mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-20 12:44:46 +00:00
rigid: main finding is rigid needs to take delta into account for integration (aka interpolation) also used POINT_EPSILON for thresholds for consistency for rigidshape/item/player, main finding was length calcs for the search area were all over the place, so we now derive the extended length of the cached area based on the velocity and the object's radius itself rather than guessin per class atrest gravity calc suplimental syncing between rigidshape and vehicle **remindernote POINT_EPSILO is 0.0001
433 lines
11 KiB
C++
433 lines
11 KiB
C++
//-----------------------------------------------------------------------------
|
||
// Copyright (c) 2012 GarageGames, LLC
|
||
//
|
||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
// of this software and associated documentation files (the "Software"), to
|
||
// deal in the Software without restriction, including without limitation the
|
||
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||
// sell copies of the Software, and to permit persons to whom the Software is
|
||
// furnished to do so, subject to the following conditions:
|
||
//
|
||
// The above copyright notice and this permission notice shall be included in
|
||
// all copies or substantial portions of the Software.
|
||
//
|
||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
// IN THE SOFTWARE.
|
||
//-----------------------------------------------------------------------------
|
||
|
||
#include "T3D/rigid.h"
|
||
#include "console/console.h"
|
||
|
||
|
||
//----------------------------------------------------------------------------
|
||
|
||
Rigid::Rigid()
|
||
{
|
||
force.set(0.0f,0.0f,0.0f);
|
||
torque.set(0.0f,0.0f,0.0f);
|
||
linVelocity.set(0.0f,0.0f,0.0f);
|
||
linPosition.set(0.0f,0.0f,0.0f);
|
||
linMomentum.set(0.0f,0.0f,0.0f);
|
||
angVelocity.set(0.0f,0.0f,0.0f);
|
||
angMomentum.set(0.0f,0.0f,0.0f);
|
||
|
||
angPosition.identity();
|
||
invWorldInertia.identity();
|
||
|
||
centerOfMass.set(0.0f,0.0f,0.0f);
|
||
worldCenterOfMass = linPosition;
|
||
mass = oneOverMass = 1.0f;
|
||
invObjectInertia.identity();
|
||
restitution = 0.3f;
|
||
friction = 0.5f;
|
||
atRest = false;
|
||
|
||
sleepLinearThreshold = POINT_EPSILON;
|
||
sleepAngThreshold = POINT_EPSILON;
|
||
sleepTimeThreshold = 0.75f;
|
||
sleepTimer = 0.0f;
|
||
}
|
||
|
||
void Rigid::clearForces()
|
||
{
|
||
force.set(0.0f,0.0f,0.0f);
|
||
torque.set(0.0f,0.0f,0.0f);
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
void Rigid::integrate(F32 delta)
|
||
{
|
||
if (atRest && force.isZero() && torque.isZero())
|
||
return;
|
||
|
||
// 1. advance momentum
|
||
angMomentum += torque * delta;
|
||
linMomentum += force * delta;
|
||
linVelocity = linMomentum * oneOverMass;
|
||
|
||
// 2. advance orientation if ang vel significant
|
||
F32 angle = angVelocity.len()*delta;
|
||
if (mFabs(angle)> POINT_EPSILON)
|
||
{
|
||
QuatF dq;
|
||
F32 sinHalfAngle;
|
||
mSinCos(angle * delta * -0.5f, sinHalfAngle, dq.w);
|
||
sinHalfAngle *= 1.0f / angle;
|
||
dq.x = angVelocity.x * sinHalfAngle;
|
||
dq.y = angVelocity.y * sinHalfAngle;
|
||
dq.z = angVelocity.z * sinHalfAngle;
|
||
QuatF tmp = angPosition;
|
||
angPosition.mul(tmp, dq);
|
||
angPosition.normalize();
|
||
|
||
// Rotate the position around the center of mass
|
||
Point3F lp = linPosition - worldCenterOfMass;
|
||
dq.mulP(lp, &linPosition);
|
||
linPosition += worldCenterOfMass;
|
||
}
|
||
|
||
// 3. advance position
|
||
linPosition += linVelocity * delta;
|
||
|
||
// 4. rebuild world inertia
|
||
if (mFabs(angle) > POINT_EPSILON)
|
||
{
|
||
updateInertialTensor();
|
||
}
|
||
|
||
// 5. refresh ang velocity
|
||
updateAngularVelocity(delta);
|
||
|
||
|
||
// 6. CoM update
|
||
updateCenterOfMass();
|
||
|
||
// 7. check if we can sleep
|
||
trySleep(delta);
|
||
|
||
}
|
||
|
||
void Rigid::updateVelocity()
|
||
{
|
||
linVelocity.x = linMomentum.x * oneOverMass;
|
||
linVelocity.y = linMomentum.y * oneOverMass;
|
||
linVelocity.z = linMomentum.z * oneOverMass;
|
||
invWorldInertia.mulV(angMomentum,&angVelocity);
|
||
}
|
||
|
||
void Rigid::updateInertialTensor()
|
||
{
|
||
MatrixF iv,qmat;
|
||
angPosition.setMatrix(&qmat);
|
||
iv.mul(qmat,invObjectInertia);
|
||
qmat.transpose();
|
||
invWorldInertia.mul(iv,qmat);
|
||
}
|
||
|
||
void Rigid::updateCenterOfMass()
|
||
{
|
||
// Move the center of mass into world space
|
||
angPosition.mulP(centerOfMass,&worldCenterOfMass);
|
||
worldCenterOfMass += linPosition;
|
||
}
|
||
|
||
void Rigid::applyImpulse(const Point3F &r, const Point3F &impulse)
|
||
{
|
||
if ((impulse.lenSquared() - mass) < POINT_EPSILON) return;
|
||
wake();
|
||
|
||
// Linear momentum and velocity
|
||
linMomentum += impulse;
|
||
linVelocity.x = linMomentum.x * oneOverMass;
|
||
linVelocity.y = linMomentum.y * oneOverMass;
|
||
linVelocity.z = linMomentum.z * oneOverMass;
|
||
|
||
// Rotational momentum and velocity
|
||
Point3F tv;
|
||
mCross(r,impulse,&tv);
|
||
angMomentum += tv;
|
||
invWorldInertia.mulV(angMomentum, &angVelocity);
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
/** Resolve collision with another rigid body
|
||
Computes & applies the collision impulses needed to keep the bodies
|
||
from interpenetrating.
|
||
|
||
tg: This function was commented out... I uncommented it, but haven't
|
||
double checked the math.
|
||
*/
|
||
bool Rigid::resolveCollision(const Point3F& p, const Point3F &normal, Rigid* rigid)
|
||
{
|
||
atRest = false;
|
||
Point3F v1,v2,r1,r2;
|
||
getOriginVector(p,&r1);
|
||
getVelocity(r1,&v1);
|
||
rigid->getOriginVector(p,&r2);
|
||
rigid->getVelocity(r2,&v2);
|
||
|
||
// Make sure they are converging
|
||
F32 nv = mDot(v1,normal);
|
||
nv -= mDot(v2,normal);
|
||
if (nv > 0.0f)
|
||
return false;
|
||
|
||
// Compute impulse
|
||
F32 d, n = -nv * (1.0+(restitution + rigid->restitution)*0.5);
|
||
Point3F a1,b1,c1;
|
||
mCross(r1,normal,&a1);
|
||
invWorldInertia.mulV(a1,&b1);
|
||
mCross(b1,r1,&c1);
|
||
|
||
Point3F a2,b2,c2;
|
||
mCross(r2,normal,&a2);
|
||
rigid->invWorldInertia.mulV(a2,&b2);
|
||
mCross(b2,r2,&c2);
|
||
|
||
Point3F c3 = c1 + c2;
|
||
d = oneOverMass + rigid->oneOverMass + mDot(c3,normal);
|
||
Point3F impulse = normal * (n / d);
|
||
|
||
applyImpulse(r1,impulse);
|
||
impulse.neg();
|
||
rigid->applyImpulse(r2, impulse);
|
||
return true;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
/** Resolve collision with an immovable object
|
||
Computes & applies the collision impulse needed to keep the body
|
||
from penetrating the given surface.
|
||
*/
|
||
bool Rigid::resolveCollision(const Point3F& p, const Point3F &normal)
|
||
{
|
||
atRest = false;
|
||
Point3F v,r;
|
||
getOriginVector(p,&r);
|
||
getVelocity(r,&v);
|
||
F32 n = -mDot(v,normal);
|
||
if (n >= 0.0f) {
|
||
|
||
// Collision impulse, straight forward force stuff.
|
||
F32 d = getZeroImpulse(r,normal);
|
||
F32 j = n * (1.0f + restitution) * d;
|
||
Point3F impulse = normal * j;
|
||
|
||
// Friction impulse, calculated as a function of the
|
||
// amount of force it would take to stop the motion
|
||
// perpendicular to the normal.
|
||
Point3F uv = v + (normal * n);
|
||
F32 ul = uv.len();
|
||
if (ul) {
|
||
uv /= -ul;
|
||
F32 u = ul * getZeroImpulse(r,uv);
|
||
j *= friction;
|
||
if (u > j)
|
||
u = j;
|
||
impulse += uv * u;
|
||
}
|
||
|
||
//
|
||
applyImpulse(r,impulse);
|
||
}
|
||
return true;
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
/** Calculate the inertia along the given vector
|
||
This function can be used to calculate the amount of force needed to
|
||
affect a change in velocity along the specified normal applied at
|
||
the given point.
|
||
*/
|
||
F32 Rigid::getZeroImpulse(const Point3F& r,const Point3F& normal)
|
||
{
|
||
Point3F a,b,c;
|
||
mCross(r,normal,&a);
|
||
invWorldInertia.mulV(a,&b);
|
||
mCross(b,r,&c);
|
||
return 1 / (oneOverMass + mDot(c,normal));
|
||
}
|
||
|
||
F32 Rigid::getKineticEnergy()
|
||
{
|
||
Point3F w;
|
||
QuatF qmat = angPosition;
|
||
qmat.inverse();
|
||
qmat.mulP(angVelocity,&w);
|
||
const F32* f = invObjectInertia;
|
||
return 0.5f * ((mass * mDot(linVelocity,linVelocity)) +
|
||
w.x * w.x / f[0] +
|
||
w.y * w.y / f[5] +
|
||
w.z * w.z / f[10]);
|
||
}
|
||
|
||
void Rigid::getOriginVector(const Point3F &p,Point3F* r)
|
||
{
|
||
*r = p - worldCenterOfMass;
|
||
}
|
||
|
||
void Rigid::setCenterOfMass(const Point3F &newCenter)
|
||
{
|
||
// Sets the center of mass relative to the origin.
|
||
centerOfMass = newCenter;
|
||
|
||
// Update world center of mass
|
||
angPosition.mulP(centerOfMass,&worldCenterOfMass);
|
||
worldCenterOfMass += linPosition;
|
||
}
|
||
|
||
void Rigid::translateCenterOfMass(const Point3F &oldPos,const Point3F &newPos)
|
||
{
|
||
// I + mass * (crossmatrix(centerOfMass)^2 - crossmatrix(newCenter)^2)
|
||
MatrixF oldx,newx;
|
||
oldx.setCrossProduct(oldPos);
|
||
newx.setCrossProduct(newPos);
|
||
for (S32 row = 0; row < 3; row++)
|
||
for (S32 col = 0; col < 3; col++) {
|
||
F32 n = newx(row,col), o = oldx(row,col);
|
||
objectInertia(row,col) += mass * ((o * o) - (n * n));
|
||
}
|
||
|
||
// Make sure the matrix is symetrical
|
||
objectInertia(1,0) = objectInertia(0,1);
|
||
objectInertia(2,0) = objectInertia(0,2);
|
||
objectInertia(2,1) = objectInertia(1,2);
|
||
}
|
||
|
||
void Rigid::trySleep(F32 dt)
|
||
{
|
||
// If there is active force/torque, don’t sleep
|
||
if (!force.isZero() || !torque.isZero())
|
||
{
|
||
sleepTimer = 0.0f;
|
||
return;
|
||
}
|
||
|
||
const F32 linV2 = linVelocity.lenSquared();
|
||
const F32 angV2 = angVelocity.lenSquared();
|
||
|
||
if (linV2 < sleepLinearThreshold && angV2 < sleepAngThreshold)
|
||
{
|
||
sleepTimer += dt;
|
||
if (sleepTimer >= sleepTimeThreshold)
|
||
{
|
||
setAtRest();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
sleepTimer = 0.0f;
|
||
}
|
||
}
|
||
|
||
void Rigid::setSleepThresholds(F32 linVel2, F32 angVel2, F32 timeToSleep)
|
||
{
|
||
sleepLinearThreshold = linVel2;
|
||
sleepAngThreshold = angVel2;
|
||
sleepTimeThreshold = timeToSleep;
|
||
}
|
||
|
||
void Rigid::wake()
|
||
{
|
||
if (atRest)
|
||
{
|
||
atRest = false;
|
||
sleepTimer = 0.0f;
|
||
}
|
||
}
|
||
|
||
void Rigid::getVelocity(const Point3F& r, Point3F* v)
|
||
{
|
||
mCross(angVelocity, r, v);
|
||
*v += linVelocity;
|
||
}
|
||
|
||
void Rigid::getTransform(MatrixF* mat)
|
||
{
|
||
angPosition.setMatrix(mat);
|
||
mat->setColumn(3,linPosition);
|
||
}
|
||
|
||
void Rigid::setTransform(const MatrixF& mat)
|
||
{
|
||
angPosition.set(mat);
|
||
mat.getColumn(3,&linPosition);
|
||
|
||
// Update center of mass
|
||
angPosition.mulP(centerOfMass,&worldCenterOfMass);
|
||
worldCenterOfMass += linPosition;
|
||
}
|
||
|
||
|
||
//----------------------------------------------------------------------------
|
||
/** Set the rigid body moment of inertia
|
||
The moment is calculated as a box with the given dimensions.
|
||
*/
|
||
void Rigid::setObjectInertia(const Point3F& r)
|
||
{
|
||
// Rotational moment of inertia of a box
|
||
F32 ot = mass / 12.0f;
|
||
F32 a = r.x * r.x;
|
||
F32 b = r.y * r.y;
|
||
F32 c = r.z * r.z;
|
||
|
||
objectInertia.identity();
|
||
F32* f = objectInertia;
|
||
f[0] = ot * (b + c);
|
||
f[5] = ot * (c + a);
|
||
f[10] = ot * (a + b);
|
||
|
||
invertObjectInertia();
|
||
updateInertialTensor();
|
||
}
|
||
|
||
|
||
//----------------------------------------------------------------------------
|
||
/** Set the rigid body moment of inertia
|
||
The moment is calculated as a unit sphere.
|
||
*/
|
||
void Rigid::setObjectInertia()
|
||
{
|
||
objectInertia.identity();
|
||
F32 radius = 1.0f;
|
||
F32* f = objectInertia;
|
||
f[0] = f[5] = f[10] = (0.4f * mass * radius * radius);
|
||
invertObjectInertia();
|
||
updateInertialTensor();
|
||
}
|
||
|
||
void Rigid::invertObjectInertia()
|
||
{
|
||
invObjectInertia = objectInertia;
|
||
invObjectInertia.fullInverse();
|
||
}
|
||
|
||
|
||
//----------------------------------------------------------------------------
|
||
|
||
bool Rigid::checkRestCondition()
|
||
{
|
||
// F32 k = getKineticEnergy(mWorldToObj);
|
||
// F32 G = -force.z * oneOverMass * 0.032;
|
||
// F32 Kg = 0.5 * mRigid.mass * G * G;
|
||
// if (k < Kg * restTol)
|
||
// mRigid.setAtRest();
|
||
return atRest;
|
||
}
|
||
|
||
void Rigid::setAtRest()
|
||
{
|
||
atRest = true;
|
||
linVelocity.set(0.0f,0.0f,0.0f);
|
||
linMomentum.set(0.0f,0.0f,0.0f);
|
||
angVelocity.set(0.0f,0.0f,0.0f);
|
||
angMomentum.set(0.0f,0.0f,0.0f);
|
||
force.set(0.0f, 0.0f, 0.0f);
|
||
torque.set(0.0f, 0.0f, 0.0f);
|
||
}
|