Torque3D/Engine/source/util/imposterCapture.cpp
AtomicWalrus 75625dc679 Reverse depth & 32F buffer format
-Adds reversed depth projection model, dramatically increasing depth buffer effective resolution.
-Adds 32F depth 8U stencil format GFXFormatD32FS8X24 (following DX naming conventions). Note this is a 64-bit format, and likely not suitable for mobile platforms. Revert to GFXFormatD24S8 in renderManager.tscript for mobile & "ancient" platforms.
-Corrects alignment of texture type details array.
2023-04-14 20:13:28 -06:00

526 lines
18 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "util/imposterCapture.h"
#include "gfx/bitmap/gBitmap.h"
#include "core/color.h"
#include "renderInstance/renderPassManager.h"
#include "renderInstance/renderMeshMgr.h"
#include "materials/materialManager.h"
#include "materials/materialFeatureTypes.h"
#include "materials/customMaterialDefinition.h"
#include "ts/tsShapeInstance.h"
#include "scene/sceneManager.h"
#include "scene/sceneRenderState.h"
#include "lighting/lightInfo.h"
#include "gfx/gfxTransformSaver.h"
#include "gfx/gfxDebugEvent.h"
#include "core/stream/fileStream.h"
/// A material hook used to hold imposter generation
/// rendering materials for an object.
class ImposterCaptureMaterialHook : public MatInstanceHook
{
public:
ImposterCaptureMaterialHook();
// MatInstanceHook
virtual ~ImposterCaptureMaterialHook();
virtual const MatInstanceHookType& getType() const { return Type; }
/// The material hook type.
static const MatInstanceHookType Type;
void init( BaseMatInstance *mat );
static BaseMatInstance* getDiffuseInst( BaseMatInstance *inMat )
{ return _getOrCreateHook( inMat )->mDiffuseMatInst; }
static BaseMatInstance* getNormalsInst( BaseMatInstance *inMat )
{ return _getOrCreateHook( inMat )->mNormalsMatInst; }
protected:
static void _overrideFeatures( ProcessedMaterial *mat,
U32 stageNum,
MaterialFeatureData &fd,
const FeatureSet &features );
static ImposterCaptureMaterialHook* _getOrCreateHook( BaseMatInstance *inMat );
///
BaseMatInstance *mDiffuseMatInst;
///
BaseMatInstance *mNormalsMatInst;
};
const MatInstanceHookType ImposterCaptureMaterialHook::Type( "ImposterCapture" );
ImposterCaptureMaterialHook::ImposterCaptureMaterialHook()
: mDiffuseMatInst( NULL ),
mNormalsMatInst( NULL )
{
}
ImposterCaptureMaterialHook::~ImposterCaptureMaterialHook()
{
SAFE_DELETE( mDiffuseMatInst );
SAFE_DELETE( mNormalsMatInst );
}
void ImposterCaptureMaterialHook::init( BaseMatInstance *inMat )
{
// We cannot capture impostors on custom materials
// as we don't know how to get just diffuse and just
// normals rendering.
if ( dynamic_cast<CustomMaterial*>( inMat->getMaterial() ) )
return;
// Tweak the feature data to include just what we need.
FeatureSet features;
features.addFeature( MFT_VertTransform );
features.addFeature( MFT_DiffuseMap );
features.addFeature( MFT_OverlayMap );
features.addFeature( MFT_DetailMap );
features.addFeature( MFT_DiffuseColor );
features.addFeature( MFT_AlphaTest );
features.addFeature( MFT_IsTranslucent );
const String &matName = inMat->getMaterial()->getName();
mDiffuseMatInst = MATMGR->createMatInstance( matName );
mDiffuseMatInst->getFeaturesDelegate().bind( &ImposterCaptureMaterialHook::_overrideFeatures );
mDiffuseMatInst->init( features, inMat->getVertexFormat() );
features.addFeature( MFT_IsBC3nm );
features.addFeature( MFT_NormalMap );
features.addFeature( MFT_NormalsOut );
features.addFeature( MFT_AccuMap );
mNormalsMatInst = MATMGR->createMatInstance( matName );
mNormalsMatInst->getFeaturesDelegate().bind( &ImposterCaptureMaterialHook::_overrideFeatures );
mNormalsMatInst->init( features, inMat->getVertexFormat() );
}
void ImposterCaptureMaterialHook::_overrideFeatures( ProcessedMaterial *mat,
U32 stageNum,
MaterialFeatureData &fd,
const FeatureSet &features )
{
if ( features.hasFeature( MFT_NormalsOut) )
fd.features.addFeature( MFT_NormalsOut );
fd.features.addFeature( MFT_ForwardShading );
fd.features.addFeature( MFT_Imposter );
}
ImposterCaptureMaterialHook* ImposterCaptureMaterialHook::_getOrCreateHook( BaseMatInstance *inMat )
{
ImposterCaptureMaterialHook *hook = inMat->getHook<ImposterCaptureMaterialHook>();
if ( !hook )
{
// Create a hook and initialize it using the incoming material.
hook = new ImposterCaptureMaterialHook;
hook->init( inMat );
inMat->addHook( hook );
}
return hook;
}
ImposterCapture::ImposterCapture()
: mDl( 0 ),
mDim( 0 ),
mRadius( 0.0f ),
mCenter( Point3F( 0, 0, 0 ) ),
mBlackBmp( NULL ),
mWhiteBmp( NULL ),
mState( NULL ),
mShapeInstance( NULL ),
mRenderTarget( NULL ),
mRenderPass( NULL ),
mMeshRenderBin( NULL )
{
}
ImposterCapture::~ImposterCapture()
{
AssertFatal( !mShapeInstance, "ImposterCapture destructor - TSShapeInstance hasn't been cleared!" );
}
void ImposterCapture::_colorAverageFilter( U32 dimensions, const U8 *inBmpBits, U8 *outBmpBits )
{
LinearColorF color;
U32 count = 0;
U32 index, index2;
for ( S32 y = 0; y < dimensions; y++ )
{
for( S32 x = 0; x < dimensions; x++ )
{
// We only blend on transparent pixels.
index = ( ( y * dimensions ) + x ) * 4;
if ( inBmpBits[index+3] > 84 )
{
outBmpBits[index+0] = inBmpBits[index+0];
outBmpBits[index+1] = inBmpBits[index+1];
outBmpBits[index+2] = inBmpBits[index+2];
outBmpBits[index+3] = inBmpBits[index+3]; //hack
continue;
}
color.set(0,0,0);
count = 0;
for ( S32 fy = y-6; fy <= y+6; fy++ )
{
for ( S32 fx = x-6; fx <= x+6; fx++ )
{
if ( fy >= 0 && fy < (dimensions-1) &&
fx >= 0 && fx < (dimensions-1) )
{
index2 = ( ( fy * dimensions ) + fx ) * 4;
if ( inBmpBits[index2+3] > 84 )
{
color.red += inBmpBits[index2+0];
color.green += inBmpBits[index2+1];
color.blue += inBmpBits[index2+2];
++count;
}
}
}
}
outBmpBits[index+0] = (U8)( (F32)color.red / (F32)count );
outBmpBits[index+1] = (U8)( (F32)color.green / (F32)count );
outBmpBits[index+2] = (U8)( (F32)color.blue / (F32)count );
outBmpBits[index+3] = 0;
}
}
}
void ImposterCapture::_renderToTexture( GFXTexHandle texHandle, GBitmap *outBitmap, const ColorI &color )
{
GFXDEBUGEVENT_SCOPE( ImposterCapture_RenderToTexture, ColorI::RED );
PROFILE_SCOPE( ImposterCapture_RenderToTexture );
mRenderTarget->attachTexture( GFXTextureTarget::Color0, texHandle );
mRenderTarget->attachTexture( GFXTextureTarget::DepthStencil, mDepthBuffer );
GFX->setActiveRenderTarget( mRenderTarget );
GFX->clear( GFXClearZBuffer | GFXClearStencil | GFXClearTarget, color, 0.0f, 0 );
mShapeInstance->render( mRData, mDl, 1.0f );
mState->getRenderPass()->renderPass( mState );
mRenderTarget->resolve();
texHandle->copyToBmp( outBitmap );
}
void ImposterCapture::_separateAlpha( GBitmap *imposterOut )
{
PROFILE_START(TSShapeInstance_snapshot_sb_separate);
// TODO: Remove all this when we get rid of the 'render on black/white'.
// now separate the color and alpha channels
GBitmap *bmp = new GBitmap;
bmp->allocateBitmap(mDim, mDim, false, GFXFormatR8G8B8A8);
U8 * wbmp = (U8*)mWhiteBmp->getBits(0);
U8 * bbmp = (U8*)mBlackBmp->getBits(0);
U8 * dst = (U8*)bmp->getBits(0);
const U32 pixCount = mDim * mDim;
// simpler, probably faster...
for ( U32 i=0; i < pixCount; i++ )
{
// Shape on black background is alpha * color, shape on white
// background is alpha * color + (1-alpha) * 255 we want 255 *
// alpha, or 255 - (white - black).
//
// JMQ: or more verbosely:
// cB = alpha * color + (0 * (1 - alpha))
// cB = alpha * color
// cW = alpha * color + (255 * (1 - alpha))
// cW = cB + (255 * (1 - alpha))
// solving for alpha
// cW - cB = 255 * (1 - alpha)
// (cW - cB)/255 = (1 - alpha)
// alpha = 1 - (cW - cB)/255
// since we want alpha*255, multiply through by 255
// alpha * 255 = 255 - cW - cB
U32 alpha = 255 - (wbmp[i*3+0] - bbmp[i*3+0]);
alpha += 255 - (wbmp[i*3+1] - bbmp[i*3+1]);
alpha += 255 - (wbmp[i*3+2] - bbmp[i*3+2]);
if ( alpha != 0 )
{
F32 floatAlpha = ((F32)alpha)/(3.0f*255.0f);
dst[i*4+0] = (U8)(bbmp[i*3+0] / floatAlpha);
dst[i*4+1] = (U8)(bbmp[i*3+1] / floatAlpha);
dst[i*4+2] = (U8)(bbmp[i*3+2] / floatAlpha);
// Before we assign the alpha we "fizzle" the value
// if its greater than 84. This causes the imposter
// to dissolve instead of popping into view.
alpha /= 3;
dst[i*4+3] = (U8)alpha;
}
else
{
dst[i*4+0] = dst[i*4+1] = dst[i*4+2] = dst[i*4+3] = 0;
}
}
PROFILE_END(); // TSShapeInstance_snapshot_sb_separate
PROFILE_START(TSShapeInstance_snapshot_sb_filter);
// We now run a special kernel filter over the image that
// averages color into the transparent areas. This should
// in essence give us a border around the edges of the
// imposter silhouette which fixes the artifacts around the
// alpha test billboards.
U8* dst2 = (U8*)imposterOut->getBits(0);
_colorAverageFilter( mDim, dst, dst2 );
if ( 0 )
{
FileStream fs;
if ( fs.open( "./imposterout.png", Torque::FS::File::Write ) )
imposterOut->writeBitmap( "png", fs );
fs.close();
if ( fs.open( "./temp.png", Torque::FS::File::Write ) )
bmp->writeBitmap( "png", fs );
fs.close();
}
PROFILE_END(); // TSShapeInstance_snapshot_sb_filter
delete bmp;
}
void ImposterCapture::_convertDXT5nm( GBitmap *normalsOut )
{
PROFILE_SCOPE(ImposterCapture_ConvertDXT5nm);
U8 *bits = (U8*)normalsOut->getBits(0);
const U32 pixCount = mDim * mDim;
U8 x, y, z;
// Encoding in object space DXT5 which moves
// one of the coords to the alpha channel for
// improved precision.... in our case z.
for ( U32 i=0; i < pixCount; i++ )
{
x = bits[i*4+0];
y = bits[i*4+1];
z = bits[i*4+2];
bits[i*4+0] = x;
bits[i*4+1] = y;
bits[i*4+2] = 0;
bits[i*4+3] = z;
}
}
void ImposterCapture::begin( TSShapeInstance *shapeInst,
S32 dl,
S32 dim,
F32 radius,
const Point3F &center )
{
mShapeInstance = shapeInst;
mDl = dl;
mDim = dim;
mRadius = radius;
mCenter = center;
mBlackTex.set( mDim, mDim, GFXFormatR8G8B8A8_SRGB, &GFXRenderTargetSRGBProfile, avar( "%s() - (line %d)", __FUNCTION__, __LINE__ ) );
mWhiteTex.set( mDim, mDim, GFXFormatR8G8B8A8_SRGB, &GFXRenderTargetSRGBProfile, avar( "%s() - (line %d)", __FUNCTION__, __LINE__ ) );
mNormalTex.set( mDim, mDim, GFXFormatR8G8B8A8, &GFXRenderTargetProfile, avar( "%s() - (line %d)", __FUNCTION__, __LINE__ ) );
mDepthBuffer.set( mDim, mDim, GFXFormatD24S8, &GFXZTargetProfile, avar( "%s() - (line %d)", __FUNCTION__, __LINE__ ) );
// copy the black render target data into a bitmap
mBlackBmp = new GBitmap;
mBlackBmp->allocateBitmap(mDim, mDim, false, GFXFormatR8G8B8);
// copy the white target data into a bitmap
mWhiteBmp = new GBitmap;
mWhiteBmp->allocateBitmap(mDim, mDim, false, GFXFormatR8G8B8);
// Setup viewport and frustrum to do orthographic projection.
RectI viewport( 0, 0, mDim, mDim );
GFX->setViewport( viewport );
GFX->setOrtho( -mRadius, mRadius, -mRadius, mRadius, 1, 20.0f * mRadius );
// Position camera looking out the X axis.
MatrixF cameraMatrix( true );
cameraMatrix.setColumn( 0, Point3F( 0, 0, 1 ) );
cameraMatrix.setColumn( 1, Point3F( 1, 0, 0 ) );
cameraMatrix.setColumn( 2, Point3F( 0, 1, 0 ) );
// setup scene state required for TS mesh render...this is messy and inefficient;
// should have a mode where most of this is done just once (and then
// only the camera matrix changes between snapshots).
// note that we use getFrustum here, but we set up an ortho projection above.
// it doesn't seem like the scene state object pays attention to whether the projection is
// ortho or not. this could become a problem if some code downstream tries to
// reconstruct the projection matrix using the dimensions and doesn't
// realize it should be ortho. at the moment no code is doing that.
F32 left, right, top, bottom, nearPlane, farPlane;
bool isOrtho;
GFX->getFrustum( &left, &right, &bottom, &top, &nearPlane, &farPlane, &isOrtho );
Frustum frust( isOrtho, left, right, top, bottom, nearPlane, farPlane, cameraMatrix );
// Set up render pass.
mRenderPass = new RenderPassManager();
mRenderPass->assignName( "DiffuseRenderPass" );
mMeshRenderBin = new RenderMeshMgr();
mRenderPass->addManager( mMeshRenderBin );
// Set up scene state.
mState = new SceneRenderState(
gClientSceneGraph,
SPT_Diffuse,
SceneCameraState( viewport, frust, GFX->getWorldMatrix(),GFX->getProjectionMatrix() ),
mRenderPass,
false
);
// Set up our TS render state.
mRData.setSceneState( mState );
mRData.setCubemap( NULL );
mRData.setFadeOverride( 1.0f );
// set gfx up for render to texture
GFX->pushActiveRenderTarget();
mRenderTarget = GFX->allocRenderToTextureTarget();
}
void ImposterCapture::capture( const MatrixF &rotMatrix,
GBitmap **imposterOut,
GBitmap **normalMapOut )
{
GFXTransformSaver saver;
// this version of the snapshot function renders the shape to a black texture, then to white, then reads bitmaps
// back for both renders and combines them, restoring the alpha and color values. this is based on the
// TGE implementation. it is not fast due to the copy and software combination operations. the generated bitmaps
// are upside-down (which is how TGE generated them...)
(*imposterOut) = new GBitmap( mDim, mDim, false, GFXFormatR8G8B8A8 );
(*normalMapOut) = new GBitmap( mDim, mDim, false, GFXFormatR8G8B8A8 );
// The object to world transform.
MatrixF centerMat( true );
centerMat.setPosition( -mCenter );
MatrixF objMatrix( rotMatrix );
objMatrix.mul( centerMat );
GFX->setWorldMatrix( objMatrix );
// The view transform.
MatrixF view( EulerF( M_PI_F / 2.0f, 0, M_PI_F ), Point3F( 0, 0, -10.0f * mRadius ) );
mRenderPass->assignSharedXform( RenderPassManager::View, view );
mRenderPass->assignSharedXform( RenderPassManager::Projection, GFX->getProjectionMatrix() );
// Render the diffuse pass.
mRenderPass->clear();
mMeshRenderBin->getMatOverrideDelegate().bind( ImposterCaptureMaterialHook::getDiffuseInst );
_renderToTexture( mBlackTex, mBlackBmp, ColorI(0, 0, 0, 0) );
_renderToTexture( mWhiteTex, mWhiteBmp, ColorI(255, 255, 255, 255) );
// Now render the normals.
mRenderPass->clear();
mMeshRenderBin->getMatOverrideDelegate().bind( ImposterCaptureMaterialHook::getNormalsInst );
_renderToTexture( mNormalTex, *normalMapOut, ColorI(0, 0, 0, 0) );
_separateAlpha( *imposterOut );
_convertDXT5nm( *normalMapOut );
if ( 0 )
{
// Render out the bitmaps for debug purposes.
FileStream fs;
if ( fs.open( "./blackbmp.png", Torque::FS::File::Write ) )
mBlackBmp->writeBitmap( "png", fs );
fs.close();
if ( fs.open( "./whitebmp.png", Torque::FS::File::Write ) )
mWhiteBmp->writeBitmap( "png", fs );
fs.close();
if ( fs.open( "./normalbmp.png", Torque::FS::File::Write ) )
(*normalMapOut)->writeBitmap( "png", fs );
fs.close();
if ( fs.open( "./finalimposter.png", Torque::FS::File::Write ) )
(*imposterOut)->writeBitmap( "png", fs );
fs.close();
}
}
void ImposterCapture::end()
{
GFX->popActiveRenderTarget();
mBlackTex.free();
mWhiteTex.free();
mNormalTex.free();
mShapeInstance = NULL;
mRenderTarget = NULL;
mMeshRenderBin = NULL; // Deleted by mRenderPass
SAFE_DELETE( mState );
SAFE_DELETE( mRenderPass );
SAFE_DELETE( mBlackBmp );
SAFE_DELETE( mWhiteBmp );
}