Torque3D/Engine/source/lighting/advanced/advancedLightBinManager.cpp

861 lines
33 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "lighting/advanced/advancedLightBinManager.h"
#include "lighting/advanced/advancedLightManager.h"
#include "lighting/advanced/advancedLightBufferConditioner.h"
#include "lighting/shadowMap/shadowMapManager.h"
#include "lighting/shadowMap/shadowMapPass.h"
#include "lighting/shadowMap/lightShadowMap.h"
#include "lighting/common/lightMapParams.h"
#include "renderInstance/renderDeferredMgr.h"
#include "gfx/gfxTransformSaver.h"
#include "scene/sceneManager.h"
#include "scene/sceneRenderState.h"
#include "materials/materialManager.h"
#include "materials/sceneData.h"
#include "core/util/safeDelete.h"
#include "core/util/rgb2luv.h"
#include "gfx/gfxDebugEvent.h"
#include "math/util/matrixSet.h"
#include "console/consoleTypes.h"
const RenderInstType AdvancedLightBinManager::RIT_LightInfo( "LightInfo" );
const String AdvancedLightBinManager::smBufferName( "lightinfo" );
ShadowFilterMode AdvancedLightBinManager::smShadowFilterMode = ShadowFilterMode_SoftShadowHighQuality;
bool AdvancedLightBinManager::smPSSMDebugRender = false;
bool AdvancedLightBinManager::smUseSSAOMask = false;
ImplementEnumType( ShadowFilterMode,
"The shadow filtering modes for Advanced Lighting shadows.\n"
"@ingroup AdvancedLighting" )
{ ShadowFilterMode_None, "None",
"@brief Simple point sampled filtering.\n"
"This is the fastest and lowest quality mode." },
{ ShadowFilterMode_SoftShadow, "SoftShadow",
"@brief A variable tap rotated poisson disk soft shadow filter.\n"
"It performs 4 taps to classify the point as in shadow, out of shadow, or along a "
"shadow edge. Samples on the edge get an additional 8 taps to soften them." },
{ ShadowFilterMode_SoftShadowHighQuality, "SoftShadowHighQuality",
"@brief A 12 tap rotated poisson disk soft shadow filter.\n"
"It performs all the taps for every point without any early rejection." },
EndImplementEnumType;
// NOTE: The order here matches that of the LightInfo::Type enum.
const String AdvancedLightBinManager::smLightMatNames[] =
{
"AL_PointLightMaterial", // LightInfo::Point
"AL_SpotLightMaterial", // LightInfo::Spot
"AL_VectorLightMaterial", // LightInfo::Vector
"", // LightInfo::Ambient
};
// NOTE: The order here matches that of the LightInfo::Type enum.
const GFXVertexFormat* AdvancedLightBinManager::smLightMatVertex[] =
{
getGFXVertexFormat<AdvancedLightManager::LightVertex>(), // LightInfo::Point
getGFXVertexFormat<AdvancedLightManager::LightVertex>(), // LightInfo::Spot
getGFXVertexFormat<FarFrustumQuadVert>(), // LightInfo::Vector
NULL, // LightInfo::Ambient
};
// NOTE: The order here matches that of the ShadowType enum.
const String AdvancedLightBinManager::smShadowTypeMacro[] =
{
"", // ShadowType_Spot
"", // ShadowType_PSSM,
"SHADOW_PARABOLOID", // ShadowType_Paraboloid,
"SHADOW_DUALPARABOLOID_SINGLE_PASS", // ShadowType_DualParaboloidSinglePass,
"SHADOW_DUALPARABOLOID", // ShadowType_DualParaboloid,
"SHADOW_CUBE", // ShadowType_CubeMap,
};
AdvancedLightBinManager::RenderSignal &AdvancedLightBinManager::getRenderSignal()
{
static RenderSignal theSignal;
return theSignal;
}
IMPLEMENT_CONOBJECT(AdvancedLightBinManager);
ConsoleDocClass( AdvancedLightBinManager,
"@brief Rendering Manager responsible for lighting, shadows, and global variables affecing both.\n\n"
"Should not be exposed to TorqueScript as a game object, meant for internal use only\n\n"
"@ingroup Lighting"
);
AdvancedLightBinManager::AdvancedLightBinManager( AdvancedLightManager *lm /* = NULL */,
ShadowMapManager *sm /* = NULL */,
GFXFormat lightBufferFormat /* = GFXFormatR8G8B8A8 */ )
: RenderTexTargetBinManager( RIT_LightInfo, 1.0f, 1.0f, lightBufferFormat ),
mNumLightsCulled(0),
mLightManager(lm),
mShadowManager(sm),
mConditioner(NULL)
{
// Create an RGB conditioner
mConditioner = new AdvancedLightBufferConditioner( getTargetFormat(),
AdvancedLightBufferConditioner::RGB );
mNamedTarget.setConditioner( mConditioner );
mNamedTarget.registerWithName( smBufferName );
// We want a full-resolution buffer
mTargetSizeType = RenderTexTargetBinManager::WindowSize;
mMRTLightmapsDuringDeferred = false;
Con::NotifyDelegate callback( this, &AdvancedLightBinManager::_deleteLightMaterials );
Con::addVariableNotify( "$pref::Shadows::filterMode", callback );
Con::addVariableNotify( "$AL::PSSMDebugRender", callback );
Con::addVariableNotify( "$AL::UseSSAOMask", callback );
}
AdvancedLightBinManager::~AdvancedLightBinManager()
{
_deleteLightMaterials();
SAFE_DELETE(mConditioner);
Con::NotifyDelegate callback( this, &AdvancedLightBinManager::_deleteLightMaterials );
Con::removeVariableNotify( "$pref::shadows::filterMode", callback );
Con::removeVariableNotify( "$AL::PSSMDebugRender", callback );
Con::removeVariableNotify( "$AL::UseSSAOMask", callback );
}
void AdvancedLightBinManager::consoleInit()
{
Parent::consoleInit();
Con::addVariable( "$pref::shadows::filterMode",
TYPEID<ShadowFilterMode>(), &smShadowFilterMode,
"The filter mode to use for shadows.\n"
"@ingroup AdvancedLighting\n" );
Con::addVariable( "$AL::UseSSAOMask", TypeBool, &smUseSSAOMask,
"Used by the SSAO PostEffect to toggle the sampling of ssaomask "
"texture by the light shaders.\n"
"@ingroup AdvancedLighting\n" );
Con::addVariable( "$AL::PSSMDebugRender", TypeBool, &smPSSMDebugRender,
"Enables debug rendering of the PSSM shadows.\n"
"@ingroup AdvancedLighting\n" );
}
bool AdvancedLightBinManager::setTargetSize(const Point2I &newTargetSize)
{
bool ret = Parent::setTargetSize( newTargetSize );
// We require the viewport to match the default.
mNamedTarget.setViewport( GFX->getViewport() );
return ret;
}
void AdvancedLightBinManager::addLight( LightInfo *light )
{
// Get the light type.
const LightInfo::Type lightType = light->getType();
AssertFatal( lightType == LightInfo::Point ||
lightType == LightInfo::Spot, "Bogus light type." );
// Find a shadow map for this light, if it has one
ShadowMapParams *lsp = light->getExtended<ShadowMapParams>();
LightShadowMap *lsm = lsp->getShadowMap();
LightShadowMap *dynamicShadowMap = lsp->getShadowMap(true);
// Get the right shadow type.
ShadowType shadowType = ShadowType_None;
if ( light->getCastShadows() &&
lsm && lsm->hasShadowTex() &&
!ShadowMapPass::smDisableShadows )
shadowType = lsm->getShadowType();
// Add the entry
LightBinEntry lEntry;
lEntry.lightInfo = light;
lEntry.shadowMap = lsm;
lEntry.dynamicShadowMap = dynamicShadowMap;
lEntry.lightMaterial = _getLightMaterial( lightType, shadowType, lsp->hasCookieTex() );
if( lightType == LightInfo::Spot )
lEntry.vertBuffer = mLightManager->getConeMesh( lEntry.numPrims, lEntry.primBuffer );
else
lEntry.vertBuffer = mLightManager->getSphereMesh( lEntry.numPrims, lEntry.primBuffer );
// If it's a point light, push front, spot
// light, push back. This helps batches.
Vector<LightBinEntry> &curBin = mLightBin;
if ( light->getType() == LightInfo::Point )
curBin.push_front( lEntry );
else
curBin.push_back( lEntry );
}
void AdvancedLightBinManager::clearAllLights()
{
Con::setIntVariable("lightMetrics::activeLights", mLightBin.size());
Con::setIntVariable("lightMetrics::culledLights", mNumLightsCulled);
mLightBin.clear();
mNumLightsCulled = 0;
}
void AdvancedLightBinManager::render( SceneRenderState *state )
{
PROFILE_SCOPE( AdvancedLightManager_Render );
// Take a look at the SceneRenderState and see if we should skip drawing the pre-pass
if( state->disableAdvancedLightingBins() )
return;
// Automagically save & restore our viewport and transforms.
GFXTransformSaver saver;
if( !mLightManager )
return;
// Get the sunlight. If there's no sun, and no lights in the bins, no draw
LightInfo *sunLight = mLightManager->getSpecialLight( LightManager::slSunLightType, false );
GFXDEBUGEVENT_SCOPE( AdvancedLightBinManager_Render, ColorI::RED );
// Tell the superclass we're about to render
if ( !_onPreRender( state ) )
return;
// Clear as long as there isn't MRT population of light buffer with lightmap data
if ( !MRTLightmapsDuringDeferred() )
GFX->clear(GFXClearTarget, ColorI(0, 0, 0, 0), 1.0f, 0);
// Restore transforms
MatrixSet &matrixSet = getRenderPass()->getMatrixSet();
matrixSet.restoreSceneViewProjection();
const MatrixF &worldToCameraXfm = matrixSet.getWorldToCamera();
// Set up the SG Data
SceneData sgData;
sgData.init( state );
// There are cases where shadow rendering is disabled.
const bool disableShadows = state->isReflectPass() || ShadowMapPass::smDisableShadows;
// Pick the right material for rendering the sunlight... we only
// cast shadows when its enabled and we're not in a reflection.
LightMaterialInfo *vectorMatInfo;
if ( sunLight &&
sunLight->getCastShadows() &&
!disableShadows &&
sunLight->getExtended<ShadowMapParams>() )
vectorMatInfo = _getLightMaterial( LightInfo::Vector, ShadowType_PSSM, false );
else
vectorMatInfo = _getLightMaterial( LightInfo::Vector, ShadowType_None, false );
// Initialize and set the per-frame parameters after getting
// the vector light material as we use lazy creation.
_setupPerFrameParameters( state );
// Draw sunlight/ambient
if ( sunLight && vectorMatInfo )
{
GFXDEBUGEVENT_SCOPE( AdvancedLightBinManager_Render_Sunlight, ColorI::RED );
// Set up SG data
setupSGData( sgData, state, sunLight );
vectorMatInfo->setLightParameters( sunLight, state, worldToCameraXfm );
// Set light holds the active shadow map.
mShadowManager->setLightShadowMapForLight( sunLight );
// Set geometry
GFX->setVertexBuffer( mFarFrustumQuadVerts );
GFX->setPrimitiveBuffer( NULL );
// Render the material passes
while( vectorMatInfo->matInstance->setupPass( state, sgData ) )
{
vectorMatInfo->matInstance->setSceneInfo( state, sgData );
vectorMatInfo->matInstance->setTransforms( matrixSet, state );
GFX->drawPrimitive( GFXTriangleStrip, 0, 2 );
}
}
// Blend the lights in the bin to the light buffer
for( LightBinIterator itr = mLightBin.begin(); itr != mLightBin.end(); itr++ )
{
LightBinEntry& curEntry = *itr;
LightInfo *curLightInfo = curEntry.lightInfo;
LightMaterialInfo *curLightMat = curEntry.lightMaterial;
const U32 numPrims = curEntry.numPrims;
const U32 numVerts = curEntry.vertBuffer->mNumVerts;
ShadowMapParams *lsp = curLightInfo->getExtended<ShadowMapParams>();
// Skip lights which won't affect the scene.
if ( !curLightMat || curLightInfo->getBrightness() <= 0.001f )
continue;
GFXDEBUGEVENT_SCOPE( AdvancedLightBinManager_Render_Light, ColorI::RED );
setupSGData( sgData, state, curLightInfo );
curLightMat->setLightParameters( curLightInfo, state, worldToCameraXfm );
mShadowManager->setLightShadowMap( curEntry.shadowMap );
mShadowManager->setLightDynamicShadowMap( curEntry.dynamicShadowMap );
// Set geometry
GFX->setVertexBuffer( curEntry.vertBuffer );
GFX->setPrimitiveBuffer( curEntry.primBuffer );
lsp->getOcclusionQuery()->begin();
// Render the material passes
while( curLightMat->matInstance->setupPass( state, sgData ) )
{
// Set transforms
matrixSet.setWorld(*sgData.objTrans);
curLightMat->matInstance->setTransforms(matrixSet, state);
curLightMat->matInstance->setSceneInfo(state, sgData);
if(curEntry.primBuffer)
GFX->drawIndexedPrimitive(GFXTriangleList, 0, 0, numVerts, 0, numPrims);
else
GFX->drawPrimitive(GFXTriangleList, 0, numPrims);
}
lsp->getOcclusionQuery()->end();
}
// Set NULL for active shadow map (so nothing gets confused)
mShadowManager->setLightShadowMap(NULL);
mShadowManager->setLightDynamicShadowMap(NULL);
GFX->setVertexBuffer( NULL );
GFX->setPrimitiveBuffer( NULL );
// Fire off a signal to let others know that light-bin rendering is ending now
getRenderSignal().trigger(state, this);
// Finish up the rendering
_onPostRender();
}
AdvancedLightBinManager::LightMaterialInfo* AdvancedLightBinManager::_getLightMaterial( LightInfo::Type lightType,
ShadowType shadowType,
bool useCookieTex )
{
PROFILE_SCOPE( AdvancedLightBinManager_GetLightMaterial );
// Build the key.
const LightMatKey key( lightType, shadowType, useCookieTex );
// See if we've already built this one.
LightMatTable::Iterator iter = mLightMaterials.find( key );
if ( iter != mLightMaterials.end() )
return iter->value;
// If we got here we need to build a material for
// this light+shadow combination.
LightMaterialInfo *info = NULL;
// First get the light material name and make sure
// this light has a material in the first place.
const String &lightMatName = smLightMatNames[ lightType ];
if ( lightMatName.isNotEmpty() )
{
Vector<GFXShaderMacro> shadowMacros;
// Setup the shadow type macros for this material.
if ( shadowType == ShadowType_None )
shadowMacros.push_back( GFXShaderMacro( "NO_SHADOW" ) );
else
{
shadowMacros.push_back( GFXShaderMacro( smShadowTypeMacro[ shadowType ] ) );
// Do we need to do shadow filtering?
if ( smShadowFilterMode != ShadowFilterMode_None )
{
shadowMacros.push_back( GFXShaderMacro( "SOFTSHADOW" ) );
const F32 SM = GFX->getPixelShaderVersion();
if ( SM >= 3.0f && smShadowFilterMode == ShadowFilterMode_SoftShadowHighQuality )
shadowMacros.push_back( GFXShaderMacro( "SOFTSHADOW_HIGH_QUALITY" ) );
}
}
if ( useCookieTex )
shadowMacros.push_back( GFXShaderMacro( "USE_COOKIE_TEX" ) );
// Its safe to add the PSSM debug macro to all the materials.
if ( smPSSMDebugRender )
shadowMacros.push_back( GFXShaderMacro( "PSSM_DEBUG_RENDER" ) );
// If its a vector light see if we can enable SSAO.
if ( lightType == LightInfo::Vector && smUseSSAOMask )
shadowMacros.push_back( GFXShaderMacro( "USE_SSAO_MASK" ) );
// Now create the material info object.
info = new LightMaterialInfo( lightMatName, smLightMatVertex[ lightType ], shadowMacros );
}
// Push this into the map and return it.
mLightMaterials.insertUnique( key, info );
return info;
}
void AdvancedLightBinManager::_deleteLightMaterials()
{
LightMatTable::Iterator iter = mLightMaterials.begin();
for ( ; iter != mLightMaterials.end(); iter++ )
delete iter->value;
mLightMaterials.clear();
}
void AdvancedLightBinManager::_setupPerFrameParameters( const SceneRenderState *state )
{
PROFILE_SCOPE( AdvancedLightBinManager_SetupPerFrameParameters );
const Frustum &frustum = state->getCameraFrustum();
MatrixF invCam( frustum.getTransform() );
invCam.inverse();
const Point3F *wsFrustumPoints = frustum.getPoints();
const Point3F& cameraPos = frustum.getPosition();
// Perform a camera offset. We need to manually perform this offset on the sun (or vector) light's
// polygon, which is at the far plane.
Point3F cameraOffsetPos = cameraPos;
// Now build the quad for drawing full-screen vector light
// passes.... this is a volatile VB and updates every frame.
FarFrustumQuadVert verts[4];
{
verts[0].point.set(wsFrustumPoints[Frustum::FarTopLeft] - cameraPos);
invCam.mulP(wsFrustumPoints[Frustum::FarTopLeft], &verts[0].normal);
verts[0].texCoord.set(-1.0, 1.0);
verts[0].tangent.set(wsFrustumPoints[Frustum::FarTopLeft] - cameraOffsetPos);
verts[1].point.set(wsFrustumPoints[Frustum::FarTopRight] - cameraPos);
invCam.mulP(wsFrustumPoints[Frustum::FarTopRight], &verts[1].normal);
verts[1].texCoord.set(1.0, 1.0);
verts[1].tangent.set(wsFrustumPoints[Frustum::FarTopRight] - cameraOffsetPos);
verts[2].point.set(wsFrustumPoints[Frustum::FarBottomLeft] - cameraPos);
invCam.mulP(wsFrustumPoints[Frustum::FarBottomLeft], &verts[2].normal);
verts[2].texCoord.set(-1.0, -1.0);
verts[2].tangent.set(wsFrustumPoints[Frustum::FarBottomLeft] - cameraOffsetPos);
verts[3].point.set(wsFrustumPoints[Frustum::FarBottomRight] - cameraPos);
invCam.mulP(wsFrustumPoints[Frustum::FarBottomRight], &verts[3].normal);
verts[3].texCoord.set(1.0, -1.0);
verts[3].tangent.set(wsFrustumPoints[Frustum::FarBottomRight] - cameraOffsetPos);
}
mFarFrustumQuadVerts.set( GFX, 4 );
dMemcpy( mFarFrustumQuadVerts.lock(), verts, sizeof( verts ) );
mFarFrustumQuadVerts.unlock();
PlaneF farPlane(wsFrustumPoints[Frustum::FarBottomLeft], wsFrustumPoints[Frustum::FarTopLeft], wsFrustumPoints[Frustum::FarTopRight]);
PlaneF vsFarPlane(verts[0].normal, verts[1].normal, verts[2].normal);
// Parameters calculated, assign them to the materials
LightMatTable::Iterator iter = mLightMaterials.begin();
for ( ; iter != mLightMaterials.end(); iter++ )
{
if ( iter->value )
iter->value->setViewParameters( frustum.getNearDist(),
frustum.getFarDist(),
frustum.getPosition(),
farPlane,
vsFarPlane);
}
}
void AdvancedLightBinManager::setupSGData( SceneData &data, const SceneRenderState* state, LightInfo *light )
{
PROFILE_SCOPE( AdvancedLightBinManager_setupSGData );
data.lights[0] = light;
data.ambientLightColor = state->getAmbientLightColor();
data.objTrans = &MatrixF::Identity;
if ( light )
{
if ( light->getType() == LightInfo::Point )
{
// The point light volume gets some flat spots along
// the perimiter mostly visible in the constant and
// quadradic falloff modes.
//
// To account for them slightly increase the scale
// instead of greatly increasing the polycount.
mLightMat = light->getTransform();
mLightMat.scale( light->getRange() * 1.01f );
data.objTrans = &mLightMat;
}
else if ( light->getType() == LightInfo::Spot )
{
mLightMat = light->getTransform();
// Rotate it to face down the -y axis.
MatrixF scaleRotateTranslate( EulerF( M_PI_F / -2.0f, 0.0f, 0.0f ) );
// Calculate the radius based on the range and angle.
F32 range = light->getRange().x;
F32 radius = range * mSin( mDegToRad( light->getOuterConeAngle() ) * 0.5f );
// NOTE: This fudge makes the cone a little bigger
// to remove the facet egde of the cone geometry.
radius *= 1.1f;
// Use the scale to distort the cone to
// match our radius and range.
scaleRotateTranslate.scale( Point3F( radius, radius, range ) );
// Apply the transform and set the position.
mLightMat *= scaleRotateTranslate;
mLightMat.setPosition( light->getPosition() );
data.objTrans = &mLightMat;
}
}
}
void AdvancedLightBinManager::MRTLightmapsDuringDeferred( bool val )
{
// Do not enable if the GFX device can't do MRT's
if ( GFX->getNumRenderTargets() < 2 )
val = false;
if ( mMRTLightmapsDuringDeferred != val )
{
mMRTLightmapsDuringDeferred = val;
// Reload materials to cause a feature recalculation on deferred materials
if(mLightManager->isActive())
MATMGR->flushAndReInitInstances();
RenderDeferredMgr *deferred;
if ( Sim::findObject( "AL_DeferredBin", deferred ) && deferred->getTargetTexture( 0 ) )
deferred->updateTargets();
}
}
AdvancedLightBinManager::LightMaterialInfo::LightMaterialInfo( const String &matName,
const GFXVertexFormat *vertexFormat,
const Vector<GFXShaderMacro> &macros )
: matInstance(NULL),
zNearFarInvNearFar(NULL),
farPlane(NULL),
vsFarPlane(NULL),
negFarPlaneDotEye(NULL),
lightPosition(NULL),
lightDirection(NULL),
lightColor(NULL),
lightAttenuation(NULL),
lightRange(NULL),
lightAmbient(NULL),
lightTrilight(NULL),
lightSpotParams(NULL)
{
Material *mat = MATMGR->getMaterialDefinitionByName( matName );
if ( !mat )
return;
matInstance = new LightMatInstance( *mat );
for ( U32 i=0; i < macros.size(); i++ )
matInstance->addShaderMacro( macros[i].name, macros[i].value );
matInstance->init( MATMGR->getDefaultFeatures(), vertexFormat );
lightDirection = matInstance->getMaterialParameterHandle("$lightDirection");
lightAmbient = matInstance->getMaterialParameterHandle("$lightAmbient");
lightTrilight = matInstance->getMaterialParameterHandle("$lightTrilight");
lightSpotParams = matInstance->getMaterialParameterHandle("$lightSpotParams");
lightAttenuation = matInstance->getMaterialParameterHandle("$lightAttenuation");
lightRange = matInstance->getMaterialParameterHandle("$lightRange");
lightPosition = matInstance->getMaterialParameterHandle("$lightPosition");
farPlane = matInstance->getMaterialParameterHandle("$farPlane");
vsFarPlane = matInstance->getMaterialParameterHandle("$vsFarPlane");
negFarPlaneDotEye = matInstance->getMaterialParameterHandle("$negFarPlaneDotEye");
zNearFarInvNearFar = matInstance->getMaterialParameterHandle("$zNearFarInvNearFar");
lightColor = matInstance->getMaterialParameterHandle("$lightColor");
lightBrightness = matInstance->getMaterialParameterHandle("$lightBrightness");
}
AdvancedLightBinManager::LightMaterialInfo::~LightMaterialInfo()
{
SAFE_DELETE(matInstance);
}
void AdvancedLightBinManager::LightMaterialInfo::setViewParameters( const F32 _zNear,
const F32 _zFar,
const Point3F &_eyePos,
const PlaneF &_farPlane,
const PlaneF &_vsFarPlane)
{
MaterialParameters *matParams = matInstance->getMaterialParameters();
matParams->setSafe( farPlane, *((const Point4F *)&_farPlane) );
matParams->setSafe( vsFarPlane, *((const Point4F *)&_vsFarPlane) );
if ( negFarPlaneDotEye->isValid() )
{
// -dot( farPlane, eyePos )
const F32 negFarPlaneDotEyeVal = -( mDot( *((const Point3F *)&_farPlane), _eyePos ) + _farPlane.d );
matParams->set( negFarPlaneDotEye, negFarPlaneDotEyeVal );
}
matParams->setSafe( zNearFarInvNearFar, Point4F( _zNear, _zFar, 1.0f / _zNear, 1.0f / _zFar ) );
}
void AdvancedLightBinManager::LightMaterialInfo::setLightParameters( const LightInfo *lightInfo, const SceneRenderState* renderState, const MatrixF &worldViewOnly )
{
MaterialParameters *matParams = matInstance->getMaterialParameters();
// Set color in the right format, set alpha to the luminance value for the color.
ColorF col = lightInfo->getColor();
// TODO: The specularity control of the light
// is being scaled by the overall lumiance.
//
// Not sure if this may be the source of our
// bad specularity results maybe?
//
const Point3F colorToLumiance( 0.3576f, 0.7152f, 0.1192f );
F32 lumiance = mDot(*((const Point3F *)&lightInfo->getColor()), colorToLumiance );
col.alpha *= lumiance;
matParams->setSafe( lightColor, col.toLinear() );
matParams->setSafe( lightBrightness, lightInfo->getBrightness() );
switch( lightInfo->getType() )
{
case LightInfo::Vector:
{
VectorF lightDir = lightInfo->getDirection();
worldViewOnly.mulV(lightDir);
lightDir.normalize();
matParams->setSafe( lightDirection, lightDir );
// Set small number for alpha since it represents existing specular in
// the vector light. This prevents a divide by zero.
ColorF ambientColor = renderState->getAmbientLightColor();
ambientColor.alpha = 0.00001f;
matParams->setSafe( lightAmbient, ambientColor.toLinear() );
// If no alt color is specified, set it to the average of
// the ambient and main color to avoid artifacts.
//
// TODO: Trilight disabled until we properly implement it
// in the light info!
//
//ColorF lightAlt = lightInfo->getAltColor();
ColorF lightAlt( ColorF::BLACK ); // = lightInfo->getAltColor();
if ( lightAlt.red == 0.0f && lightAlt.green == 0.0f && lightAlt.blue == 0.0f )
lightAlt = (lightInfo->getColor() + renderState->getAmbientLightColor()) / 2.0f;
ColorF trilightColor = lightAlt;
matParams->setSafe(lightTrilight, trilightColor.toLinear());
}
break;
case LightInfo::Spot:
{
const F32 outerCone = lightInfo->getOuterConeAngle();
const F32 innerCone = getMin( lightInfo->getInnerConeAngle(), outerCone );
const F32 outerCos = mCos( mDegToRad( outerCone / 2.0f ) );
const F32 innerCos = mCos( mDegToRad( innerCone / 2.0f ) );
Point4F spotParams( outerCos,
innerCos - outerCos,
mCos( mDegToRad( outerCone ) ),
0.0f );
matParams->setSafe( lightSpotParams, spotParams );
VectorF lightDir = lightInfo->getDirection();
worldViewOnly.mulV(lightDir);
lightDir.normalize();
matParams->setSafe( lightDirection, lightDir );
}
// Fall through
case LightInfo::Point:
{
const F32 radius = lightInfo->getRange().x;
matParams->setSafe( lightRange, radius );
Point3F lightPos;
worldViewOnly.mulP(lightInfo->getPosition(), &lightPos);
matParams->setSafe( lightPosition, lightPos );
// Get the attenuation falloff ratio and normalize it.
Point3F attenRatio = lightInfo->getExtended<ShadowMapParams>()->attenuationRatio;
F32 total = attenRatio.x + attenRatio.y + attenRatio.z;
if ( total > 0.0f )
attenRatio /= total;
Point2F attenParams( ( 1.0f / radius ) * attenRatio.y,
( 1.0f / ( radius * radius ) ) * attenRatio.z );
matParams->setSafe( lightAttenuation, attenParams );
break;
}
default:
AssertFatal( false, "Bad light type!" );
break;
}
}
bool LightMatInstance::setupPass( SceneRenderState *state, const SceneData &sgData )
{
// Go no further if the material failed to initialize properly.
if ( !mProcessedMaterial ||
mProcessedMaterial->getNumPasses() == 0 )
return false;
// Fetch the lightmap params
const LightMapParams *lmParams = sgData.lights[0]->getExtended<LightMapParams>();
// If no Lightmap params, let parent handle it
if(lmParams == NULL)
return Parent::setupPass(state, sgData);
// Defaults
bool bRetVal = true;
// What render pass is this...
if(mCurPass == -1)
{
// First pass, reset this flag
mInternalPass = false;
// Pass call to parent
bRetVal = Parent::setupPass(state, sgData);
}
else
{
// If this light is represented in a lightmap, it has already done it's
// job for non-lightmapped geometry. Now render the lightmapped geometry
// pass (specular + shadow-darkening)
if(!mInternalPass && lmParams->representedInLightmap)
mInternalPass = true;
else
return Parent::setupPass(state, sgData);
}
// Set up the shader constants we need to...
if(mLightMapParamsSC->isValid())
{
// If this is an internal pass, special case the parameters
if(mInternalPass)
{
AssertFatal( lmParams->shadowDarkenColor.alpha == -1.0f, "Assumption failed, check unpack code!" );
getMaterialParameters()->set( mLightMapParamsSC, lmParams->shadowDarkenColor );
}
else
getMaterialParameters()->set( mLightMapParamsSC, ColorF::WHITE );
}
// Now override stateblock with our own
if(!mInternalPass)
{
// If this is not an internal pass, and this light is represented in lightmaps
// than only effect non-lightmapped geometry for this pass
if(lmParams->representedInLightmap)
GFX->setStateBlock(mLitState[StaticLightNonLMGeometry]);
else // This is a normal, dynamic light.
GFX->setStateBlock(mLitState[DynamicLight]);
}
else // Internal pass, this is the add-specular/multiply-darken-color pass
GFX->setStateBlock(mLitState[StaticLightLMGeometry]);
return bRetVal;
}
bool LightMatInstance::init( const FeatureSet &features, const GFXVertexFormat *vertexFormat )
{
bool success = Parent::init(features, vertexFormat);
// If the initialization failed don't continue.
if ( !success || !mProcessedMaterial || mProcessedMaterial->getNumPasses() == 0 )
return false;
mLightMapParamsSC = getMaterialParameterHandle("$lightMapParams");
// Grab the state block for the first render pass (since this mat instance
// inserts a pass after the first pass)
AssertFatal(mProcessedMaterial->getNumPasses() > 0, "No passes created! Ohnoes");
const RenderPassData *rpd = mProcessedMaterial->getPass(0);
AssertFatal(rpd, "No render pass data!");
AssertFatal(rpd->mRenderStates[0], "No render state 0!");
// Get state block desc for normal (not wireframe, not translucent, not glow, etc)
// render state
GFXStateBlockDesc litState = rpd->mRenderStates[0]->getDesc();
// Create state blocks for each of the 3 possible combos in setupPass
//DynamicLight State: This will effect lightmapped and non-lightmapped geometry
// in the same way.
litState.separateAlphaBlendDefined = true;
litState.separateAlphaBlendEnable = false;
litState.stencilMask = RenderDeferredMgr::OpaqueDynamicLitMask | RenderDeferredMgr::OpaqueStaticLitMask;
mLitState[DynamicLight] = GFX->createStateBlock(litState);
// StaticLightNonLMGeometry State: This will treat non-lightmapped geometry
// in the usual way, but will not effect lightmapped geometry.
litState.separateAlphaBlendDefined = true;
litState.separateAlphaBlendEnable = false;
litState.stencilMask = RenderDeferredMgr::OpaqueDynamicLitMask;
mLitState[StaticLightNonLMGeometry] = GFX->createStateBlock(litState);
// StaticLightLMGeometry State: This will add specular information (alpha) but
// multiply-darken color information.
litState.blendDest = GFXBlendSrcColor;
litState.blendSrc = GFXBlendZero;
litState.stencilMask = RenderDeferredMgr::OpaqueStaticLitMask;
litState.separateAlphaBlendDefined = true;
litState.separateAlphaBlendEnable = true;
litState.separateAlphaBlendSrc = GFXBlendOne;
litState.separateAlphaBlendDest = GFXBlendOne;
litState.separateAlphaBlendOp = GFXBlendOpAdd;
mLitState[StaticLightLMGeometry] = GFX->createStateBlock(litState);
return true;
}