Torque3D/Engine/source/renderInstance/renderPrePassMgr.cpp
Azaezel 5b5c6b9907 Deferred Shading
Phase 1: buffers
engine:
provides the following hooks and methods
A) render target "color", and "matinfo". these correspond to texture[0] = "#color";  texture[2] = "#matinfo"; entries in scripts
B) utilizes the independentMrtBitDepth method added GarageGames#857 to set color to an 8RGBA if cards support it
C) adds an RenderPrePassMgr::_initShaders() method to support void RenderPrePassMgr::clearBuffers(). This operates as a pseudo-postfx by rendering a veiwspace plane which fills the screen, then calls a shader which fills both the introduced rendertarget buffers and the prepass buffer to relevant defaults (white with full alpha for prepass, black with full alpha for color and material respectively)

script:
\game\tools\worldEditor\main.cs adds additional hooks similar to GarageGames#863 for colorbuffer, specular map, and backbuffer display
\game\core\scripts\client\lighting\advanced\deferredShading.cs adds the clearbuffer shader, visualizers, and the ShaderData( AL_DeferredShader )  +  PostEffect( AL_DeferredShading ) which combine the various buffers into the output which reaches the screen under normal conditions, as well as the extended debug visualizers.
again, note the lines

   texture[0] = "#color";
   texture[1] = "#lightinfo";
   texture[2] = "#matinfo";
   target = "$backBuffer";
in particular for the core tie-in.

shader:
\game\shaders\common\lighting\advanced\deferredColorShaderP.hlsl
\game\shaders\common\lighting\advanced\gl\deferredClearGBufferP.glsl
the previously mentioned shaders which clear the buffers to specified colors

\game\shaders\common\lighting\advanced\deferredShadingP.hlsl
\game\shaders\common\lighting\advanced\gl\deferredShadingP.glsl
the tie-in shaders

the rest are visualizers

purpose: to expose methodology that allows one to render color, lighting and material information such as specular and gloss which effect the result of both when combined

long term intent: the previous prepass lighting methodology while serviceable, unfortunately had the side effect of throwing out raw color information required by more modern pipelines and methodologies. This preserves that data while also allowing the manipulation to occur only on a screenspace (or reflected speudo-screenspace) basis.
2016-02-16 01:50:58 -06:00

1144 lines
40 KiB
C++

//-----------------------------------------------------------------------------
// Copyright (c) 2012 GarageGames, LLC
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "renderInstance/renderPrePassMgr.h"
#include "gfx/gfxTransformSaver.h"
#include "materials/sceneData.h"
#include "materials/materialManager.h"
#include "materials/materialFeatureTypes.h"
#include "core/util/safeDelete.h"
#include "shaderGen/featureMgr.h"
#include "shaderGen/HLSL/depthHLSL.h"
#include "shaderGen/GLSL/depthGLSL.h"
#include "shaderGen/conditionerFeature.h"
#include "shaderGen/shaderGenVars.h"
#include "scene/sceneRenderState.h"
#include "gfx/gfxStringEnumTranslate.h"
#include "gfx/gfxDebugEvent.h"
#include "gfx/gfxCardProfile.h"
#include "materials/customMaterialDefinition.h"
#include "lighting/advanced/advancedLightManager.h"
#include "lighting/advanced/advancedLightBinManager.h"
#include "terrain/terrCell.h"
#include "renderInstance/renderTerrainMgr.h"
#include "terrain/terrCellMaterial.h"
#include "math/mathUtils.h"
#include "math/util/matrixSet.h"
#include "gfx/gfxTextureManager.h"
#include "gfx/primBuilder.h"
#include "gfx/gfxDrawUtil.h"
#include "materials/shaderData.h"
#include "gfx/sim/cubemapData.h"
const MatInstanceHookType PrePassMatInstanceHook::Type( "PrePass" );
const String RenderPrePassMgr::BufferName("prepass");
const RenderInstType RenderPrePassMgr::RIT_PrePass("PrePass");
const String RenderPrePassMgr::ColorBufferName("color");
const String RenderPrePassMgr::MatInfoBufferName("matinfo");
IMPLEMENT_CONOBJECT(RenderPrePassMgr);
ConsoleDocClass( RenderPrePassMgr,
"@brief The render bin which performs a z+normals prepass used in Advanced Lighting.\n\n"
"This render bin is used in Advanced Lighting to gather all opaque mesh render instances "
"and render them to the g-buffer for use in lighting the scene and doing effects.\n\n"
"PostEffect and other shaders can access the output of this bin by using the #prepass "
"texture target name. See the edge anti-aliasing post effect for an example.\n\n"
"@see game/core/scripts/client/postFx/edgeAA.cs\n"
"@ingroup RenderBin\n" );
RenderPrePassMgr::RenderSignal& RenderPrePassMgr::getRenderSignal()
{
static RenderSignal theSignal;
return theSignal;
}
RenderPrePassMgr::RenderPrePassMgr( bool gatherDepth,
GFXFormat format )
: Parent( RIT_PrePass,
0.01f,
0.01f,
format,
Point2I( Parent::DefaultTargetSize, Parent::DefaultTargetSize),
gatherDepth ? Parent::DefaultTargetChainLength : 0 ),
mPrePassMatInstance( NULL )
{
notifyType( RenderPassManager::RIT_Decal );
notifyType( RenderPassManager::RIT_DecalRoad );
notifyType( RenderPassManager::RIT_Mesh );
notifyType( RenderPassManager::RIT_Terrain );
notifyType( RenderPassManager::RIT_Object );
// We want a full-resolution buffer
mTargetSizeType = RenderTexTargetBinManager::WindowSize;
if(getTargetChainLength() > 0)
GFXShader::addGlobalMacro( "TORQUE_LINEAR_DEPTH" );
mNamedTarget.registerWithName( BufferName );
mColorTarget.registerWithName( ColorBufferName );
mMatInfoTarget.registerWithName( MatInfoBufferName );
mClearGBufferShader = NULL;
_registerFeatures();
}
RenderPrePassMgr::~RenderPrePassMgr()
{
GFXShader::removeGlobalMacro( "TORQUE_LINEAR_DEPTH" );
mColorTarget.release();
mMatInfoTarget.release();
_unregisterFeatures();
SAFE_DELETE( mPrePassMatInstance );
}
void RenderPrePassMgr::_registerFeatures()
{
ConditionerFeature *cond = new LinearEyeDepthConditioner( getTargetFormat() );
FEATUREMGR->registerFeature( MFT_PrePassConditioner, cond );
mNamedTarget.setConditioner( cond );
}
void RenderPrePassMgr::_unregisterFeatures()
{
mNamedTarget.setConditioner( NULL );
FEATUREMGR->unregisterFeature(MFT_PrePassConditioner);
}
bool RenderPrePassMgr::setTargetSize(const Point2I &newTargetSize)
{
bool ret = Parent::setTargetSize( newTargetSize );
mNamedTarget.setViewport( GFX->getViewport() );
mColorTarget.setViewport( GFX->getViewport() );
mMatInfoTarget.setViewport( GFX->getViewport() );
return ret;
}
bool RenderPrePassMgr::_updateTargets()
{
PROFILE_SCOPE(RenderPrePassMgr_updateTargets);
bool ret = Parent::_updateTargets();
// check for an output conditioner, and update it's format
ConditionerFeature *outputConditioner = dynamic_cast<ConditionerFeature *>(FEATUREMGR->getByType(MFT_PrePassConditioner));
if( outputConditioner && outputConditioner->setBufferFormat(mTargetFormat) )
{
// reload materials, the conditioner needs to alter the generated shaders
}
GFXFormat colorFormat = mTargetFormat;
bool independentMrtBitDepth = GFX->getCardProfiler()->queryProfile("independentMrtBitDepth", false);
//If independent bit depth on a MRT is supported than just use 8bit channels for the albedo color.
if(independentMrtBitDepth)
colorFormat = GFXFormatR8G8B8A8;
// andrewmac: Deferred Shading Color Buffer
if (mColorTex.getFormat() != colorFormat || mColorTex.getWidthHeight() != mTargetSize || GFX->recentlyReset())
{
mColorTarget.release();
mColorTex.set(mTargetSize.x, mTargetSize.y, colorFormat,
&GFXDefaultRenderTargetProfile, avar("%s() - (line %d)", __FUNCTION__, __LINE__),
1, GFXTextureManager::AA_MATCH_BACKBUFFER);
mColorTarget.setTexture(mColorTex);
for (U32 i = 0; i < mTargetChainLength; i++)
mTargetChain[i]->attachTexture(GFXTextureTarget::Color1, mColorTarget.getTexture());
}
// andrewmac: Deferred Shading Material Info Buffer
if (mMatInfoTex.getFormat() != colorFormat || mMatInfoTex.getWidthHeight() != mTargetSize || GFX->recentlyReset())
{
mMatInfoTarget.release();
mMatInfoTex.set(mTargetSize.x, mTargetSize.y, colorFormat,
&GFXDefaultRenderTargetProfile, avar("%s() - (line %d)", __FUNCTION__, __LINE__),
1, GFXTextureManager::AA_MATCH_BACKBUFFER);
mMatInfoTarget.setTexture(mMatInfoTex);
for (U32 i = 0; i < mTargetChainLength; i++)
mTargetChain[i]->attachTexture(GFXTextureTarget::Color2, mMatInfoTarget.getTexture());
}
GFX->finalizeReset();
// Attach the light info buffer as a second render target, if there is
// lightmapped geometry in the scene.
AdvancedLightBinManager *lightBin;
if ( Sim::findObject( "AL_LightBinMgr", lightBin ) &&
lightBin->MRTLightmapsDuringPrePass() &&
lightBin->isProperlyAdded() )
{
// Update the size of the light bin target here. This will call _updateTargets
// on the light bin
ret &= lightBin->setTargetSize( mTargetSize );
if ( ret )
{
// Sanity check
AssertFatal(lightBin->getTargetChainLength() == mTargetChainLength, "Target chain length mismatch");
// Attach light info buffer to Color1 for each target in the chain
for ( U32 i = 0; i < mTargetChainLength; i++ )
{
GFXTexHandle lightInfoTex = lightBin->getTargetTexture(0, i);
mTargetChain[i]->attachTexture(GFXTextureTarget::Color3, lightInfoTex);
}
}
}
_initShaders();
return ret;
}
void RenderPrePassMgr::_createPrePassMaterial()
{
SAFE_DELETE(mPrePassMatInstance);
const GFXVertexFormat *vertexFormat = getGFXVertexFormat<GFXVertexPNTTB>();
MatInstance* prepassMat = static_cast<MatInstance*>(MATMGR->createMatInstance("AL_DefaultPrePassMaterial", vertexFormat));
AssertFatal( prepassMat, "TODO: Handle this better." );
mPrePassMatInstance = new PrePassMatInstance(prepassMat, this);
mPrePassMatInstance->init( MATMGR->getDefaultFeatures(), vertexFormat);
delete prepassMat;
}
void RenderPrePassMgr::setPrePassMaterial( PrePassMatInstance *mat )
{
SAFE_DELETE(mPrePassMatInstance);
mPrePassMatInstance = mat;
}
void RenderPrePassMgr::addElement( RenderInst *inst )
{
PROFILE_SCOPE( RenderPrePassMgr_addElement )
// Skip out if this bin is disabled.
if ( gClientSceneGraph->getCurrentRenderState() &&
gClientSceneGraph->getCurrentRenderState()->disableAdvancedLightingBins() )
return;
// First what type of render instance is it?
const bool isDecalMeshInst = ((inst->type == RenderPassManager::RIT_Decal)||(inst->type == RenderPassManager::RIT_DecalRoad));
const bool isMeshInst = inst->type == RenderPassManager::RIT_Mesh;
const bool isTerrainInst = inst->type == RenderPassManager::RIT_Terrain;
// Get the material if its a mesh.
BaseMatInstance* matInst = NULL;
if ( isMeshInst || isDecalMeshInst )
matInst = static_cast<MeshRenderInst*>(inst)->matInst;
if (matInst)
{
// Skip decals if they don't have normal maps.
if (isDecalMeshInst && !matInst->hasNormalMap())
return;
// If its a custom material and it refracts... skip it.
if (matInst->isCustomMaterial() &&
static_cast<CustomMaterial*>(matInst->getMaterial())->mRefract)
return;
// Make sure we got a prepass material.
matInst = getPrePassMaterial(matInst);
if (!matInst || !matInst->isValid())
return;
}
// We're gonna add it to the bin... get the right element list.
Vector< MainSortElem > *elementList;
if ( isMeshInst || isDecalMeshInst )
elementList = &mElementList;
else if ( isTerrainInst )
elementList = &mTerrainElementList;
else
elementList = &mObjectElementList;
elementList->increment();
MainSortElem &elem = elementList->last();
elem.inst = inst;
// Store the original key... we might need it.
U32 originalKey = elem.key;
// Sort front-to-back first to get the most fillrate savings.
const F32 invSortDistSq = F32_MAX - inst->sortDistSq;
elem.key = *((U32*)&invSortDistSq);
// Next sort by pre-pass material if its a mesh... use the original sort key.
if (isMeshInst && matInst)
elem.key2 = matInst->getStateHint();
else
elem.key2 = originalKey;
}
void RenderPrePassMgr::sort()
{
PROFILE_SCOPE( RenderPrePassMgr_sort );
Parent::sort();
dQsort( mTerrainElementList.address(), mTerrainElementList.size(), sizeof(MainSortElem), cmpKeyFunc);
dQsort( mObjectElementList.address(), mObjectElementList.size(), sizeof(MainSortElem), cmpKeyFunc);
}
void RenderPrePassMgr::clear()
{
Parent::clear();
mTerrainElementList.clear();
mObjectElementList.clear();
}
void RenderPrePassMgr::render( SceneRenderState *state )
{
PROFILE_SCOPE(RenderPrePassMgr_render);
// Take a look at the SceneRenderState and see if we should skip drawing the pre-pass
if ( state->disableAdvancedLightingBins() )
return;
// NOTE: We don't early out here when the element list is
// zero because we need the prepass to be cleared.
// Automagically save & restore our viewport and transforms.
GFXTransformSaver saver;
GFXDEBUGEVENT_SCOPE( RenderPrePassMgr_Render, ColorI::RED );
// Tell the superclass we're about to render
const bool isRenderingToTarget = _onPreRender(state);
// Clear all z-buffer, and g-buffer.
clearBuffers();
// Restore transforms
MatrixSet &matrixSet = getRenderPass()->getMatrixSet();
matrixSet.restoreSceneViewProjection();
const MatrixF worldViewXfm = GFX->getWorldMatrix();
// Setup the default prepass material for object instances.
if ( !mPrePassMatInstance )
_createPrePassMaterial();
if ( mPrePassMatInstance )
{
matrixSet.setWorld(MatrixF::Identity);
mPrePassMatInstance->setTransforms(matrixSet, state);
}
// Signal start of pre-pass
getRenderSignal().trigger( state, this, true );
// First do a loop and render all the terrain... these are
// usually the big blockers in a scene and will save us fillrate
// on the smaller meshes and objects.
// The terrain doesn't need any scene graph data
// in the the prepass... so just clear it.
SceneData sgData;
sgData.init( state, SceneData::PrePassBin );
Vector< MainSortElem >::const_iterator itr = mTerrainElementList.begin();
for ( ; itr != mTerrainElementList.end(); itr++ )
{
TerrainRenderInst *ri = static_cast<TerrainRenderInst*>( itr->inst );
TerrainCellMaterial *mat = ri->cellMat->getPrePassMat();
GFX->setPrimitiveBuffer( ri->primBuff );
GFX->setVertexBuffer( ri->vertBuff );
mat->setTransformAndEye( *ri->objectToWorldXfm,
worldViewXfm,
GFX->getProjectionMatrix(),
state->getFarPlane() );
while ( mat->setupPass( state, sgData ) )
GFX->drawPrimitive( ri->prim );
}
// init loop data
GFXTextureObject *lastLM = NULL;
GFXCubemap *lastCubemap = NULL;
GFXTextureObject *lastReflectTex = NULL;
GFXTextureObject *lastMiscTex = NULL;
GFXTextureObject *lastAccuTex = NULL;
// Next render all the meshes.
itr = mElementList.begin();
for ( ; itr != mElementList.end(); )
{
MeshRenderInst *ri = static_cast<MeshRenderInst*>( itr->inst );
// Get the prepass material.
BaseMatInstance *mat = getPrePassMaterial( ri->matInst );
// Set up SG data proper like and flag it
// as a pre-pass render
setupSGData( ri, sgData );
Vector< MainSortElem >::const_iterator meshItr, endOfBatchItr = itr;
while ( mat->setupPass( state, sgData ) )
{
meshItr = itr;
for ( ; meshItr != mElementList.end(); meshItr++ )
{
MeshRenderInst *passRI = static_cast<MeshRenderInst*>( meshItr->inst );
// Check to see if we need to break this batch.
//
// NOTE: We're comparing the non-prepass materials
// here so we don't incur the cost of looking up the
// prepass hook on each inst.
//
if ( newPassNeeded( ri, passRI ) )
break;
// Set up SG data for this instance.
setupSGData( passRI, sgData );
mat->setSceneInfo(state, sgData);
matrixSet.setWorld(*passRI->objectToWorld);
matrixSet.setView(*passRI->worldToCamera);
matrixSet.setProjection(*passRI->projection);
mat->setTransforms(matrixSet, state);
// If we're instanced then don't render yet.
if ( mat->isInstanced() )
{
// Let the material increment the instance buffer, but
// break the batch if it runs out of room for more.
if ( !mat->stepInstance() )
{
meshItr++;
break;
}
continue;
}
bool dirty = false;
// set the lightmaps if different
if( passRI->lightmap && passRI->lightmap != lastLM )
{
sgData.lightmap = passRI->lightmap;
lastLM = passRI->lightmap;
dirty = true;
}
// set the cubemap if different.
if ( passRI->cubemap != lastCubemap )
{
sgData.cubemap = passRI->cubemap;
lastCubemap = passRI->cubemap;
dirty = true;
}
if ( passRI->reflectTex != lastReflectTex )
{
sgData.reflectTex = passRI->reflectTex;
lastReflectTex = passRI->reflectTex;
dirty = true;
}
// Update accumulation texture if it changed.
// Note: accumulation texture can be NULL, and must be updated.
if (passRI->accuTex != lastAccuTex)
{
sgData.accuTex = passRI->accuTex;
lastAccuTex = lastAccuTex;
dirty = true;
}
if ( dirty )
mat->setTextureStages( state, sgData );
// Setup the vertex and index buffers.
mat->setBuffers( passRI->vertBuff, passRI->primBuff );
// Render this sucker.
if ( passRI->prim )
GFX->drawPrimitive( *passRI->prim );
else
GFX->drawPrimitive( passRI->primBuffIndex );
}
// Draw the instanced batch.
if ( mat->isInstanced() )
{
// Sets the buffers including the instancing stream.
mat->setBuffers( ri->vertBuff, ri->primBuff );
if ( ri->prim )
GFX->drawPrimitive( *ri->prim );
else
GFX->drawPrimitive( ri->primBuffIndex );
}
endOfBatchItr = meshItr;
} // while( mat->setupPass(state, sgData) )
// Force the increment if none happened, otherwise go to end of batch.
itr = ( itr == endOfBatchItr ) ? itr + 1 : endOfBatchItr;
}
// The final loop is for object render instances.
itr = mObjectElementList.begin();
for ( ; itr != mObjectElementList.end(); itr++ )
{
ObjectRenderInst *ri = static_cast<ObjectRenderInst*>( itr->inst );
if ( ri->renderDelegate )
ri->renderDelegate( ri, state, mPrePassMatInstance );
}
// Signal end of pre-pass
getRenderSignal().trigger( state, this, false );
if(isRenderingToTarget)
_onPostRender();
}
const GFXStateBlockDesc & RenderPrePassMgr::getOpaqueStenciWriteDesc( bool lightmappedGeometry /*= true*/ )
{
static bool sbInit = false;
static GFXStateBlockDesc sOpaqueStaticLitStencilWriteDesc;
static GFXStateBlockDesc sOpaqueDynamicLitStencilWriteDesc;
if(!sbInit)
{
sbInit = true;
// Build the static opaque stencil write/test state block descriptions
sOpaqueStaticLitStencilWriteDesc.stencilDefined = true;
sOpaqueStaticLitStencilWriteDesc.stencilEnable = true;
sOpaqueStaticLitStencilWriteDesc.stencilWriteMask = 0x03;
sOpaqueStaticLitStencilWriteDesc.stencilMask = 0x03;
sOpaqueStaticLitStencilWriteDesc.stencilRef = RenderPrePassMgr::OpaqueStaticLitMask;
sOpaqueStaticLitStencilWriteDesc.stencilPassOp = GFXStencilOpReplace;
sOpaqueStaticLitStencilWriteDesc.stencilFailOp = GFXStencilOpKeep;
sOpaqueStaticLitStencilWriteDesc.stencilZFailOp = GFXStencilOpKeep;
sOpaqueStaticLitStencilWriteDesc.stencilFunc = GFXCmpAlways;
// Same only dynamic
sOpaqueDynamicLitStencilWriteDesc = sOpaqueStaticLitStencilWriteDesc;
sOpaqueDynamicLitStencilWriteDesc.stencilRef = RenderPrePassMgr::OpaqueDynamicLitMask;
}
return (lightmappedGeometry ? sOpaqueStaticLitStencilWriteDesc : sOpaqueDynamicLitStencilWriteDesc);
}
const GFXStateBlockDesc & RenderPrePassMgr::getOpaqueStencilTestDesc()
{
static bool sbInit = false;
static GFXStateBlockDesc sOpaqueStencilTestDesc;
if(!sbInit)
{
// Build opaque test
sbInit = true;
sOpaqueStencilTestDesc.stencilDefined = true;
sOpaqueStencilTestDesc.stencilEnable = true;
sOpaqueStencilTestDesc.stencilWriteMask = 0xFE;
sOpaqueStencilTestDesc.stencilMask = 0x03;
sOpaqueStencilTestDesc.stencilRef = 0;
sOpaqueStencilTestDesc.stencilPassOp = GFXStencilOpKeep;
sOpaqueStencilTestDesc.stencilFailOp = GFXStencilOpKeep;
sOpaqueStencilTestDesc.stencilZFailOp = GFXStencilOpKeep;
sOpaqueStencilTestDesc.stencilFunc = GFXCmpLess;
}
return sOpaqueStencilTestDesc;
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
ProcessedPrePassMaterial::ProcessedPrePassMaterial( Material& mat, const RenderPrePassMgr *prePassMgr )
: Parent(mat), mPrePassMgr(prePassMgr)
{
}
void ProcessedPrePassMaterial::_determineFeatures( U32 stageNum,
MaterialFeatureData &fd,
const FeatureSet &features )
{
Parent::_determineFeatures( stageNum, fd, features );
// Find this for use down below...
bool bEnableMRTLightmap = false;
AdvancedLightBinManager *lightBin;
if ( Sim::findObject( "AL_LightBinMgr", lightBin ) )
bEnableMRTLightmap = lightBin->MRTLightmapsDuringPrePass();
// If this material has a lightmap or tonemap (texture or baked vertex color),
// it must be static. Otherwise it is dynamic.
mIsLightmappedGeometry = ( fd.features.hasFeature( MFT_ToneMap ) ||
fd.features.hasFeature( MFT_LightMap ) ||
fd.features.hasFeature( MFT_VertLit ) ||
( bEnableMRTLightmap && fd.features.hasFeature( MFT_IsTranslucent ) ||
fd.features.hasFeature( MFT_ForwardShading ) ||
fd.features.hasFeature( MFT_IsTranslucentZWrite ) ) );
// Integrate proper opaque stencil write state
mUserDefined.addDesc( mPrePassMgr->getOpaqueStenciWriteDesc( mIsLightmappedGeometry ) );
FeatureSet newFeatures;
// These are always on for prepass.
newFeatures.addFeature( MFT_EyeSpaceDepthOut );
newFeatures.addFeature( MFT_PrePassConditioner );
#ifndef TORQUE_DEDICATED
//tag all materials running through prepass as deferred
newFeatures.addFeature(MFT_isDeferred);
// Deferred Shading : Diffuse
if (mStages[stageNum].getTex( MFT_DiffuseMap ))
{
newFeatures.addFeature(MFT_DiffuseMap);
}
newFeatures.addFeature( MFT_DiffuseColor );
// Deferred Shading : Specular
if( mStages[stageNum].getTex( MFT_SpecularMap ) )
{
newFeatures.addFeature( MFT_DeferredSpecMap );
}
else if ( mMaterial->mPixelSpecular[stageNum] )
{
newFeatures.addFeature( MFT_DeferredSpecVars );
}
else
newFeatures.addFeature(MFT_DeferredEmptySpec);
// Deferred Shading : Material Info Flags
newFeatures.addFeature( MFT_DeferredMatInfoFlags );
for ( U32 i=0; i < fd.features.getCount(); i++ )
{
const FeatureType &type = fd.features.getAt( i );
// Turn on the diffuse texture only if we
// have alpha test.
if ( type == MFT_AlphaTest )
{
newFeatures.addFeature( MFT_AlphaTest );
newFeatures.addFeature( MFT_DiffuseMap );
}
else if ( type == MFT_IsTranslucentZWrite )
{
newFeatures.addFeature( MFT_IsTranslucentZWrite );
newFeatures.addFeature( MFT_DiffuseMap );
}
// Always allow these.
else if ( type == MFT_IsDXTnm ||
type == MFT_TexAnim ||
type == MFT_NormalMap ||
type == MFT_DetailNormalMap ||
type == MFT_AlphaTest ||
type == MFT_Parallax ||
type == MFT_InterlacedPrePass ||
type == MFT_Visibility ||
type == MFT_UseInstancing ||
type == MFT_DiffuseVertColor ||
type == MFT_DetailMap ||
type == MFT_DetailNormalMap ||
type == MFT_DiffuseMapAtlas)
newFeatures.addFeature( type );
// Add any transform features.
else if ( type.getGroup() == MFG_PreTransform ||
type.getGroup() == MFG_Transform ||
type.getGroup() == MFG_PostTransform )
newFeatures.addFeature( type );
}
if (mMaterial->mAccuEnabled[stageNum])
{
newFeatures.addFeature(MFT_AccuMap);
mHasAccumulation = true;
}
// we need both diffuse and normal maps + sm3 to have an accu map
if (newFeatures[MFT_AccuMap] &&
(!newFeatures[MFT_DiffuseMap] ||
!newFeatures[MFT_NormalMap] ||
GFX->getPixelShaderVersion() < 3.0f)) {
AssertWarn(false, "SAHARA: Using an Accu Map requires SM 3.0 and a normal map.");
newFeatures.removeFeature(MFT_AccuMap);
mHasAccumulation = false;
}
// if we still have the AccuMap feature, we add all accu constant features
if (newFeatures[MFT_AccuMap]) {
// add the dependencies of the accu map
newFeatures.addFeature(MFT_AccuScale);
newFeatures.addFeature(MFT_AccuDirection);
newFeatures.addFeature(MFT_AccuStrength);
newFeatures.addFeature(MFT_AccuCoverage);
newFeatures.addFeature(MFT_AccuSpecular);
// now remove some features that are not compatible with this
newFeatures.removeFeature(MFT_UseInstancing);
}
// If there is lightmapped geometry support, add the MRT light buffer features
if(bEnableMRTLightmap)
{
// If this material has a lightmap, pass it through, and flag it to
// send it's output to RenderTarget3
if( fd.features.hasFeature( MFT_ToneMap ) )
{
newFeatures.addFeature( MFT_ToneMap );
newFeatures.addFeature( MFT_LightbufferMRT );
}
else if( fd.features.hasFeature( MFT_LightMap ) )
{
newFeatures.addFeature( MFT_LightMap );
newFeatures.addFeature( MFT_LightbufferMRT );
}
else if( fd.features.hasFeature( MFT_VertLit ) )
{
// Flag un-tone-map if necesasary
if( fd.features.hasFeature( MFT_DiffuseMap ) )
newFeatures.addFeature( MFT_VertLitTone );
newFeatures.addFeature( MFT_VertLit );
newFeatures.addFeature( MFT_LightbufferMRT );
}
else
{
// If this object isn't lightmapped, add a zero-output feature to it
newFeatures.addFeature( MFT_RenderTarget3_Zero );
}
}
// cubemaps only available on stage 0 for now - bramage
if ( stageNum < 1 &&
( ( mMaterial->mCubemapData && mMaterial->mCubemapData->mCubemap ) ||
mMaterial->mDynamicCubemap ) )
newFeatures.addFeature( MFT_CubeMap );
#endif
// Set the new features.
fd.features = newFeatures;
}
U32 ProcessedPrePassMaterial::getNumStages()
{
// Loops through all stages to determine how many
// stages we actually use.
//
// The first stage is always active else we shouldn't be
// creating the material to begin with.
U32 numStages = 1;
U32 i;
for( i=1; i<Material::MAX_STAGES; i++ )
{
// Assume stage is inactive
bool stageActive = false;
// Cubemaps only on first stage
if( i == 0 )
{
// If we have a cubemap the stage is active
if( mMaterial->mCubemapData || mMaterial->mDynamicCubemap )
{
numStages++;
continue;
}
}
// If we have a texture for the a feature the
// stage is active.
if ( mStages[i].hasValidTex() )
stageActive = true;
// If this stage has specular lighting, it's active
if ( mMaterial->mPixelSpecular[i] )
stageActive = true;
// If this stage has diffuse color, it's active
if ( mMaterial->mDiffuse[i].alpha > 0 &&
mMaterial->mDiffuse[i] != ColorF::WHITE )
stageActive = true;
// If we have a Material that is vertex lit
// then it may not have a texture
if( mMaterial->mVertLit[i] )
stageActive = true;
// Increment the number of active stages
numStages += stageActive;
}
return numStages;
}
void ProcessedPrePassMaterial::addStateBlockDesc(const GFXStateBlockDesc& desc)
{
GFXStateBlockDesc prePassStateBlock = desc;
// Adjust color writes if this is a pure z-fill pass
const bool pixelOutEnabled = mPrePassMgr->getTargetChainLength() > 0;
if ( !pixelOutEnabled )
{
prePassStateBlock.colorWriteDefined = true;
prePassStateBlock.colorWriteRed = pixelOutEnabled;
prePassStateBlock.colorWriteGreen = pixelOutEnabled;
prePassStateBlock.colorWriteBlue = pixelOutEnabled;
prePassStateBlock.colorWriteAlpha = pixelOutEnabled;
}
// Never allow the alpha test state when rendering
// the prepass as we use the alpha channel for the
// depth information... MFT_AlphaTest will handle it.
prePassStateBlock.alphaDefined = true;
prePassStateBlock.alphaTestEnable = false;
// If we're translucent then we're doing prepass blending
// which never writes to the depth channels.
const bool isTranslucent = getMaterial()->isTranslucent();
if ( isTranslucent )
{
prePassStateBlock.setBlend( true, GFXBlendSrcAlpha, GFXBlendInvSrcAlpha );
prePassStateBlock.setColorWrites(false, false, false, true);
}
// Enable z reads, but only enable zwrites if we're not translucent.
prePassStateBlock.setZReadWrite( true, isTranslucent ? false : true );
// Pass to parent
Parent::addStateBlockDesc(prePassStateBlock);
}
PrePassMatInstance::PrePassMatInstance(MatInstance* root, const RenderPrePassMgr *prePassMgr)
: Parent(*root->getMaterial()), mPrePassMgr(prePassMgr)
{
mFeatureList = root->getRequestedFeatures();
mVertexFormat = root->getVertexFormat();
mUserObject = root->getUserObject();
}
PrePassMatInstance::~PrePassMatInstance()
{
}
ProcessedMaterial* PrePassMatInstance::getShaderMaterial()
{
return new ProcessedPrePassMaterial(*mMaterial, mPrePassMgr);
}
bool PrePassMatInstance::init( const FeatureSet &features,
const GFXVertexFormat *vertexFormat )
{
bool vaild = Parent::init(features, vertexFormat);
if (mMaterial && mMaterial->mDiffuseMapFilename[0].isNotEmpty() && mMaterial->mDiffuseMapFilename[0].substr(0, 1).equal("#"))
{
String texTargetBufferName = mMaterial->mDiffuseMapFilename[0].substr(1, mMaterial->mDiffuseMapFilename[0].length() - 1);
NamedTexTarget *texTarget = NamedTexTarget::find(texTargetBufferName);
RenderPassData* rpd = getPass(0);
if (rpd)
{
rpd->mTexSlot[0].texTarget = texTarget;
rpd->mTexType[0] = Material::TexTarget;
rpd->mSamplerNames[0] = "diffuseMap";
}
}
return vaild;
}
PrePassMatInstanceHook::PrePassMatInstanceHook( MatInstance *baseMatInst,
const RenderPrePassMgr *prePassMgr )
: mHookedPrePassMatInst(NULL), mPrePassManager(prePassMgr)
{
// If the material is a custom material then
// hope that using DefaultPrePassMaterial gives
// them a good prepass.
if ( baseMatInst->isCustomMaterial() )
{
MatInstance* dummyInst = static_cast<MatInstance*>( MATMGR->createMatInstance( "AL_DefaultPrePassMaterial", baseMatInst->getVertexFormat() ) );
mHookedPrePassMatInst = new PrePassMatInstance( dummyInst, prePassMgr );
mHookedPrePassMatInst->init( dummyInst->getRequestedFeatures(), baseMatInst->getVertexFormat());
delete dummyInst;
return;
}
// Create the prepass material instance.
mHookedPrePassMatInst = new PrePassMatInstance(baseMatInst, prePassMgr);
mHookedPrePassMatInst->getFeaturesDelegate() = baseMatInst->getFeaturesDelegate();
// Get the features, but remove the instancing feature if the
// original material didn't end up using it.
FeatureSet features = baseMatInst->getRequestedFeatures();
if ( !baseMatInst->isInstanced() )
features.removeFeature( MFT_UseInstancing );
// Initialize the material.
mHookedPrePassMatInst->init(features, baseMatInst->getVertexFormat());
}
PrePassMatInstanceHook::~PrePassMatInstanceHook()
{
SAFE_DELETE(mHookedPrePassMatInst);
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
void LinearEyeDepthConditioner::processPix( Vector<ShaderComponent*> &componentList, const MaterialFeatureData &fd )
{
// find depth
ShaderFeature *depthFeat = FEATUREMGR->getByType( MFT_EyeSpaceDepthOut );
AssertFatal( depthFeat != NULL, "No eye space depth feature found!" );
Var *depth = (Var*) LangElement::find(depthFeat->getOutputVarName());
AssertFatal( depth, "Something went bad with ShaderGen. The depth should be already generated by the EyeSpaceDepthOut feature." );
MultiLine *meta = new MultiLine;
meta->addStatement( assignOutput( depth ) );
output = meta;
}
Var *LinearEyeDepthConditioner::_conditionOutput( Var *unconditionedOutput, MultiLine *meta )
{
Var *retVar = NULL;
String fracMethodName = (GFX->getAdapterType() == OpenGL) ? "fract" : "frac";
switch(getBufferFormat())
{
case GFXFormatR8G8B8A8:
retVar = new Var;
retVar->setType("float4");
retVar->setName("_ppDepth");
meta->addStatement( new GenOp( " // depth conditioner: packing to rgba\r\n" ) );
meta->addStatement( new GenOp(
avar( " @ = %s(@ * (255.0/256) * float4(1, 255, 255 * 255, 255 * 255 * 255));\r\n", fracMethodName.c_str() ),
new DecOp(retVar), unconditionedOutput ) );
break;
default:
retVar = unconditionedOutput;
meta->addStatement( new GenOp( " // depth conditioner: no conditioning\r\n" ) );
break;
}
AssertFatal( retVar != NULL, avar( "Cannot condition output to buffer format: %s", GFXStringTextureFormat[getBufferFormat()] ) );
return retVar;
}
Var *LinearEyeDepthConditioner::_unconditionInput( Var *conditionedInput, MultiLine *meta )
{
String float4Typename = (GFX->getAdapterType() == OpenGL) ? "vec4" : "float4";
Var *retVar = conditionedInput;
if(getBufferFormat() != GFXFormat_COUNT)
{
retVar = new Var;
retVar->setType(float4Typename.c_str());
retVar->setName("_ppDepth");
meta->addStatement( new GenOp( avar( " @ = %s(0, 0, 1, 1);\r\n", float4Typename.c_str() ), new DecOp(retVar) ) );
switch(getBufferFormat())
{
case GFXFormatR32F:
case GFXFormatR16F:
meta->addStatement( new GenOp( " // depth conditioner: float texture\r\n" ) );
meta->addStatement( new GenOp( " @.w = @.r;\r\n", retVar, conditionedInput ) );
break;
case GFXFormatR8G8B8A8:
meta->addStatement( new GenOp( " // depth conditioner: unpacking from rgba\r\n" ) );
meta->addStatement( new GenOp(
avar( " @.w = dot(@ * (256.0/255), %s(1, 1 / 255, 1 / (255 * 255), 1 / (255 * 255 * 255)));\r\n", float4Typename.c_str() )
, retVar, conditionedInput ) );
break;
default:
AssertFatal(false, "LinearEyeDepthConditioner::_unconditionInput - Unrecognized buffer format");
}
}
return retVar;
}
Var* LinearEyeDepthConditioner::printMethodHeader( MethodType methodType, const String &methodName, Stream &stream, MultiLine *meta )
{
const bool isCondition = ( methodType == ConditionerFeature::ConditionMethod );
Var *retVal = NULL;
// The uncondition method inputs are changed
if( isCondition )
retVal = Parent::printMethodHeader( methodType, methodName, stream, meta );
else
{
Var *methodVar = new Var;
methodVar->setName(methodName);
if (GFX->getAdapterType() == OpenGL)
methodVar->setType("vec4");
else
methodVar->setType("inline float4");
DecOp *methodDecl = new DecOp(methodVar);
Var *prepassSampler = new Var;
prepassSampler->setName("prepassSamplerVar");
prepassSampler->setType("sampler2D");
DecOp *prepassSamplerDecl = new DecOp(prepassSampler);
Var *screenUV = new Var;
screenUV->setName("screenUVVar");
if (GFX->getAdapterType() == OpenGL)
screenUV->setType("vec2");
else
screenUV->setType("float2");
DecOp *screenUVDecl = new DecOp(screenUV);
Var *bufferSample = new Var;
bufferSample->setName("bufferSample");
if (GFX->getAdapterType() == OpenGL)
bufferSample->setType("vec4");
else
bufferSample->setType("float4");
DecOp *bufferSampleDecl = new DecOp(bufferSample);
meta->addStatement( new GenOp( "@(@, @)\r\n", methodDecl, prepassSamplerDecl, screenUVDecl ) );
meta->addStatement( new GenOp( "{\r\n" ) );
meta->addStatement( new GenOp( " // Sampler g-buffer\r\n" ) );
// The linear depth target has no mipmaps, so use tex2dlod when
// possible so that the shader compiler can optimize.
meta->addStatement( new GenOp( " #if TORQUE_SM >= 30\r\n" ) );
if (GFX->getAdapterType() == OpenGL)
meta->addStatement( new GenOp( " @ = textureLod(@, @, 0); \r\n", bufferSampleDecl, prepassSampler, screenUV) );
else
meta->addStatement( new GenOp( " @ = tex2Dlod(@, float4(@,0,0));\r\n", bufferSampleDecl, prepassSampler, screenUV ) );
meta->addStatement( new GenOp( " #else\r\n" ) );
if (GFX->getAdapterType() == OpenGL)
meta->addStatement( new GenOp( " @ = texture(@, @);\r\n", bufferSampleDecl, prepassSampler, screenUV) );
else
meta->addStatement( new GenOp( " @ = tex2D(@, @);\r\n", bufferSampleDecl, prepassSampler, screenUV ) );
meta->addStatement( new GenOp( " #endif\r\n\r\n" ) );
// We don't use this way of passing var's around, so this should cause a crash
// if something uses this improperly
retVal = bufferSample;
}
return retVal;
}
void RenderPrePassMgr::_initShaders()
{
if ( mClearGBufferShader ) return;
// Find ShaderData
ShaderData *shaderData;
mClearGBufferShader = Sim::findObject( "ClearGBufferShader", shaderData ) ? shaderData->getShader() : NULL;
if ( !mClearGBufferShader )
Con::errorf( "RenderPrePassMgr::_initShaders - could not find ClearGBufferShader" );
// Create StateBlocks
GFXStateBlockDesc desc;
desc.setCullMode( GFXCullNone );
desc.setBlend( true );
desc.setZReadWrite( false, false );
desc.samplersDefined = true;
desc.samplers[0].addressModeU = GFXAddressWrap;
desc.samplers[0].addressModeV = GFXAddressWrap;
desc.samplers[0].addressModeW = GFXAddressWrap;
desc.samplers[0].magFilter = GFXTextureFilterLinear;
desc.samplers[0].minFilter = GFXTextureFilterLinear;
desc.samplers[0].mipFilter = GFXTextureFilterLinear;
desc.samplers[0].textureColorOp = GFXTOPModulate;
mStateblock = GFX->createStateBlock( desc );
// Set up shader constants.
mShaderConsts = mClearGBufferShader->allocConstBuffer();
mSpecularStrengthSC = mClearGBufferShader->getShaderConstHandle( "$specularStrength" );
mSpecularPowerSC = mClearGBufferShader->getShaderConstHandle( "$specularPower" );
}
void RenderPrePassMgr::clearBuffers()
{
// Clear z-buffer.
GFX->clear( GFXClearTarget | GFXClearZBuffer | GFXClearStencil, ColorI::ZERO, 1.0f, 0);
if ( !mClearGBufferShader )
return;
GFXTransformSaver saver;
// Clear the g-buffer.
RectI box(-1, -1, 3, 3);
GFX->setWorldMatrix( MatrixF::Identity );
GFX->setViewMatrix( MatrixF::Identity );
GFX->setProjectionMatrix( MatrixF::Identity );
GFX->setShader(mClearGBufferShader);
GFX->setStateBlock(mStateblock);
Point2F nw(-0.5,-0.5);
Point2F ne(0.5,-0.5);
GFXVertexBufferHandle<GFXVertexPC> verts(GFX, 4, GFXBufferTypeVolatile);
verts.lock();
F32 ulOffset = 0.5f - GFX->getFillConventionOffset();
Point2F upperLeft(-1.0, -1.0);
Point2F lowerRight(1.0, 1.0);
verts[0].point.set( upperLeft.x+nw.x+ulOffset, upperLeft.y+nw.y+ulOffset, 0.0f );
verts[1].point.set( lowerRight.x+ne.x, upperLeft.y+ne.y+ulOffset, 0.0f );
verts[2].point.set( upperLeft.x-ne.x+ulOffset, lowerRight.y-ne.y, 0.0f );
verts[3].point.set( lowerRight.x-nw.x, lowerRight.y-nw.y, 0.0f );
verts.unlock();
GFX->setVertexBuffer( verts );
GFX->drawPrimitive( GFXTriangleStrip, 0, 2 );
GFX->setShader(NULL);
}