Torque3D/Engine/source/materials/processedMaterial.cpp
2025-01-23 22:16:33 +00:00

510 lines
17 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "materials/processedMaterial.h"
#include "materials/sceneData.h"
#include "materials/materialParameters.h"
#include "materials/matTextureTarget.h"
#include "materials/materialFeatureTypes.h"
#include "materials/materialManager.h"
#include "scene/sceneRenderState.h"
#include "gfx/gfxPrimitiveBuffer.h"
#include "gfx/gfxTextureManager.h"
#include "gfx/sim/cubemapData.h"
RenderPassData::RenderPassData()
{
reset();
}
void RenderPassData::reset()
{
for( U32 i = 0; i < Material::MAX_TEX_PER_PASS; ++ i )
{
destructInPlace( &mTexSlot[ i ] );
mSamplerNames[ i ].clear();
}
dMemset( &mTexSlot, 0, sizeof(mTexSlot) );
dMemset( &mTexType, 0, sizeof(mTexType) );
mCubeMap = NULL;
mNumTex = mNumTexReg = mStageNum = 0;
mGlow = false;
mBlendOp = Material::None;
mFeatureData.clear();
for (U32 i = 0; i < STATE_MAX; i++)
mRenderStates[i] = NULL;
}
String RenderPassData::describeSelf() const
{
String desc;
// Now write all the textures.
String texName;
for ( U32 i=0; i < Material::MAX_TEX_PER_PASS; i++ )
{
if ( mTexType[i] == Material::TexTarget )
texName = ( mTexSlot[i].texTarget ) ? mTexSlot[i].texTarget->getName() : String("null_texTarget");
else if ( mTexType[i] == Material::Cube && mCubeMap )
texName = mCubeMap->getPath();
else if ( mTexSlot[i].texObject )
texName = mTexSlot[i].texObject->getPath();
else
continue;
desc += String::ToString( "TexSlot %d: %d, %s\n", i, mTexType[i], texName.c_str() );
}
// Write out the first render state which is the
// basis for all the other states and shoud be
// enough to define the pass uniquely.
desc += mRenderStates[0]->getDesc().describeSelf();
return desc;
}
ProcessedMaterial::ProcessedMaterial()
: mMaterial( NULL ),
mCurrentParams( NULL ),
mHasSetStageData( false ),
mHasGlow( false ),
mHasAccumulation( false ),
mMaxStages( 0 ),
mVertexFormat( NULL ),
mUserObject( NULL )
{
VECTOR_SET_ASSOCIATION( mPasses );
}
ProcessedMaterial::~ProcessedMaterial()
{
T3D::for_each( mPasses.begin(), mPasses.end(), T3D::delete_pointer() );
}
void ProcessedMaterial::_setBlendState(Material::BlendOp blendOp, GFXStateBlockDesc& desc )
{
switch( blendOp )
{
case Material::Add:
{
desc.blendSrc = GFXBlendOne;
desc.blendDest = GFXBlendOne;
break;
}
case Material::AddAlpha:
{
desc.blendSrc = GFXBlendSrcAlpha;
desc.blendDest = GFXBlendOne;
break;
}
case Material::Mul:
{
desc.blendSrc = GFXBlendDestColor;
desc.blendDest = GFXBlendInvSrcAlpha;
break;
}
case Material::PreMul:
{
desc.blendSrc = GFXBlendOne;
desc.blendDest = GFXBlendInvSrcAlpha;
break;
}
case Material::LerpAlpha:
{
desc.blendSrc = GFXBlendSrcAlpha;
desc.blendDest = GFXBlendInvSrcAlpha;
break;
}
case Material::Sub:
{
desc.blendOp = GFXBlendOpSubtract;
desc.blendSrc = GFXBlendOne;
desc.blendDest = GFXBlendOne;
break;
}
default:
{
// default to LerpAlpha
desc.blendSrc = GFXBlendSrcAlpha;
desc.blendDest = GFXBlendInvSrcAlpha;
break;
}
}
}
void ProcessedMaterial::setBuffers(GFXVertexBufferHandleBase* vertBuffer, GFXPrimitiveBufferHandle* primBuffer)
{
GFX->setVertexBuffer( *vertBuffer );
GFX->setPrimitiveBuffer( *primBuffer );
}
bool ProcessedMaterial::stepInstance()
{
AssertFatal( false, "ProcessedMaterial::stepInstance() - This type of material doesn't support instancing!" );
return false;
}
String ProcessedMaterial::_getTexturePath(const String& filename)
{
// if '/', then path is specified, use it.
if( filename.find('/') != String::NPos )
{
return filename;
}
// otherwise, construct path
return mMaterial->getPath() + filename;
}
GFXTexHandle ProcessedMaterial::_createTexture( const char* filename, GFXTextureProfile *profile)
{
return GFXTexHandle( _getTexturePath(filename), profile, avar("%s() - NA (line %d)", __FUNCTION__, __LINE__) );
}
GFXTexHandle ProcessedMaterial::_createCompositeTexture(const char *filenameR, const char *filenameG, const char *filenameB, const char *filenameA, U32 inputKey[4], GFXTextureProfile *profile)
{
return GFXTexHandle(_getTexturePath(filenameR), _getTexturePath(filenameG), _getTexturePath(filenameB), _getTexturePath(filenameA), inputKey, profile, avar("%s() - NA (line %d)", __FUNCTION__, __LINE__));
}
void ProcessedMaterial::addStateBlockDesc(const GFXStateBlockDesc& sb)
{
mUserDefined = sb;
}
void ProcessedMaterial::_initStateBlockTemplates(GFXStateBlockDesc& stateTranslucent, GFXStateBlockDesc& stateReflect)
{
// Translucency
stateTranslucent.blendDefined = true;
stateTranslucent.blendEnable = mMaterial->mTranslucentBlendOp != Material::None;
_setBlendState(mMaterial->mTranslucentBlendOp, stateTranslucent);
stateTranslucent.zDefined = true;
stateTranslucent.zWriteEnable = mMaterial->mTranslucentZWrite;
stateTranslucent.alphaDefined = true;
stateTranslucent.alphaTestEnable = mMaterial->mAlphaTest;
stateTranslucent.alphaTestRef = mMaterial->mAlphaRef;
stateTranslucent.alphaTestFunc = GFXCmpGreaterEqual;
stateTranslucent.samplersDefined = true;
// Reflect
stateReflect.cullDefined = true;
stateReflect.cullMode = mMaterial->mDoubleSided ? GFXCullNone : GFXCullCW;
}
void ProcessedMaterial::_initRenderPassDataStateBlocks()
{
for (U32 pass = 0; pass < mPasses.size(); pass++)
_initRenderStateStateBlocks( mPasses[pass] );
}
void ProcessedMaterial::_initPassStateBlock( RenderPassData *rpd, GFXStateBlockDesc &result )
{
if ( rpd->mBlendOp != Material::None )
{
result.blendDefined = true;
result.blendEnable = true;
_setBlendState( rpd->mBlendOp, result );
}
if (mMaterial && mMaterial->isDoubleSided())
{
result.cullDefined = true;
result.cullMode = GFXCullNone;
}
if(mMaterial && mMaterial->mAlphaTest)
{
result.alphaDefined = true;
result.alphaTestEnable = mMaterial->mAlphaTest;
result.alphaTestRef = mMaterial->mAlphaRef;
result.alphaTestFunc = GFXCmpGreaterEqual;
}
result.samplersDefined = true;
NamedTexTarget *texTarget;
U32 maxAnisotropy = 1;
if (mMaterial && mMaterial->mUseAnisotropic[ rpd->mStageNum ] )
maxAnisotropy = MATMGR->getDefaultAnisotropy();
for( U32 i=0; i < rpd->mNumTex; i++ )
{
U32 currTexFlag = rpd->mTexType[i];
switch( currTexFlag )
{
default:
{
result.samplers[i].addressModeU = GFXAddressWrap;
result.samplers[i].addressModeV = GFXAddressWrap;
if ( maxAnisotropy > 1 )
{
result.samplers[i].minFilter = GFXTextureFilterAnisotropic;
result.samplers[i].magFilter = GFXTextureFilterAnisotropic;
result.samplers[i].maxAnisotropy = maxAnisotropy;
}
else
{
result.samplers[i].minFilter = GFXTextureFilterLinear;
result.samplers[i].magFilter = GFXTextureFilterLinear;
}
break;
}
case Material::Cube:
case Material::SGCube:
case Material::NormalizeCube:
{
result.samplers[i].addressModeU = GFXAddressClamp;
result.samplers[i].addressModeV = GFXAddressClamp;
result.samplers[i].addressModeW = GFXAddressClamp;
result.samplers[i].minFilter = GFXTextureFilterLinear;
result.samplers[i].magFilter = GFXTextureFilterLinear;
break;
}
case Material::TexTarget:
{
texTarget = mPasses[0]->mTexSlot[i].texTarget;
if ( texTarget )
texTarget->setupSamplerState( &result.samplers[i] );
break;
}
}
}
// The deferred will take care of writing to the
// zbuffer, so we don't have to by default.
if ( MATMGR->getDeferredEnabled() &&
!mFeatures.hasFeature(MFT_ForwardShading))
result.setZReadWrite( result.zEnable, false );
result.addDesc(mUserDefined);
}
/// Creates the default state blocks for a list of render states
void ProcessedMaterial::_initRenderStateStateBlocks( RenderPassData *rpd )
{
GFXStateBlockDesc stateTranslucent;
GFXStateBlockDesc stateReflect;
GFXStateBlockDesc statePass;
_initStateBlockTemplates( stateTranslucent, stateReflect );
_initPassStateBlock( rpd, statePass );
// Ok, we've got our templates set up, let's combine them together based on state and
// create our state blocks.
for (U32 i = 0; i < RenderPassData::STATE_MAX; i++)
{
GFXStateBlockDesc stateFinal;
if (i & RenderPassData::STATE_REFLECT)
stateFinal.addDesc(stateReflect);
if (i & RenderPassData::STATE_TRANSLUCENT)
stateFinal.addDesc(stateTranslucent);
stateFinal.addDesc(statePass);
if (i & RenderPassData::STATE_WIREFRAME)
stateFinal.fillMode = GFXFillWireframe;
GFXStateBlockRef sb = GFX->createStateBlock(stateFinal);
rpd->mRenderStates[i] = sb;
}
}
U32 ProcessedMaterial::_getRenderStateIndex( const SceneRenderState *sceneState,
const SceneData &sgData )
{
// Based on what the state of the world is, get our render state block
U32 currState = 0;
// NOTE: We should only use per-material or per-pass hints to
// change the render state. This is importaint because we
// only change the state blocks between material passes.
//
// For example sgData.visibility would be bad to use
// in here without changing how RenderMeshMgr works.
if ( sceneState && sceneState->isReflectPass() )
currState |= RenderPassData::STATE_REFLECT;
if ( sgData.binType != SceneData::DeferredBin &&
mMaterial->isTranslucent() )
currState |= RenderPassData::STATE_TRANSLUCENT;
if ( sgData.wireframe )
currState |= RenderPassData::STATE_WIREFRAME;
return currState;
}
void ProcessedMaterial::_setRenderState( const SceneRenderState *state,
const SceneData& sgData,
U32 pass )
{
// Make sure we have the pass
if ( pass >= mPasses.size() )
return;
U32 currState = _getRenderStateIndex( state, sgData );
GFX->setStateBlock(mPasses[pass]->mRenderStates[currState]);
}
void ProcessedMaterial::_setStageData()
{
// Only do this once
if (mHasSetStageData)
return;
mHasSetStageData = true;
U32 i;
// Load up all the textures for every possible stage
for (i = 0; i < Material::MAX_STAGES; i++)
{
// DiffuseMap
if (mMaterial->getDiffuseMapAsset(i).notNull())
{
mStages[i].setTex(MFT_DiffuseMap, mMaterial->getDiffuseMap(i));
if (!mStages[i].getTex(MFT_DiffuseMap))
{
// If we start with a #, we're probably actually attempting to hit a named target and it may not get a hit on the first pass.
if (!String(mMaterial->getDiffuseMapAsset(i)->getImageFile()).startsWith("#") && !String(mMaterial->getDiffuseMapAsset(i)->getImageFile()).startsWith("$"))
mMaterial->logError("Failed to load diffuse map %s for stage %i", mMaterial->getDiffuseMapAsset(i)->getImageFile(), i);
mStages[i].setTex(MFT_DiffuseMap, _createTexture(GFXTextureManager::getMissingTexturePath().c_str(), &GFXStaticTextureSRGBProfile));
}
}
// OverlayMap
if (mMaterial->getOverlayMapAsset(i).notNull())
{
mStages[i].setTex(MFT_OverlayMap, mMaterial->getOverlayMap(i));
if (!mStages[i].getTex(MFT_OverlayMap))
mMaterial->logError("Failed to load overlay map %s for stage %i", mMaterial->_getOverlayMap(i), i);
}
// LightMap
if (mMaterial->getLightMapAsset(i).notNull())
{
mStages[i].setTex(MFT_LightMap, mMaterial->getLightMap(i));
if (!mStages[i].getTex(MFT_LightMap))
mMaterial->logError("Failed to load light map %s for stage %i", mMaterial->_getLightMap(i), i);
}
// ToneMap
if (mMaterial->getToneMapAsset(i).notNull())
{
mStages[i].setTex(MFT_ToneMap, mMaterial->getToneMap(i));
if (!mStages[i].getTex(MFT_ToneMap))
mMaterial->logError("Failed to load tone map %s for stage %i", mMaterial->_getToneMap(i), i);
}
// DetailMap
if (mMaterial->getDetailMapAsset(i).notNull())
{
mStages[i].setTex(MFT_DetailMap, mMaterial->getDetailMap(i));
if (!mStages[i].getTex(MFT_DetailMap))
mMaterial->logError("Failed to load detail map %s for stage %i", mMaterial->_getDetailMap(i), i);
}
// NormalMap
if (mMaterial->getNormalMapAsset(i).notNull())
{
mStages[i].setTex(MFT_NormalMap, mMaterial->getNormalMap(i));
if (!mStages[i].getTex(MFT_NormalMap))
{
// Load a debug texture to make it clear to the user
// that the texture for this stage was missing.
mStages[i].setTex(MFT_NormalMap, _createTexture(GFXTextureManager::getMissingTexturePath().c_str(), &GFXNormalMapProfile));
}
}
// Detail Normal Map
if (mMaterial->getDetailNormalMapAsset(i).notNull())
{
mStages[i].setTex(MFT_DetailNormalMap, mMaterial->getDetailNormalMap(i));
if (!mStages[i].getTex(MFT_DetailNormalMap))
mMaterial->logError("Failed to load normal map %s for stage %i", mMaterial->_getDetailNormalMap(i), i);
}
//depending on creation method this may or may not have been shoved into srgb space eroneously
GFXTextureProfile* profile = &GFXStaticTextureProfile;
if (mMaterial->mIsSRGb[i])
profile = &GFXStaticTextureSRGBProfile;
// ORMConfig
if (mMaterial->getORMConfigMapAsset(i).notNull())
{
mStages[i].setTex(MFT_OrmMap, mMaterial->getORMConfigMap(profile, i));
if (!mStages[i].getTex(MFT_OrmMap))
mMaterial->logError("Failed to load PBR Config map %s for stage %i", mMaterial->_getORMConfigMap(i), i);
}
else
{
if ((mMaterial->getAOMapAsset(i).notNull()) || (mMaterial->getRoughMapAsset(i).notNull()) || (mMaterial->getMetalMapAsset(i).notNull()))
{
U32 inputKey[4];
inputKey[0] = mMaterial->mAOChan[i];
inputKey[1] = mMaterial->mRoughnessChan[i];
inputKey[2] = mMaterial->mMetalChan[i];
inputKey[3] = 0;
mStages[i].setTex(MFT_OrmMap, _createCompositeTexture( mMaterial->getAOMapAsset(i)->getImageFile(), mMaterial->getRoughMapAsset(i)->getImageFile(),
mMaterial->getMetalMapAsset(i)->getImageFile(), "",
inputKey, profile));
if (!mStages[i].getTex(MFT_OrmMap))
mMaterial->logError("Failed to dynamically create ORM Config map for stage %i", i);
}
}
if (mMaterial->getGlowMapAsset(i).notNull())
{
mStages[i].setTex(MFT_GlowMap, mMaterial->getGlowMap(i));
if (!mStages[i].getTex(MFT_GlowMap))
mMaterial->logError("Failed to load glow map %s for stage %i", mMaterial->_getGlowMap(i), i);
}
}
mMaterial->mCubemapData = dynamic_cast<CubemapData*>(Sim::findObject(mMaterial->mCubemapName));
if (!mMaterial->mCubemapData)
mMaterial->mCubemapData = NULL;
// If we have a cubemap put it on stage 0 (cubemaps only supported on stage 0)
if (mMaterial->mCubemapData)
{
mMaterial->mCubemapData->createMap();
mStages[0].setCubemap(mMaterial->mCubemapData->mCubemap);
if (!mStages[0].getCubemap())
mMaterial->logError("Failed to load cubemap");
}
}