Torque3D/Engine/source/interior/forceField.cpp
2012-09-19 11:15:01 -04:00

470 lines
14 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "interior/forceField.h"
#include "core/stream/stream.h"
#include "math/mathIO.h"
#include "console/console.h"
#include "collision/abstractPolyList.h"
#include "scene/sceneObject.h"
ForceField::ForceField()
{
VECTOR_SET_ASSOCIATION( mTriggers );
VECTOR_SET_ASSOCIATION( mPlanes );
VECTOR_SET_ASSOCIATION( mPoints );
VECTOR_SET_ASSOCIATION( mBSPNodes );
VECTOR_SET_ASSOCIATION( mBSPSolidLeaves );
VECTOR_SET_ASSOCIATION( mSolidLeafSurfaces );
VECTOR_SET_ASSOCIATION( mWindings );
VECTOR_SET_ASSOCIATION( mSurfaces );
mPreppedForRender = false;
}
ForceField::~ForceField()
{
mPreppedForRender = false;
}
bool ForceField::prepForRendering()
{
if (mPreppedForRender == true)
return true;
mPreppedForRender = true;
return true;
}
void ForceField::render(const ColorF& rColor, const F32 fade)
{
}
//--------------------------------------------------------------------------
//-------------------------------------- Persistence interfaces
//
const U32 ForceField::smFileVersion = 0;
bool ForceField::read(Stream& stream)
{
AssertFatal(stream.hasCapability(Stream::StreamRead), "ForceField::read: non-read capable stream passed");
AssertFatal(stream.getStatus() == Stream::Ok, "ForceField::read: Error, stream in inconsistent state");
U32 i;
// Version this stream
U32 fileVersion;
stream.read(&fileVersion);
if (fileVersion != smFileVersion) {
Con::errorf(ConsoleLogEntry::General, "ForceField::read: incompatible file version found.");
return false;
}
mName = stream.readSTString();
U32 numTriggers;
stream.read(&numTriggers);
mTriggers.setSize(numTriggers);
for (i = 0; i < mTriggers.size(); i++)
mTriggers[i] = stream.readSTString();
// Geometry factors...
mathRead(stream, &mBoundingBox);
mathRead(stream, &mBoundingSphere);
// Now read in our data vectors.
U32 vectorSize;
// mPlanes
readPlaneVector(stream);
// mPoints
stream.read(&vectorSize);
mPoints.setSize(vectorSize);
for (i = 0; i < mPoints.size(); i++)
mathRead(stream, &mPoints[i]);
// mBSPNodes;
stream.read(&vectorSize);
mBSPNodes.setSize(vectorSize);
for (i = 0; i < mBSPNodes.size(); i++) {
stream.read(&mBSPNodes[i].planeIndex);
stream.read(&mBSPNodes[i].frontIndex);
stream.read(&mBSPNodes[i].backIndex);
}
// mBSPSolidLeaves
stream.read(&vectorSize);
mBSPSolidLeaves.setSize(vectorSize);
for (i = 0; i < mBSPSolidLeaves.size(); i++) {
stream.read(&mBSPSolidLeaves[i].surfaceIndex);
stream.read(&mBSPSolidLeaves[i].surfaceCount);
}
// mWindings
stream.read(&vectorSize);
mWindings.setSize(vectorSize);
for (i = 0; i < mWindings.size(); i++) {
stream.read(&mWindings[i]);
}
// mSurfaces
stream.read(&vectorSize);
mSurfaces.setSize(vectorSize);
for (i = 0; i < mSurfaces.size(); i++) {
stream.read(&mSurfaces[i].windingStart);
stream.read(&mSurfaces[i].windingCount);
stream.read(&mSurfaces[i].planeIndex);
stream.read(&mSurfaces[i].surfaceFlags);
stream.read(&mSurfaces[i].fanMask);
}
// mSolidLeafSurfaces
stream.read(&vectorSize);
mSolidLeafSurfaces.setSize(vectorSize);
for (i = 0; i < mSolidLeafSurfaces.size(); i++) {
stream.read(&mSolidLeafSurfaces[i]);
}
stream.read(&mColor);
return stream.getStatus() == Stream::Ok;
}
bool ForceField::write(Stream& stream) const
{
AssertFatal(stream.hasCapability(Stream::StreamWrite), "Interior::write: non-write capable stream passed");
AssertFatal(stream.getStatus() == Stream::Ok, "Interior::write: Error, stream in inconsistent state");
U32 i;
// Version this stream
stream.write(smFileVersion);
stream.writeString(mName);
stream.write(mTriggers.size());
for (i = 0; i < mTriggers.size(); i++)
stream.writeString(mTriggers[i]);
mathWrite(stream, mBoundingBox);
mathWrite(stream, mBoundingSphere);
// Now write out our data vectors. Remember, for cross-platform capability, no
// structure writing is allowed...
// mPlanes
writePlaneVector(stream);
// mPoints
stream.write(mPoints.size());
for (i = 0; i < mPoints.size(); i++)
mathWrite(stream, mPoints[i]);
// mBSPNodes;
stream.write(mBSPNodes.size());
for (i = 0; i < mBSPNodes.size(); i++) {
stream.write(mBSPNodes[i].planeIndex);
stream.write(mBSPNodes[i].frontIndex);
stream.write(mBSPNodes[i].backIndex);
}
// mBSPSolidLeaves
stream.write(mBSPSolidLeaves.size());
for (i = 0; i < mBSPSolidLeaves.size(); i++) {
stream.write(mBSPSolidLeaves[i].surfaceIndex);
stream.write(mBSPSolidLeaves[i].surfaceCount);
}
// mWindings
stream.write(mWindings.size());
for (i = 0; i < mWindings.size(); i++) {
stream.write(mWindings[i]);
}
// mSurfaces
stream.write(mSurfaces.size());
for (i = 0; i < mSurfaces.size(); i++) {
stream.write(mSurfaces[i].windingStart);
stream.write(mSurfaces[i].windingCount);
stream.write(mSurfaces[i].planeIndex);
stream.write(mSurfaces[i].surfaceFlags);
stream.write(mSurfaces[i].fanMask);
}
// mSolidLeafSurfaces
stream.write(mSolidLeafSurfaces.size());
for (i = 0; i < mSolidLeafSurfaces.size(); i++) {
stream.write(mSolidLeafSurfaces[i]);
}
stream.write(mColor);
return stream.getStatus() == Stream::Ok;
}
bool ForceField::writePlaneVector(Stream& stream) const
{
// This is pretty slow, but who cares?
//
Vector<Point3F> uniqueNormals(mPlanes.size());
Vector<U16> uniqueIndices(mPlanes.size());
U32 i;
for (i = 0; i < mPlanes.size(); i++) {
bool inserted = false;
for (U32 j = 0; j < uniqueNormals.size(); j++) {
if (mPlanes[i] == uniqueNormals[j]) {
// Hah! Already have this one...
uniqueIndices.push_back(j);
inserted = true;
break;
}
}
if (inserted == false) {
// Gotta do it ourselves...
uniqueIndices.push_back(uniqueNormals.size());
uniqueNormals.push_back(Point3F(mPlanes[i].x, mPlanes[i].y, mPlanes[i].z));
}
}
// Ok, what we have now, is a list of unique normals, a set of indices into
// that vector, and the distances that we still have to write out by hand.
// Hop to it!
stream.write(uniqueNormals.size());
for (i = 0; i < uniqueNormals.size(); i++)
mathWrite(stream, uniqueNormals[i]);
stream.write(mPlanes.size());
for (i = 0; i < mPlanes.size(); i++) {
stream.write(uniqueIndices[i]);
stream.write(mPlanes[i].d);
}
return (stream.getStatus() == Stream::Ok);
}
bool ForceField::readPlaneVector(Stream& stream)
{
Vector<Point3F> normals;
U32 vectorSize;
stream.read(&vectorSize);
normals.setSize(vectorSize);
U32 i;
for (i = 0; i < normals.size(); i++)
mathRead(stream, &normals[i]);
U16 index;
stream.read(&vectorSize);
mPlanes.setSize(vectorSize);
for (i = 0; i < mPlanes.size(); i++) {
stream.read(&index);
stream.read(&mPlanes[i].d);
mPlanes[i].x = normals[index].x;
mPlanes[i].y = normals[index].y;
mPlanes[i].z = normals[index].z;
}
return (stream.getStatus() == Stream::Ok);
}
//--------------------------------------------------------------------------
//-------------------------------------- Collision support. Essentially
// copied from the interiorCollision
//
void ForceField::collisionFanFromSurface(const Surface& rSurface, U32* fanIndices, U32* numIndices) const
{
U32 tempIndices[32];
tempIndices[0] = 0;
U32 idx = 1;
U32 i;
for (i = 1; i < rSurface.windingCount; i += 2)
tempIndices[idx++] = i;
for (i = ((rSurface.windingCount - 1) & (~0x1)); i > 0; i -= 2)
tempIndices[idx++] = i;
idx = 0;
for (i = 0; i < rSurface.windingCount; i++) {
if (rSurface.fanMask & (1 << i)) {
fanIndices[idx++] = mWindings[rSurface.windingStart + tempIndices[i]];
}
}
*numIndices = idx;
}
bool ForceField::castRay(const Point3F& s, const Point3F& e, RayInfo* info)
{
bool hit = castRay_r(0, s, e, info);
if (hit) {
Point3F vec = e - s;
F32 len = vec.len();
vec /= len;
info->t = mDot(info->point - s, vec) / len;
}
return hit;
}
bool ForceField::castRay_r(const U16 node,
const Point3F& s,
const Point3F& e,
RayInfo* info)
{
if (isBSPLeafIndex(node) == false) {
const IBSPNode& rNode = mBSPNodes[node];
const PlaneF& rPlane = getPlane(rNode.planeIndex);
PlaneF::Side sSide = rPlane.whichSide(s);
PlaneF::Side eSide = rPlane.whichSide(e);
switch (PlaneSwitchCode(sSide, eSide)) {
case PlaneSwitchCode(PlaneF::Front, PlaneF::Front):
case PlaneSwitchCode(PlaneF::Front, PlaneF::On):
case PlaneSwitchCode(PlaneF::On, PlaneF::Front):
return castRay_r(rNode.frontIndex, s, e, info);
break;
case PlaneSwitchCode(PlaneF::On, PlaneF::Back):
case PlaneSwitchCode(PlaneF::Back, PlaneF::On):
case PlaneSwitchCode(PlaneF::Back, PlaneF::Back):
return castRay_r(rNode.backIndex, s, e, info);
break;
case PlaneSwitchCode(PlaneF::On, PlaneF::On):
// Line lies on the plane
if (isBSPLeafIndex(rNode.backIndex) == false) {
if (castRay_r(rNode.backIndex, s, e, info))
return true;
}
if (isBSPLeafIndex(rNode.frontIndex) == false) {
if (castRay_r(rNode.frontIndex, s, e, info))
return true;
}
return false;
break;
case PlaneSwitchCode(PlaneF::Front, PlaneF::Back): {
Point3F ip;
F32 intersectT = rPlane.intersect(s, e);
AssertFatal(intersectT != PARALLEL_PLANE, "Error, this should never happen in this case!");
ip.interpolate(s, e, intersectT);
if (castRay_r(rNode.frontIndex, s, ip, info))
return true;
return castRay_r(rNode.backIndex, ip, e, info);
}
break;
case PlaneSwitchCode(PlaneF::Back, PlaneF::Front): {
Point3F ip;
F32 intersectT = rPlane.intersect(s, e);
AssertFatal(intersectT != PARALLEL_PLANE, "Error, this should never happen in this case!");
ip.interpolate(s, e, intersectT);
if (castRay_r(rNode.backIndex, s, ip, info))
return true;
return castRay_r(rNode.frontIndex, ip, e, info);
}
break;
default:
AssertFatal(false, "Misunderstood switchCode in ForceField::castRay_r");
return false;
}
}
if (isBSPSolidLeaf(node)) {
// DMM: Set material info here
info->point = s;
return true;
}
return false;
}
void ForceField::buildPolyList_r(const U16 node, Vector<U16>& collPlanes, AbstractPolyList* list, SphereF& s)
{
if (isBSPLeafIndex(node) == false) {
const IBSPNode& rNode = mBSPNodes[node];
const PlaneF& rPlane = getPlane(rNode.planeIndex);
F32 dist = rPlane.distToPlane(s.center);
if (mFabs(dist) <= s.radius) {
// Have to do both, and push the plane back on the list...
collPlanes.push_back(rNode.planeIndex);
buildPolyList_r(rNode.frontIndex, collPlanes, list, s);
buildPolyList_r(rNode.backIndex, collPlanes, list, s);
collPlanes.pop_back();
} else if (dist > 0.0f) {
buildPolyList_r(rNode.frontIndex, collPlanes, list, s);
} else {
buildPolyList_r(rNode.backIndex, collPlanes, list, s);
}
return;
}
if (isBSPSolidLeaf(node)) {
const IBSPLeafSolid& rLeaf = mBSPSolidLeaves[getBSPSolidLeafIndex(node)];
for (U32 i = 0; i < rLeaf.surfaceCount; i++) {
U32 surfaceIndex = mSolidLeafSurfaces[rLeaf.surfaceIndex + i];
const Surface& rSurface = mSurfaces[surfaceIndex];
for (U32 j = 0; j < collPlanes.size(); j++) {
if (areEqualPlanes(rSurface.planeIndex, collPlanes[j]) == true) {
U32 fanVerts[32];
U32 numVerts;
collisionFanFromSurface(rSurface, fanVerts, &numVerts);
// DMM: Material here
list->begin(0, rSurface.planeIndex);
U32 vertStart = list->addPoint(mPoints[fanVerts[0]]);
list->vertex(vertStart);
for (U32 k = 1; k < numVerts; k++) {
list->addPoint(mPoints[fanVerts[k]]);
list->vertex(vertStart + k);
}
list->plane(vertStart, vertStart + 1, vertStart + 2);
list->end();
break;
}
}
}
}
}
bool ForceField::buildPolyList(AbstractPolyList* list, SphereF& sphere)
{
Vector<U16> planes;
buildPolyList_r(0, planes, list, sphere);
AssertFatal(planes.size() == 0, "Error, unbalanced plane stack!");
return !list->isEmpty();
}