("float4");
retVar->setName("_gbUnconditionedInput");
LangElement *outputDecl = new DecOp( retVar );
switch(mNormalStorageType)
{
case CartesianXYZ:
meta->addStatement( new GenOp( " // g-buffer unconditioner: float4(normal.xyz, depth)\r\n" ) );
meta->addStatement( new GenOp( " @ = float4(@, @.a);\r\n", outputDecl,
_posnegDecode(new GenOp("@.xyz", conditionedInput)), conditionedInput ) );
break;
case CartesianXY:
meta->addStatement( new GenOp( " // g-buffer unconditioner: float4(normal.xy, depth Hi + z-sign, depth Lo)\r\n" ) );
meta->addStatement( new GenOp( " @ = float4(@, @.a);\r\n", outputDecl,
_posnegDecode(new GenOp("@.xyz", conditionedInput)), conditionedInput ) );
meta->addStatement( new GenOp( " @.z *= sqrt(1.0 - dot(@.xy, @.xy));\r\n", retVar, retVar, retVar ) );
break;
case Spherical:
meta->addStatement( new GenOp( " // g-buffer unconditioner: float4(normal.theta, normal.phi, depth Hi, depth Lo)\r\n" ) );
meta->addStatement( new GenOp( " float2 spGPUAngles = @;\r\n", _posnegDecode(new GenOp("@.xy", conditionedInput)) ) );
meta->addStatement( new GenOp( " float2 sincosTheta;\r\n" ) );
meta->addStatement( new GenOp( " sincos(spGPUAngles.x * 3.14159265358979323846f, sincosTheta.x, sincosTheta.y);\r\n" ) );
meta->addStatement( new GenOp( " float2 sincosPhi = float2(sqrt(1.0 - spGPUAngles.y * spGPUAngles.y), spGPUAngles.y);\r\n" ) );
meta->addStatement( new GenOp( " @ = float4(sincosTheta.y * sincosPhi.x, sincosTheta.x * sincosPhi.x, sincosPhi.y, @.a);\r\n", outputDecl, conditionedInput ) );
break;
case LambertAzimuthal:
// Note we're casting to half to use partial precision
// sqrt which is much faster on older Geforces while
// still being acceptable for normals.
//
meta->addStatement( new GenOp( " // g-buffer unconditioner: float4(normal.X, normal.Y, depth Hi, depth Lo)\r\n" ) );
meta->addStatement( new GenOp( " float2 _inpXY = @;\r\n", _posnegDecode(new GenOp("@.xy", conditionedInput)) ) );
meta->addStatement( new GenOp( " float _xySQ = dot(_inpXY, _inpXY);\r\n" ) );
meta->addStatement( new GenOp( " @ = float4( sqrt(half(1.0 - (_xySQ / 4.0))) * _inpXY, -1.0 + (_xySQ / 2.0), @.a).xzyw;\r\n", outputDecl, conditionedInput ) );
break;
}
// Recover depth from encoding
if(mNormalStorageType != CartesianXYZ)
{
const U64 maxValPerChannel = (U64)1 << mBitsPerChannel;
meta->addStatement( new GenOp( " \r\n // Decode depth\r\n" ) );
meta->addStatement( new GenOp( avar( " @.w = dot( @.zw, float2(1.0, 1.0/%llu.0));\r\n", maxValPerChannel - 1 ),
retVar, conditionedInput ) );
}
AssertFatal( retVar != NULL, avar( "Cannot uncondition input from buffer format: %s", GFXStringTextureFormat[getBufferFormat()] ) );
return retVar;
}