mirror of
https://github.com/TorqueGameEngines/Torque3D.git
synced 2026-01-20 04:34:48 +00:00
added libraries: opus flac libsndfile updated: libvorbis libogg openal - Everything works as expected for now. Bare in mind libsndfile needed the check for whether or not it could find the xiph libraries removed in order for this to work.
539 lines
20 KiB
C++
539 lines
20 KiB
C++
/*
|
|
* 2-channel UHJ Decoder
|
|
*
|
|
* Copyright (c) Chris Robinson <chris.kcat@gmail.com>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <array>
|
|
#include <complex>
|
|
#include <cstring>
|
|
#include <memory>
|
|
#include <stddef.h>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "albit.h"
|
|
#include "albyte.h"
|
|
#include "alcomplex.h"
|
|
#include "almalloc.h"
|
|
#include "alnumbers.h"
|
|
#include "alspan.h"
|
|
#include "vector.h"
|
|
#include "opthelpers.h"
|
|
#include "phase_shifter.h"
|
|
|
|
#include "sndfile.h"
|
|
|
|
#include "win_main_utf8.h"
|
|
|
|
|
|
struct FileDeleter {
|
|
void operator()(FILE *file) { fclose(file); }
|
|
};
|
|
using FilePtr = std::unique_ptr<FILE,FileDeleter>;
|
|
|
|
struct SndFileDeleter {
|
|
void operator()(SNDFILE *sndfile) { sf_close(sndfile); }
|
|
};
|
|
using SndFilePtr = std::unique_ptr<SNDFILE,SndFileDeleter>;
|
|
|
|
|
|
using ubyte = unsigned char;
|
|
using ushort = unsigned short;
|
|
using uint = unsigned int;
|
|
using complex_d = std::complex<double>;
|
|
|
|
using byte4 = std::array<al::byte,4>;
|
|
|
|
|
|
constexpr ubyte SUBTYPE_BFORMAT_FLOAT[]{
|
|
0x03, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1,
|
|
0xca, 0x00, 0x00, 0x00
|
|
};
|
|
|
|
void fwrite16le(ushort val, FILE *f)
|
|
{
|
|
ubyte data[2]{ static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff) };
|
|
fwrite(data, 1, 2, f);
|
|
}
|
|
|
|
void fwrite32le(uint val, FILE *f)
|
|
{
|
|
ubyte data[4]{ static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff),
|
|
static_cast<ubyte>((val>>16)&0xff), static_cast<ubyte>((val>>24)&0xff) };
|
|
fwrite(data, 1, 4, f);
|
|
}
|
|
|
|
template<al::endian = al::endian::native>
|
|
byte4 f32AsLEBytes(const float &value) = delete;
|
|
|
|
template<>
|
|
byte4 f32AsLEBytes<al::endian::little>(const float &value)
|
|
{
|
|
byte4 ret{};
|
|
std::memcpy(ret.data(), &value, 4);
|
|
return ret;
|
|
}
|
|
template<>
|
|
byte4 f32AsLEBytes<al::endian::big>(const float &value)
|
|
{
|
|
byte4 ret{};
|
|
std::memcpy(ret.data(), &value, 4);
|
|
std::swap(ret[0], ret[3]);
|
|
std::swap(ret[1], ret[2]);
|
|
return ret;
|
|
}
|
|
|
|
|
|
constexpr uint BufferLineSize{1024};
|
|
|
|
using FloatBufferLine = std::array<float,BufferLineSize>;
|
|
using FloatBufferSpan = al::span<float,BufferLineSize>;
|
|
|
|
|
|
struct UhjDecoder {
|
|
constexpr static size_t sFilterDelay{1024};
|
|
|
|
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mS{};
|
|
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mD{};
|
|
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mT{};
|
|
alignas(16) std::array<float,BufferLineSize+sFilterDelay> mQ{};
|
|
|
|
/* History for the FIR filter. */
|
|
alignas(16) std::array<float,sFilterDelay-1> mDTHistory{};
|
|
alignas(16) std::array<float,sFilterDelay-1> mSHistory{};
|
|
|
|
alignas(16) std::array<float,BufferLineSize + sFilterDelay*2> mTemp{};
|
|
|
|
void decode(const float *RESTRICT InSamples, const size_t InChannels,
|
|
const al::span<FloatBufferLine> OutSamples, const size_t SamplesToDo);
|
|
void decode2(const float *RESTRICT InSamples, const al::span<FloatBufferLine> OutSamples,
|
|
const size_t SamplesToDo);
|
|
|
|
DEF_NEWDEL(UhjDecoder)
|
|
};
|
|
|
|
const PhaseShifterT<UhjDecoder::sFilterDelay*2> PShift{};
|
|
|
|
|
|
/* Decoding UHJ is done as:
|
|
*
|
|
* S = Left + Right
|
|
* D = Left - Right
|
|
*
|
|
* W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T)
|
|
* X = 0.418496*S - j(0.828331*D + 0.767820*T)
|
|
* Y = 0.795968*D - 0.676392*T + j(0.186633*S)
|
|
* Z = 1.023332*Q
|
|
*
|
|
* where j is a +90 degree phase shift. 3-channel UHJ excludes Q, while 2-
|
|
* channel excludes Q and T. The B-Format signal reconstructed from 2-channel
|
|
* UHJ should not be run through a normal B-Format decoder, as it needs
|
|
* different shelf filters.
|
|
*
|
|
* NOTE: Some sources specify
|
|
*
|
|
* S = (Left + Right)/2
|
|
* D = (Left - Right)/2
|
|
*
|
|
* However, this is incorrect. It's halving Left and Right even though they
|
|
* were already halved during encoding, causing S and D to be half what they
|
|
* initially were at the encoding stage. This division is not present in
|
|
* Gerzon's original paper for deriving Sigma (S) or Delta (D) from the L and R
|
|
* signals. As proof, taking Y for example:
|
|
*
|
|
* Y = 0.795968*D - 0.676392*T + j(0.186633*S)
|
|
*
|
|
* * Plug in the encoding parameters, using ? as a placeholder for whether S
|
|
* and D should receive an extra 0.5 factor
|
|
* Y = 0.795968*(j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y)*? -
|
|
* 0.676392*(j(-0.1432*W + 0.6512*X) - 0.7071068*Y) +
|
|
* 0.186633*j(0.9396926*W + 0.1855740*X)*?
|
|
*
|
|
* * Move common factors in
|
|
* Y = (j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y) -
|
|
* (j(-0.1432*0.676392*W + 0.6512*0.676392*X) - 0.7071068*0.676392*Y) +
|
|
* j(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
|
|
*
|
|
* * Clean up extraneous groupings
|
|
* Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y -
|
|
* j(-0.1432*0.676392*W + 0.6512*0.676392*X) + 0.7071068*0.676392*Y +
|
|
* j*(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
|
|
*
|
|
* * Move phase shifts together and combine them
|
|
* Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X - -0.1432*0.676392*W -
|
|
* 0.6512*0.676392*X + 0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X) +
|
|
* 0.6554516*0.795968*?*Y + 0.7071068*0.676392*Y
|
|
*
|
|
* * Reorder terms
|
|
* Y = j(-0.3420201*0.795968*?*W + 0.1432*0.676392*W + 0.9396926*0.186633*?*W +
|
|
* 0.5098604*0.795968*?*X + -0.6512*0.676392*X + 0.1855740*0.186633*?*X) +
|
|
* 0.7071068*0.676392*Y + 0.6554516*0.795968*?*Y
|
|
*
|
|
* * Move common factors out
|
|
* Y = j((-0.3420201*0.795968*? + 0.1432*0.676392 + 0.9396926*0.186633*?)*W +
|
|
* ( 0.5098604*0.795968*? + -0.6512*0.676392 + 0.1855740*0.186633*?)*X) +
|
|
* (0.7071068*0.676392 + 0.6554516*0.795968*?)*Y
|
|
*
|
|
* * Result w/ 0.5 factor:
|
|
* -0.3420201*0.795968*0.5 + 0.1432*0.676392 + 0.9396926*0.186633*0.5 = 0.04843*W
|
|
* 0.5098604*0.795968*0.5 + -0.6512*0.676392 + 0.1855740*0.186633*0.5 = -0.22023*X
|
|
* 0.7071068*0.676392 + 0.6554516*0.795968*0.5 = 0.73914*Y
|
|
* -> Y = j(0.04843*W + -0.22023*X) + 0.73914*Y
|
|
*
|
|
* * Result w/o 0.5 factor:
|
|
* -0.3420201*0.795968 + 0.1432*0.676392 + 0.9396926*0.186633 = 0.00000*W
|
|
* 0.5098604*0.795968 + -0.6512*0.676392 + 0.1855740*0.186633 = 0.00000*X
|
|
* 0.7071068*0.676392 + 0.6554516*0.795968 = 1.00000*Y
|
|
* -> Y = j(0.00000*W + 0.00000*X) + 1.00000*Y
|
|
*
|
|
* Not halving produces a result matching the original input.
|
|
*/
|
|
void UhjDecoder::decode(const float *RESTRICT InSamples, const size_t InChannels,
|
|
const al::span<FloatBufferLine> OutSamples, const size_t SamplesToDo)
|
|
{
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
float *woutput{OutSamples[0].data()};
|
|
float *xoutput{OutSamples[1].data()};
|
|
float *youtput{OutSamples[2].data()};
|
|
|
|
/* Add a delay to the input channels, to align it with the all-passed
|
|
* signal.
|
|
*/
|
|
|
|
/* S = Left + Right */
|
|
for(size_t i{0};i < SamplesToDo;++i)
|
|
mS[sFilterDelay+i] = InSamples[i*InChannels + 0] + InSamples[i*InChannels + 1];
|
|
|
|
/* D = Left - Right */
|
|
for(size_t i{0};i < SamplesToDo;++i)
|
|
mD[sFilterDelay+i] = InSamples[i*InChannels + 0] - InSamples[i*InChannels + 1];
|
|
|
|
if(InChannels > 2)
|
|
{
|
|
/* T */
|
|
for(size_t i{0};i < SamplesToDo;++i)
|
|
mT[sFilterDelay+i] = InSamples[i*InChannels + 2];
|
|
}
|
|
if(InChannels > 3)
|
|
{
|
|
/* Q */
|
|
for(size_t i{0};i < SamplesToDo;++i)
|
|
mQ[sFilterDelay+i] = InSamples[i*InChannels + 3];
|
|
}
|
|
|
|
/* Precompute j(0.828331*D + 0.767820*T) and store in xoutput. */
|
|
auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
|
|
std::transform(mD.cbegin(), mD.cbegin()+SamplesToDo+sFilterDelay, mT.cbegin(), tmpiter,
|
|
[](const float d, const float t) noexcept { return 0.828331f*d + 0.767820f*t; });
|
|
std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
|
|
PShift.process({xoutput, SamplesToDo}, mTemp.data());
|
|
|
|
for(size_t i{0};i < SamplesToDo;++i)
|
|
{
|
|
/* W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T) */
|
|
woutput[i] = 0.981532f*mS[i] + 0.197484f*xoutput[i];
|
|
/* X = 0.418496*S - j(0.828331*D + 0.767820*T) */
|
|
xoutput[i] = 0.418496f*mS[i] - xoutput[i];
|
|
}
|
|
|
|
/* Precompute j*S and store in youtput. */
|
|
tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
|
|
std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
|
|
std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
|
|
PShift.process({youtput, SamplesToDo}, mTemp.data());
|
|
|
|
for(size_t i{0};i < SamplesToDo;++i)
|
|
{
|
|
/* Y = 0.795968*D - 0.676392*T + j(0.186633*S) */
|
|
youtput[i] = 0.795968f*mD[i] - 0.676392f*mT[i] + 0.186633f*youtput[i];
|
|
}
|
|
|
|
if(OutSamples.size() > 3)
|
|
{
|
|
float *zoutput{OutSamples[3].data()};
|
|
/* Z = 1.023332*Q */
|
|
for(size_t i{0};i < SamplesToDo;++i)
|
|
zoutput[i] = 1.023332f*mQ[i];
|
|
}
|
|
|
|
std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin());
|
|
std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin());
|
|
std::copy(mT.begin()+SamplesToDo, mT.begin()+SamplesToDo+sFilterDelay, mT.begin());
|
|
std::copy(mQ.begin()+SamplesToDo, mQ.begin()+SamplesToDo+sFilterDelay, mQ.begin());
|
|
}
|
|
|
|
/* This is an alternative equation for decoding 2-channel UHJ. Not sure what
|
|
* the intended benefit is over the above equation as this slightly reduces the
|
|
* amount of the original left response and has more of the phase-shifted
|
|
* forward response on the left response.
|
|
*
|
|
* This decoding is done as:
|
|
*
|
|
* S = Left + Right
|
|
* D = Left - Right
|
|
*
|
|
* W = 0.981530*S + j*0.163585*D
|
|
* X = 0.418504*S - j*0.828347*D
|
|
* Y = 0.762956*D + j*0.384230*S
|
|
*
|
|
* where j is a +90 degree phase shift.
|
|
*
|
|
* NOTE: As above, S and D should not be halved. The only consequence of
|
|
* halving here is merely a -6dB reduction in output, but it's still incorrect.
|
|
*/
|
|
void UhjDecoder::decode2(const float *RESTRICT InSamples,
|
|
const al::span<FloatBufferLine> OutSamples, const size_t SamplesToDo)
|
|
{
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
float *woutput{OutSamples[0].data()};
|
|
float *xoutput{OutSamples[1].data()};
|
|
float *youtput{OutSamples[2].data()};
|
|
|
|
/* S = Left + Right */
|
|
for(size_t i{0};i < SamplesToDo;++i)
|
|
mS[sFilterDelay+i] = InSamples[i*2 + 0] + InSamples[i*2 + 1];
|
|
|
|
/* D = Left - Right */
|
|
for(size_t i{0};i < SamplesToDo;++i)
|
|
mD[sFilterDelay+i] = InSamples[i*2 + 0] - InSamples[i*2 + 1];
|
|
|
|
/* Precompute j*D and store in xoutput. */
|
|
auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
|
|
std::copy_n(mD.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
|
|
std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
|
|
PShift.process({xoutput, SamplesToDo}, mTemp.data());
|
|
|
|
for(size_t i{0};i < SamplesToDo;++i)
|
|
{
|
|
/* W = 0.981530*S + j*0.163585*D */
|
|
woutput[i] = 0.981530f*mS[i] + 0.163585f*xoutput[i];
|
|
/* X = 0.418504*S - j*0.828347*D */
|
|
xoutput[i] = 0.418504f*mS[i] - 0.828347f*xoutput[i];
|
|
}
|
|
|
|
/* Precompute j*S and store in youtput. */
|
|
tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
|
|
std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
|
|
std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
|
|
PShift.process({youtput, SamplesToDo}, mTemp.data());
|
|
|
|
for(size_t i{0};i < SamplesToDo;++i)
|
|
{
|
|
/* Y = 0.762956*D + j*0.384230*S */
|
|
youtput[i] = 0.762956f*mD[i] + 0.384230f*youtput[i];
|
|
}
|
|
|
|
std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin());
|
|
std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin());
|
|
}
|
|
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
if(argc < 2 || std::strcmp(argv[1], "-h") == 0 || std::strcmp(argv[1], "--help") == 0)
|
|
{
|
|
printf("Usage: %s <[options] filename.wav...>\n\n"
|
|
" Options:\n"
|
|
" --general Use the general equations for 2-channel UHJ (default).\n"
|
|
" --alternative Use the alternative equations for 2-channel UHJ.\n"
|
|
"\n"
|
|
"Note: When decoding 2-channel UHJ to an .amb file, the result should not use\n"
|
|
"the normal B-Format shelf filters! Only 3- and 4-channel UHJ can accurately\n"
|
|
"reconstruct the original B-Format signal.",
|
|
argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
size_t num_files{0}, num_decoded{0};
|
|
bool use_general{true};
|
|
for(int fidx{1};fidx < argc;++fidx)
|
|
{
|
|
if(std::strcmp(argv[fidx], "--general") == 0)
|
|
{
|
|
use_general = true;
|
|
continue;
|
|
}
|
|
if(std::strcmp(argv[fidx], "--alternative") == 0)
|
|
{
|
|
use_general = false;
|
|
continue;
|
|
}
|
|
++num_files;
|
|
SF_INFO ininfo{};
|
|
SndFilePtr infile{sf_open(argv[fidx], SFM_READ, &ininfo)};
|
|
if(!infile)
|
|
{
|
|
fprintf(stderr, "Failed to open %s\n", argv[fidx]);
|
|
continue;
|
|
}
|
|
if(sf_command(infile.get(), SFC_WAVEX_GET_AMBISONIC, NULL, 0) == SF_AMBISONIC_B_FORMAT)
|
|
{
|
|
fprintf(stderr, "%s is already B-Format\n", argv[fidx]);
|
|
continue;
|
|
}
|
|
uint outchans{};
|
|
if(ininfo.channels == 2)
|
|
outchans = 3;
|
|
else if(ininfo.channels == 3 || ininfo.channels == 4)
|
|
outchans = static_cast<uint>(ininfo.channels);
|
|
else
|
|
{
|
|
fprintf(stderr, "%s is not a 2-, 3-, or 4-channel file\n", argv[fidx]);
|
|
continue;
|
|
}
|
|
printf("Converting %s from %d-channel UHJ%s...\n", argv[fidx], ininfo.channels,
|
|
(ininfo.channels == 2) ? use_general ? " (general)" : " (alternative)" : "");
|
|
|
|
std::string outname{argv[fidx]};
|
|
auto lastslash = outname.find_last_of('/');
|
|
if(lastslash != std::string::npos)
|
|
outname.erase(0, lastslash+1);
|
|
auto lastdot = outname.find_last_of('.');
|
|
if(lastdot != std::string::npos)
|
|
outname.resize(lastdot+1);
|
|
outname += "amb";
|
|
|
|
FilePtr outfile{fopen(outname.c_str(), "wb")};
|
|
if(!outfile)
|
|
{
|
|
fprintf(stderr, "Failed to create %s\n", outname.c_str());
|
|
continue;
|
|
}
|
|
|
|
fputs("RIFF", outfile.get());
|
|
fwrite32le(0xFFFFFFFF, outfile.get()); // 'RIFF' header len; filled in at close
|
|
|
|
fputs("WAVE", outfile.get());
|
|
|
|
fputs("fmt ", outfile.get());
|
|
fwrite32le(40, outfile.get()); // 'fmt ' header len; 40 bytes for EXTENSIBLE
|
|
|
|
// 16-bit val, format type id (extensible: 0xFFFE)
|
|
fwrite16le(0xFFFE, outfile.get());
|
|
// 16-bit val, channel count
|
|
fwrite16le(static_cast<ushort>(outchans), outfile.get());
|
|
// 32-bit val, frequency
|
|
fwrite32le(static_cast<uint>(ininfo.samplerate), outfile.get());
|
|
// 32-bit val, bytes per second
|
|
fwrite32le(static_cast<uint>(ininfo.samplerate)*sizeof(float)*outchans, outfile.get());
|
|
// 16-bit val, frame size
|
|
fwrite16le(static_cast<ushort>(sizeof(float)*outchans), outfile.get());
|
|
// 16-bit val, bits per sample
|
|
fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
|
|
// 16-bit val, extra byte count
|
|
fwrite16le(22, outfile.get());
|
|
// 16-bit val, valid bits per sample
|
|
fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
|
|
// 32-bit val, channel mask
|
|
fwrite32le(0, outfile.get());
|
|
// 16 byte GUID, sub-type format
|
|
fwrite(SUBTYPE_BFORMAT_FLOAT, 1, 16, outfile.get());
|
|
|
|
fputs("data", outfile.get());
|
|
fwrite32le(0xFFFFFFFF, outfile.get()); // 'data' header len; filled in at close
|
|
if(ferror(outfile.get()))
|
|
{
|
|
fprintf(stderr, "Error writing wave file header: %s (%d)\n", strerror(errno), errno);
|
|
continue;
|
|
}
|
|
|
|
auto DataStart = ftell(outfile.get());
|
|
|
|
auto decoder = std::make_unique<UhjDecoder>();
|
|
auto inmem = std::make_unique<float[]>(BufferLineSize*static_cast<uint>(ininfo.channels));
|
|
auto decmem = al::vector<std::array<float,BufferLineSize>, 16>(outchans);
|
|
auto outmem = std::make_unique<byte4[]>(BufferLineSize*outchans);
|
|
|
|
/* A number of initial samples need to be skipped to cut the lead-in
|
|
* from the all-pass filter delay. The same number of samples need to
|
|
* be fed through the decoder after reaching the end of the input file
|
|
* to ensure none of the original input is lost.
|
|
*/
|
|
size_t LeadIn{UhjDecoder::sFilterDelay};
|
|
sf_count_t LeadOut{UhjDecoder::sFilterDelay};
|
|
while(LeadOut > 0)
|
|
{
|
|
sf_count_t sgot{sf_readf_float(infile.get(), inmem.get(), BufferLineSize)};
|
|
sgot = std::max<sf_count_t>(sgot, 0);
|
|
if(sgot < BufferLineSize)
|
|
{
|
|
const sf_count_t remaining{std::min(BufferLineSize - sgot, LeadOut)};
|
|
std::fill_n(inmem.get() + sgot*ininfo.channels, remaining*ininfo.channels, 0.0f);
|
|
sgot += remaining;
|
|
LeadOut -= remaining;
|
|
}
|
|
|
|
auto got = static_cast<size_t>(sgot);
|
|
if(ininfo.channels > 2 || use_general)
|
|
decoder->decode(inmem.get(), static_cast<uint>(ininfo.channels), decmem, got);
|
|
else
|
|
decoder->decode2(inmem.get(), decmem, got);
|
|
if(LeadIn >= got)
|
|
{
|
|
LeadIn -= got;
|
|
continue;
|
|
}
|
|
|
|
got -= LeadIn;
|
|
for(size_t i{0};i < got;++i)
|
|
{
|
|
/* Attenuate by -3dB for FuMa output levels. */
|
|
constexpr auto inv_sqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
|
|
for(size_t j{0};j < outchans;++j)
|
|
outmem[i*outchans + j] = f32AsLEBytes(decmem[j][LeadIn+i] * inv_sqrt2);
|
|
}
|
|
LeadIn = 0;
|
|
|
|
size_t wrote{fwrite(outmem.get(), sizeof(byte4)*outchans, got, outfile.get())};
|
|
if(wrote < got)
|
|
{
|
|
fprintf(stderr, "Error writing wave data: %s (%d)\n", strerror(errno), errno);
|
|
break;
|
|
}
|
|
}
|
|
|
|
auto DataEnd = ftell(outfile.get());
|
|
if(DataEnd > DataStart)
|
|
{
|
|
long dataLen{DataEnd - DataStart};
|
|
if(fseek(outfile.get(), 4, SEEK_SET) == 0)
|
|
fwrite32le(static_cast<uint>(DataEnd-8), outfile.get()); // 'WAVE' header len
|
|
if(fseek(outfile.get(), DataStart-4, SEEK_SET) == 0)
|
|
fwrite32le(static_cast<uint>(dataLen), outfile.get()); // 'data' header len
|
|
}
|
|
fflush(outfile.get());
|
|
++num_decoded;
|
|
}
|
|
if(num_decoded == 0)
|
|
fprintf(stderr, "Failed to decode any input files\n");
|
|
else if(num_decoded < num_files)
|
|
fprintf(stderr, "Decoded %zu of %zu files\n", num_decoded, num_files);
|
|
else
|
|
printf("Decoded %zu file%s\n", num_decoded, (num_decoded==1)?"":"s");
|
|
return 0;
|
|
}
|